cloud-hypervisor/vendor/git-bad78e1967b13e00/vmm-sys-util/src/signal.rs

421 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2019 Intel Corporation. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
use libc::{
c_int, c_void, pthread_kill, pthread_sigmask, pthread_t, sigaction, sigaddset, sigemptyset,
siginfo_t, sigismember, sigpending, sigset_t, sigtimedwait, timespec, EAGAIN, EINTR, EINVAL,
SIGHUP, SIGSYS, SIG_BLOCK, SIG_UNBLOCK,
};
use errno;
use std::fmt::{self, Display};
use std::io;
use std::mem;
use std::os::unix::thread::JoinHandleExt;
use std::ptr::{null, null_mut};
use std::result;
use std::thread::JoinHandle;
#[derive(Debug)]
pub enum Error {
/// Couldn't create a sigset.
CreateSigset(errno::Error),
/// The wrapped signal has already been blocked.
SignalAlreadyBlocked(c_int),
/// Failed to check if the requested signal is in the blocked set already.
CompareBlockedSignals(errno::Error),
/// The signal could not be blocked.
BlockSignal(errno::Error),
/// The signal mask could not be retrieved.
RetrieveSignalMask(i32),
/// The signal could not be unblocked.
UnblockSignal(errno::Error),
/// Failed to wait for given signal.
ClearWaitPending(errno::Error),
/// Failed to get pending signals.
ClearGetPending(errno::Error),
/// Failed to check if given signal is in the set of pending signals.
ClearCheckPending(errno::Error),
}
impl Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::Error::*;
match self {
CreateSigset(e) => write!(f, "couldn't create a sigset: {}", e),
SignalAlreadyBlocked(num) => write!(f, "signal {} already blocked", num),
CompareBlockedSignals(e) => write!(
f,
"failed to check whether requested signal is in the blocked set: {}",
e,
),
BlockSignal(e) => write!(f, "signal could not be blocked: {}", e),
RetrieveSignalMask(errno) => write!(
f,
"failed to retrieve signal mask: {}",
io::Error::from_raw_os_error(*errno),
),
UnblockSignal(e) => write!(f, "signal could not be unblocked: {}", e),
ClearWaitPending(e) => write!(f, "failed to wait for given signal: {}", e),
ClearGetPending(e) => write!(f, "failed to get pending signals: {}", e),
ClearCheckPending(e) => write!(
f,
"failed to check whether given signal is in the pending set: {}",
e,
),
}
}
}
pub type SignalResult<T> = result::Result<T, Error>;
type SiginfoHandler = extern "C" fn(num: c_int, info: *mut siginfo_t, _unused: *mut c_void) -> ();
pub enum SignalHandler {
Siginfo(SiginfoHandler),
// TODO add a`SimpleHandler` when `libc` adds `sa_handler` support to `sigaction`.
}
impl SignalHandler {
fn set_flags(act: &mut sigaction, flag: c_int) {
act.sa_flags = flag;
}
}
/// Fills a `sigaction` structure from of the signal handler.
/// Refer to http://man7.org/linux/man-pages/man7/signal.7.html
impl Into<sigaction> for SignalHandler {
fn into(self) -> sigaction {
let mut act: sigaction = unsafe { mem::zeroed() };
match self {
SignalHandler::Siginfo(function) => {
act.sa_sigaction = function as *const () as usize;
}
}
act
}
}
extern "C" {
fn __libc_current_sigrtmin() -> c_int;
fn __libc_current_sigrtmax() -> c_int;
}
/// Returns the minimum (inclusive) real-time signal number.
#[allow(non_snake_case)]
fn SIGRTMIN() -> c_int {
unsafe { __libc_current_sigrtmin() }
}
/// Returns the maximum (inclusive) real-time signal number.
#[allow(non_snake_case)]
fn SIGRTMAX() -> c_int {
unsafe { __libc_current_sigrtmax() }
}
/// Verifies that a signal number is valid: for VCPU signals, it needs to be enclosed within the OS
/// limits for realtime signals, and the remaining ones need to be between the minimum (SIGHUP) and
/// maximum (SIGSYS) values.
pub fn validate_signal_num(num: c_int, for_vcpu: bool) -> errno::Result<c_int> {
if for_vcpu {
let actual_num = num + SIGRTMIN();
if actual_num <= SIGRTMAX() {
return Ok(actual_num);
}
} else if SIGHUP <= num && num <= SIGSYS {
return Ok(num);
}
Err(errno::Error::new(EINVAL))
}
/// Registers `handler` as the signal handler of signum `num`.
///
/// Uses `sigaction` to register the handler.
///
/// This is considered unsafe because the given handler will be called asynchronously, interrupting
/// whatever the thread was doing and therefore must only do async-signal-safe operations.
/// flags: SA_SIGINFO or SA_RESTART if wants to restart after signal received.
pub unsafe fn register_signal_handler(
num: i32,
handler: SignalHandler,
for_vcpu: bool,
flag: c_int,
) -> errno::Result<()> {
let num = validate_signal_num(num, for_vcpu)?;
let mut act: sigaction = handler.into();
SignalHandler::set_flags(&mut act, flag);
match sigaction(num, &act, null_mut()) {
0 => Ok(()),
_ => errno::errno_result(),
}
}
/// Creates `sigset` from an array of signal numbers.
///
/// This is a helper function used when we want to manipulate signals.
pub fn create_sigset(signals: &[c_int]) -> errno::Result<sigset_t> {
// sigset will actually be initialized by sigemptyset below.
let mut sigset: sigset_t = unsafe { mem::zeroed() };
// Safe - return value is checked.
let ret = unsafe { sigemptyset(&mut sigset) };
if ret < 0 {
return errno::errno_result();
}
for signal in signals {
// Safe - return value is checked.
let ret = unsafe { sigaddset(&mut sigset, *signal) };
if ret < 0 {
return errno::errno_result();
}
}
Ok(sigset)
}
/// Retrieves the signal mask of the current thread as a vector of c_ints.
pub fn get_blocked_signals() -> SignalResult<Vec<c_int>> {
let mut mask = Vec::new();
// Safe - return values are checked.
unsafe {
let mut old_sigset: sigset_t = mem::zeroed();
let ret = pthread_sigmask(SIG_BLOCK, null(), &mut old_sigset as *mut sigset_t);
if ret < 0 {
return Err(Error::RetrieveSignalMask(ret));
}
for num in 0..=SIGRTMAX() {
if sigismember(&old_sigset, num) > 0 {
mask.push(num);
}
}
}
Ok(mask)
}
/// Masks given signal.
///
/// If signal is already blocked the call will fail with Error::SignalAlreadyBlocked
/// result.
pub fn block_signal(num: c_int) -> SignalResult<()> {
let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;
// Safe - return values are checked.
unsafe {
let mut old_sigset: sigset_t = mem::zeroed();
let ret = pthread_sigmask(SIG_BLOCK, &sigset, &mut old_sigset as *mut sigset_t);
if ret < 0 {
return Err(Error::BlockSignal(errno::Error::last()));
}
let ret = sigismember(&old_sigset, num);
if ret < 0 {
return Err(Error::CompareBlockedSignals(errno::Error::last()));
} else if ret > 0 {
return Err(Error::SignalAlreadyBlocked(num));
}
}
Ok(())
}
/// Unmasks given signal.
pub fn unblock_signal(num: c_int) -> SignalResult<()> {
let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;
// Safe - return value is checked.
let ret = unsafe { pthread_sigmask(SIG_UNBLOCK, &sigset, null_mut()) };
if ret < 0 {
return Err(Error::UnblockSignal(errno::Error::last()));
}
Ok(())
}
/// Clears pending signal.
pub fn clear_signal(num: c_int) -> SignalResult<()> {
let sigset = create_sigset(&[num]).map_err(Error::CreateSigset)?;
while {
// This is safe as we are rigorously checking return values
// of libc calls.
unsafe {
let mut siginfo: siginfo_t = mem::zeroed();
let ts = timespec {
tv_sec: 0,
tv_nsec: 0,
};
// Attempt to consume one instance of pending signal. If signal
// is not pending, the call will fail with EAGAIN or EINTR.
let ret = sigtimedwait(&sigset, &mut siginfo, &ts);
if ret < 0 {
let e = errno::Error::last();
match e.errno() {
EAGAIN | EINTR => {}
_ => {
return Err(Error::ClearWaitPending(errno::Error::last()));
}
}
}
// This sigset will be actually filled with `sigpending` call.
let mut chkset: sigset_t = mem::zeroed();
// See if more instances of the signal are pending.
let ret = sigpending(&mut chkset);
if ret < 0 {
return Err(Error::ClearGetPending(errno::Error::last()));
}
let ret = sigismember(&chkset, num);
if ret < 0 {
return Err(Error::ClearCheckPending(errno::Error::last()));
}
// This is do-while loop condition.
ret != 0
}
} {}
Ok(())
}
/// Trait for threads that can be signalled via `pthread_kill`.
///
/// Note that this is only useful for signals between SIGRTMIN and SIGRTMAX because these are
/// guaranteed to not be used by the C runtime.
///
/// This is marked unsafe because the implementation of this trait must guarantee that the returned
/// pthread_t is valid and has a lifetime at least that of the trait object.
pub unsafe trait Killable {
fn pthread_handle(&self) -> pthread_t;
/// Sends the signal `num + SIGRTMIN` to this killable thread.
///
/// The value of `num + SIGRTMIN` must not exceed `SIGRTMAX`.
fn kill(&self, num: i32) -> errno::Result<()> {
let num = validate_signal_num(num, true)?;
// Safe because we ensure we are using a valid pthread handle, a valid signal number, and
// check the return result.
let ret = unsafe { pthread_kill(self.pthread_handle(), num) };
if ret < 0 {
return errno::errno_result();
}
Ok(())
}
}
// Safe because we fulfill our contract of returning a genuine pthread handle.
unsafe impl<T> Killable for JoinHandle<T> {
fn pthread_handle(&self) -> pthread_t {
self.as_pthread_t()
}
}
#[cfg(test)]
mod tests {
use super::*;
use libc::SA_SIGINFO;
use std::thread;
use std::time::Duration;
static mut SIGNAL_HANDLER_CALLED: bool = false;
extern "C" fn handle_signal(_: c_int, _: *mut siginfo_t, _: *mut c_void) {
unsafe {
SIGNAL_HANDLER_CALLED = true;
}
}
#[test]
fn test_register_signal_handler() {
unsafe {
// testing bad value
assert!(register_signal_handler(
SIGRTMAX(),
SignalHandler::Siginfo(handle_signal),
true,
SA_SIGINFO
)
.is_err());
format!(
"{:?}",
register_signal_handler(
SIGRTMAX(),
SignalHandler::Siginfo(handle_signal),
true,
SA_SIGINFO
)
);
assert!(register_signal_handler(
0,
SignalHandler::Siginfo(handle_signal),
true,
SA_SIGINFO
)
.is_ok());
assert!(register_signal_handler(
libc::SIGSYS,
SignalHandler::Siginfo(handle_signal),
false,
SA_SIGINFO
)
.is_ok());
}
}
#[test]
#[allow(clippy::empty_loop)]
fn test_killing_thread() {
let killable = thread::spawn(|| thread::current().id());
let killable_id = killable.join().unwrap();
assert_ne!(killable_id, thread::current().id());
// We install a signal handler for the specified signal; otherwise the whole process will
// be brought down when the signal is received, as part of the default behaviour. Signal
// handlers are global, so we install this before starting the thread.
unsafe {
register_signal_handler(0, SignalHandler::Siginfo(handle_signal), true, SA_SIGINFO)
.expect("failed to register vcpu signal handler");
}
let killable = thread::spawn(|| loop {});
let res = killable.kill(SIGRTMAX());
assert!(res.is_err());
format!("{:?}", res);
unsafe {
assert!(!SIGNAL_HANDLER_CALLED);
}
assert!(killable.kill(0).is_ok());
// We're waiting to detect that the signal handler has been called.
const MAX_WAIT_ITERS: u32 = 20;
let mut iter_count = 0;
loop {
thread::sleep(Duration::from_millis(100));
if unsafe { SIGNAL_HANDLER_CALLED } {
break;
}
iter_count += 1;
// timeout if we wait too long
assert!(iter_count <= MAX_WAIT_ITERS);
}
// Our signal handler doesn't do anything which influences the killable thread, so the
// previous signal is effectively ignored. If we were to join killable here, we would block
// forever as the loop keeps running. Since we don't join, the thread will become detached
// as the handle is dropped, and will be killed when the process/main thread exits.
}
}