cloud-hypervisor/block_util/src/lib.rs

692 lines
23 KiB
Rust
Raw Normal View History

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2020 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
#[macro_use]
extern crate log;
#[macro_use]
extern crate serde_derive;
pub mod async_io;
pub mod fixed_vhd_async;
pub mod fixed_vhd_sync;
pub mod qcow_sync;
pub mod raw_async;
pub mod raw_sync;
pub mod vhd;
use crate::async_io::{AsyncIo, AsyncIoError, AsyncIoResult, DiskFileError, DiskFileResult};
#[cfg(feature = "io_uring")]
use io_uring::{opcode, IoUring, Probe};
use serde::ser::{Serialize, SerializeStruct, Serializer};
use std::cmp;
use std::convert::TryInto;
use std::fs::File;
use std::io::{self, IoSlice, IoSliceMut, Read, Seek, SeekFrom, Write};
use std::os::linux::fs::MetadataExt;
#[cfg(feature = "io_uring")]
use std::os::unix::io::AsRawFd;
use std::path::PathBuf;
use std::result;
use std::sync::{Arc, Mutex};
use virtio_bindings::bindings::virtio_blk::*;
use vm_memory::{ByteValued, Bytes, GuestAddress, GuestMemory, GuestMemoryError, GuestMemoryMmap};
use vm_virtio::DescriptorChain;
use vmm_sys_util::eventfd::EventFd;
const SECTOR_SHIFT: u8 = 9;
pub const SECTOR_SIZE: u64 = 0x01 << SECTOR_SHIFT;
#[derive(Debug)]
pub enum Error {
/// Guest gave us bad memory addresses.
GuestMemory(GuestMemoryError),
/// Guest gave us offsets that would have overflowed a usize.
CheckedOffset(GuestAddress, usize),
/// Guest gave us a write only descriptor that protocol says to read from.
UnexpectedWriteOnlyDescriptor,
/// Guest gave us a read only descriptor that protocol says to write to.
UnexpectedReadOnlyDescriptor,
/// Guest gave us too few descriptors in a descriptor chain.
DescriptorChainTooShort,
/// Guest gave us a descriptor that was too short to use.
DescriptorLengthTooSmall,
/// Getting a block's metadata fails for any reason.
GetFileMetadata,
/// The requested operation would cause a seek beyond disk end.
InvalidOffset,
/// The requested operation does not support multiple descriptors.
TooManyDescriptors,
}
fn build_device_id(disk_path: &PathBuf) -> result::Result<String, Error> {
let blk_metadata = match disk_path.metadata() {
Err(_) => return Err(Error::GetFileMetadata),
Ok(m) => m,
};
// This is how kvmtool does it.
let device_id = format!(
"{}{}{}",
blk_metadata.st_dev(),
blk_metadata.st_rdev(),
blk_metadata.st_ino()
);
Ok(device_id)
}
pub fn build_disk_image_id(disk_path: &PathBuf) -> Vec<u8> {
let mut default_disk_image_id = vec![0; VIRTIO_BLK_ID_BYTES as usize];
match build_device_id(disk_path) {
Err(_) => {
warn!("Could not generate device id. We'll use a default.");
}
Ok(m) => {
// The kernel only knows to read a maximum of VIRTIO_BLK_ID_BYTES.
// This will also zero out any leftover bytes.
let disk_id = m.as_bytes();
let bytes_to_copy = cmp::min(disk_id.len(), VIRTIO_BLK_ID_BYTES as usize);
default_disk_image_id[..bytes_to_copy].clone_from_slice(&disk_id[..bytes_to_copy])
}
}
default_disk_image_id
}
#[derive(Debug)]
pub enum ExecuteError {
BadRequest(Error),
Flush(io::Error),
Read(GuestMemoryError),
Seek(io::Error),
Write(GuestMemoryError),
Unsupported(u32),
SubmitIoUring(io::Error),
GetHostAddress(GuestMemoryError),
AsyncRead(AsyncIoError),
AsyncWrite(AsyncIoError),
AsyncFlush(AsyncIoError),
}
impl ExecuteError {
pub fn status(&self) -> u32 {
match *self {
ExecuteError::BadRequest(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::Flush(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::Read(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::Seek(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::Write(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::Unsupported(_) => VIRTIO_BLK_S_UNSUPP,
ExecuteError::SubmitIoUring(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::GetHostAddress(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::AsyncRead(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::AsyncWrite(_) => VIRTIO_BLK_S_IOERR,
ExecuteError::AsyncFlush(_) => VIRTIO_BLK_S_IOERR,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RequestType {
In,
Out,
Flush,
GetDeviceID,
Unsupported(u32),
}
pub fn request_type(
mem: &GuestMemoryMmap,
desc_addr: GuestAddress,
) -> result::Result<RequestType, Error> {
let type_ = mem.read_obj(desc_addr).map_err(Error::GuestMemory)?;
match type_ {
VIRTIO_BLK_T_IN => Ok(RequestType::In),
VIRTIO_BLK_T_OUT => Ok(RequestType::Out),
VIRTIO_BLK_T_FLUSH => Ok(RequestType::Flush),
VIRTIO_BLK_T_GET_ID => Ok(RequestType::GetDeviceID),
t => Ok(RequestType::Unsupported(t)),
}
}
fn sector(mem: &GuestMemoryMmap, desc_addr: GuestAddress) -> result::Result<u64, Error> {
const SECTOR_OFFSET: usize = 8;
let addr = match mem.checked_offset(desc_addr, SECTOR_OFFSET) {
Some(v) => v,
None => return Err(Error::CheckedOffset(desc_addr, SECTOR_OFFSET)),
};
mem.read_obj(addr).map_err(Error::GuestMemory)
}
pub struct Request {
pub request_type: RequestType,
pub sector: u64,
pub data_descriptors: Vec<(GuestAddress, u32)>,
pub status_addr: GuestAddress,
pub writeback: bool,
}
impl Request {
pub fn parse(
avail_desc: &DescriptorChain,
mem: &GuestMemoryMmap,
) -> result::Result<Request, Error> {
// The head contains the request type which MUST be readable.
if avail_desc.is_write_only() {
return Err(Error::UnexpectedWriteOnlyDescriptor);
}
let mut req = Request {
request_type: request_type(&mem, avail_desc.addr)?,
sector: sector(&mem, avail_desc.addr)?,
data_descriptors: Vec::new(),
status_addr: GuestAddress(0),
writeback: true,
};
let status_desc;
let mut desc = avail_desc
.next_descriptor()
.ok_or(Error::DescriptorChainTooShort)?;
if !desc.has_next() {
status_desc = desc;
// Only flush requests are allowed to skip the data descriptor.
if req.request_type != RequestType::Flush {
return Err(Error::DescriptorChainTooShort);
}
} else {
while desc.has_next() {
if desc.is_write_only() && req.request_type == RequestType::Out {
return Err(Error::UnexpectedWriteOnlyDescriptor);
}
if !desc.is_write_only() && req.request_type == RequestType::In {
return Err(Error::UnexpectedReadOnlyDescriptor);
}
if !desc.is_write_only() && req.request_type == RequestType::GetDeviceID {
return Err(Error::UnexpectedReadOnlyDescriptor);
}
req.data_descriptors.push((desc.addr, desc.len));
desc = desc
.next_descriptor()
.ok_or(Error::DescriptorChainTooShort)?;
}
status_desc = desc;
}
// The status MUST always be writable.
if !status_desc.is_write_only() {
return Err(Error::UnexpectedReadOnlyDescriptor);
}
if status_desc.len < 1 {
return Err(Error::DescriptorLengthTooSmall);
}
req.status_addr = status_desc.addr;
Ok(req)
}
#[allow(clippy::ptr_arg)]
pub fn execute<T: Seek + Read + Write>(
&self,
disk: &mut T,
disk_nsectors: u64,
mem: &GuestMemoryMmap,
disk_id: &Vec<u8>,
) -> result::Result<u32, ExecuteError> {
disk.seek(SeekFrom::Start(self.sector << SECTOR_SHIFT))
.map_err(ExecuteError::Seek)?;
let mut len = 0;
for (data_addr, data_len) in &self.data_descriptors {
let mut top: u64 = u64::from(*data_len) / SECTOR_SIZE;
if u64::from(*data_len) % SECTOR_SIZE != 0 {
top += 1;
}
top = top
.checked_add(self.sector)
.ok_or(ExecuteError::BadRequest(Error::InvalidOffset))?;
if top > disk_nsectors {
return Err(ExecuteError::BadRequest(Error::InvalidOffset));
}
match self.request_type {
RequestType::In => {
mem.read_exact_from(*data_addr, disk, *data_len as usize)
.map_err(ExecuteError::Read)?;
len += data_len;
}
RequestType::Out => {
mem.write_all_to(*data_addr, disk, *data_len as usize)
.map_err(ExecuteError::Write)?;
if !self.writeback {
disk.flush().map_err(ExecuteError::Flush)?;
}
}
RequestType::Flush => disk.flush().map_err(ExecuteError::Flush)?,
RequestType::GetDeviceID => {
if (*data_len as usize) < disk_id.len() {
return Err(ExecuteError::BadRequest(Error::InvalidOffset));
}
mem.write_slice(&disk_id.as_slice(), *data_addr)
.map_err(ExecuteError::Write)?;
}
RequestType::Unsupported(t) => return Err(ExecuteError::Unsupported(t)),
};
}
Ok(len)
}
pub fn execute_async(
&self,
mem: &GuestMemoryMmap,
disk_nsectors: u64,
disk_image: &mut dyn AsyncIo,
disk_id: &[u8],
user_data: u64,
) -> result::Result<bool, ExecuteError> {
let sector = self.sector;
let request_type = self.request_type;
let offset = (sector << SECTOR_SHIFT) as libc::off_t;
let mut iovecs = Vec::new();
for (data_addr, data_len) in &self.data_descriptors {
let mut top: u64 = u64::from(*data_len) / SECTOR_SIZE;
if u64::from(*data_len) % SECTOR_SIZE != 0 {
top += 1;
}
top = top
.checked_add(sector)
.ok_or(ExecuteError::BadRequest(Error::InvalidOffset))?;
if top > disk_nsectors {
return Err(ExecuteError::BadRequest(Error::InvalidOffset));
}
let buf = mem
.get_slice(*data_addr, *data_len as usize)
.map_err(ExecuteError::GetHostAddress)?
.as_ptr();
let iovec = libc::iovec {
iov_base: buf as *mut libc::c_void,
iov_len: *data_len as libc::size_t,
};
iovecs.push(iovec);
}
// Queue operations expected to be submitted.
match request_type {
RequestType::In => {
disk_image
.read_vectored(offset, iovecs, user_data)
.map_err(ExecuteError::AsyncRead)?;
}
RequestType::Out => {
disk_image
.write_vectored(offset, iovecs, user_data)
.map_err(ExecuteError::AsyncWrite)?;
}
RequestType::Flush => {
disk_image
.fsync(Some(user_data))
.map_err(ExecuteError::AsyncFlush)?;
}
RequestType::GetDeviceID => {
let (data_addr, data_len) = if self.data_descriptors.len() == 1 {
(self.data_descriptors[0].0, self.data_descriptors[0].1)
} else {
return Err(ExecuteError::BadRequest(Error::TooManyDescriptors));
};
if (data_len as usize) < disk_id.len() {
return Err(ExecuteError::BadRequest(Error::InvalidOffset));
}
mem.write_slice(disk_id, data_addr)
.map_err(ExecuteError::Write)?;
return Ok(false);
}
RequestType::Unsupported(t) => return Err(ExecuteError::Unsupported(t)),
}
Ok(true)
}
pub fn set_writeback(&mut self, writeback: bool) {
self.writeback = writeback
}
}
#[derive(Copy, Clone, Debug, Default, Deserialize)]
#[repr(C, packed)]
pub struct VirtioBlockConfig {
pub capacity: u64,
pub size_max: u32,
pub seg_max: u32,
pub geometry: VirtioBlockGeometry,
pub blk_size: u32,
pub physical_block_exp: u8,
pub alignment_offset: u8,
pub min_io_size: u16,
pub opt_io_size: u32,
pub writeback: u8,
pub unused: u8,
pub num_queues: u16,
pub max_discard_sectors: u32,
pub max_discard_seg: u32,
pub discard_sector_alignment: u32,
pub max_write_zeroes_sectors: u32,
pub max_write_zeroes_seg: u32,
pub write_zeroes_may_unmap: u8,
pub unused1: [u8; 3],
}
// We must explicitly implement Serialize since the structure is packed and
// it's unsafe to borrow from a packed structure. And by default, if we derive
// Serialize from serde, it will borrow the values from the structure.
// That's why this implementation copies each field separately before it
// serializes the entire structure field by field.
impl Serialize for VirtioBlockConfig {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let capacity = self.capacity;
let size_max = self.size_max;
let seg_max = self.seg_max;
let geometry = self.geometry;
let blk_size = self.blk_size;
let physical_block_exp = self.physical_block_exp;
let alignment_offset = self.alignment_offset;
let min_io_size = self.min_io_size;
let opt_io_size = self.opt_io_size;
let writeback = self.writeback;
let unused = self.unused;
let num_queues = self.num_queues;
let max_discard_sectors = self.max_discard_sectors;
let max_discard_seg = self.max_discard_seg;
let discard_sector_alignment = self.discard_sector_alignment;
let max_write_zeroes_sectors = self.max_write_zeroes_sectors;
let max_write_zeroes_seg = self.max_write_zeroes_seg;
let write_zeroes_may_unmap = self.write_zeroes_may_unmap;
let unused1 = self.unused1;
let mut virtio_block_config = serializer.serialize_struct("VirtioBlockConfig", 60)?;
virtio_block_config.serialize_field("capacity", &capacity)?;
virtio_block_config.serialize_field("size_max", &size_max)?;
virtio_block_config.serialize_field("seg_max", &seg_max)?;
virtio_block_config.serialize_field("geometry", &geometry)?;
virtio_block_config.serialize_field("blk_size", &blk_size)?;
virtio_block_config.serialize_field("physical_block_exp", &physical_block_exp)?;
virtio_block_config.serialize_field("alignment_offset", &alignment_offset)?;
virtio_block_config.serialize_field("min_io_size", &min_io_size)?;
virtio_block_config.serialize_field("opt_io_size", &opt_io_size)?;
virtio_block_config.serialize_field("writeback", &writeback)?;
virtio_block_config.serialize_field("unused", &unused)?;
virtio_block_config.serialize_field("num_queues", &num_queues)?;
virtio_block_config.serialize_field("max_discard_sectors", &max_discard_sectors)?;
virtio_block_config.serialize_field("max_discard_seg", &max_discard_seg)?;
virtio_block_config
.serialize_field("discard_sector_alignment", &discard_sector_alignment)?;
virtio_block_config
.serialize_field("max_write_zeroes_sectors", &max_write_zeroes_sectors)?;
virtio_block_config.serialize_field("max_write_zeroes_seg", &max_write_zeroes_seg)?;
virtio_block_config.serialize_field("write_zeroes_may_unmap", &write_zeroes_may_unmap)?;
virtio_block_config.serialize_field("unused1", &unused1)?;
virtio_block_config.end()
}
}
unsafe impl ByteValued for VirtioBlockConfig {}
#[derive(Copy, Clone, Debug, Default, Deserialize)]
#[repr(C, packed)]
pub struct VirtioBlockGeometry {
pub cylinders: u16,
pub heads: u8,
pub sectors: u8,
}
// We must explicitly implement Serialize since the structure is packed and
// it's unsafe to borrow from a packed structure. And by default, if we derive
// Serialize from serde, it will borrow the values from the structure.
// That's why this implementation copies each field separately before it
// serializes the entire structure field by field.
impl Serialize for VirtioBlockGeometry {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let cylinders = self.cylinders;
let heads = self.heads;
let sectors = self.sectors;
let mut virtio_block_geometry = serializer.serialize_struct("VirtioBlockGeometry", 4)?;
virtio_block_geometry.serialize_field("cylinders", &cylinders)?;
virtio_block_geometry.serialize_field("heads", &heads)?;
virtio_block_geometry.serialize_field("sectors", &sectors)?;
virtio_block_geometry.end()
}
}
unsafe impl ByteValued for VirtioBlockGeometry {}
/// Check if io_uring for block device can be used on the current system, as
/// it correctly supports the expected io_uring features.
#[cfg(feature = "io_uring")]
pub fn block_io_uring_is_supported() -> bool {
let error_msg = "io_uring not supported:";
// Check we can create an io_uring instance, which effectively verifies
// that io_uring_setup() syscall is supported.
let io_uring = match IoUring::new(1) {
Ok(io_uring) => io_uring,
Err(e) => {
info!("{} failed to create io_uring instance: {}", error_msg, e);
return false;
}
};
let submitter = io_uring.submitter();
let event_fd = match EventFd::new(libc::EFD_NONBLOCK) {
Ok(fd) => fd,
Err(e) => {
info!("{} failed to create eventfd: {}", error_msg, e);
return false;
}
};
// Check we can register an eventfd as this is going to be needed while
// using io_uring with the virtio block device. This also validates that
// io_uring_register() syscall is supported.
match submitter.register_eventfd(event_fd.as_raw_fd()) {
Ok(_) => {}
Err(e) => {
info!("{} failed to register eventfd: {}", error_msg, e);
return false;
}
}
let mut probe = Probe::new();
// Check we can register a probe to validate supported operations.
match submitter.register_probe(&mut probe) {
Ok(_) => {}
Err(e) => {
info!("{} failed to register a probe: {}", error_msg, e);
return false;
}
}
// Check IORING_OP_FSYNC is supported
if !probe.is_supported(opcode::Fsync::CODE) {
info!("{} IORING_OP_FSYNC operation not supported", error_msg);
return false;
}
// Check IORING_OP_READ is supported
if !probe.is_supported(opcode::Read::CODE) {
info!("{} IORING_OP_READ operation not supported", error_msg);
return false;
}
// Check IORING_OP_WRITE is supported
if !probe.is_supported(opcode::Write::CODE) {
info!("{} IORING_OP_WRITE operation not supported", error_msg);
return false;
}
true
}
#[cfg(not(feature = "io_uring"))]
pub fn block_io_uring_is_supported() -> bool {
false
}
pub fn disk_size(file: &mut dyn Seek, semaphore: &mut Arc<Mutex<()>>) -> DiskFileResult<u64> {
// Take the semaphore to ensure other threads are not interacting with
// the underlying file.
let _lock = semaphore.lock().unwrap();
Ok(file.seek(SeekFrom::End(0)).map_err(DiskFileError::Size)? as u64)
}
pub trait ReadSeekFile: Read + Seek {}
impl<F: Read + Seek> ReadSeekFile for F {}
pub fn read_vectored_sync(
offset: libc::off_t,
iovecs: Vec<libc::iovec>,
user_data: u64,
file: &mut dyn ReadSeekFile,
eventfd: &EventFd,
completion_list: &mut Vec<(u64, i32)>,
semaphore: &mut Arc<Mutex<()>>,
) -> AsyncIoResult<()> {
// Convert libc::iovec into IoSliceMut
let mut slices = Vec::new();
for iovec in iovecs.iter() {
slices.push(IoSliceMut::new(unsafe { std::mem::transmute(*iovec) }));
}
let result = {
// Take the semaphore to ensure other threads are not interacting
// with the underlying file.
let _lock = semaphore.lock().unwrap();
// Move the cursor to the right offset
file.seek(SeekFrom::Start(offset as u64))
.map_err(AsyncIoError::ReadVectored)?;
// Read vectored
file.read_vectored(slices.as_mut_slice())
.map_err(AsyncIoError::ReadVectored)?
};
completion_list.push((user_data, result as i32));
eventfd.write(1).unwrap();
Ok(())
}
pub trait WriteSeekFile: Write + Seek {}
impl<F: Write + Seek> WriteSeekFile for F {}
pub fn write_vectored_sync(
offset: libc::off_t,
iovecs: Vec<libc::iovec>,
user_data: u64,
file: &mut dyn WriteSeekFile,
eventfd: &EventFd,
completion_list: &mut Vec<(u64, i32)>,
semaphore: &mut Arc<Mutex<()>>,
) -> AsyncIoResult<()> {
// Convert libc::iovec into IoSlice
let mut slices = Vec::new();
for iovec in iovecs.iter() {
slices.push(IoSlice::new(unsafe { std::mem::transmute(*iovec) }));
}
let result = {
// Take the semaphore to ensure other threads are not interacting
// with the underlying file.
let _lock = semaphore.lock().unwrap();
// Move the cursor to the right offset
file.seek(SeekFrom::Start(offset as u64))
.map_err(AsyncIoError::WriteVectored)?;
// Write vectored
file.write_vectored(slices.as_slice())
.map_err(AsyncIoError::WriteVectored)?
};
completion_list.push((user_data, result as i32));
eventfd.write(1).unwrap();
Ok(())
}
pub fn fsync_sync(
user_data: Option<u64>,
file: &mut dyn Write,
eventfd: &EventFd,
completion_list: &mut Vec<(u64, i32)>,
semaphore: &mut Arc<Mutex<()>>,
) -> AsyncIoResult<()> {
let result: i32 = {
// Take the semaphore to ensure other threads are not interacting
// with the underlying file.
let _lock = semaphore.lock().unwrap();
// Flush
file.flush().map_err(AsyncIoError::Fsync)?;
0
};
if let Some(user_data) = user_data {
completion_list.push((user_data, result));
eventfd.write(1).unwrap();
}
Ok(())
}
pub enum ImageType {
FixedVhd,
Qcow2,
Raw,
}
const QCOW_MAGIC: u32 = 0x5146_49fb;
/// Determine image type through file parsing.
pub fn detect_image_type(f: &mut File) -> std::io::Result<ImageType> {
// We must create a buffer aligned on 512 bytes with a size being a
// multiple of 512 bytes as the file might be opened with O_DIRECT flag.
#[repr(align(512))]
struct Sector {
data: [u8; 512],
}
let mut s = Sector { data: [0; 512] };
f.read_exact(&mut s.data)?;
// Check 4 first bytes to get the header value and determine the image type
let image_type = if u32::from_be_bytes(s.data[0..4].try_into().unwrap()) == QCOW_MAGIC {
ImageType::Qcow2
} else if vhd::is_fixed_vhd(f)? {
ImageType::FixedVhd
} else {
ImageType::Raw
};
Ok(image_type)
}