vmm: cpu & acpi: Query CPU manager for CPU status

Rather than hardcode the CPU status for all the CPUs instead query from
the CPU manager via the I/O port that is is on via the ACPI tables.

Each CPU device has a _STA method that calls into the CSTA method which
reads and writes the I/O ports via the PRST field which exposes the I/O
port through and OpRegion.

As we only support boot CPUS report that all the CPUs are enabled for
now.

Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This commit is contained in:
Rob Bradford 2019-11-20 14:06:37 +00:00 committed by Sebastien Boeuf
parent 5faf8b756c
commit 07cdb37dda
2 changed files with 127 additions and 16 deletions

View File

@ -110,7 +110,6 @@ struct IortIdMapping {
struct CPU {
cpu_id: u8,
present: bool,
}
const MADT_CPU_ENABLE_FLAG: usize = 0;
@ -147,33 +146,112 @@ impl aml::Aml for CPU {
"_STA".into(),
0,
false,
vec![&aml::Return::new(if self.present {
&0xfu8
} else {
&aml::ZERO
})],
// Call into CSTA method which will interrogate device
vec![&aml::Return::new(&aml::MethodCall::new(
"CSTA".into(),
vec![&self.cpu_id],
))],
),
// The Linux kernel expects every CPU device to have a _MAT entry
// containing the LAPIC for this processor with the enabled bit set
// even it if is disabled in the MADT (non-boot CPU)
&aml::Name::new("_MAT".into(), &aml::Buffer::new(mat_data))
&aml::Name::new("_MAT".into(), &aml::Buffer::new(mat_data)),
],
)
.to_aml_bytes()
}
}
struct CPUMethods;
impl Aml for CPUMethods {
fn to_aml_bytes(&self) -> Vec<u8> {
let mut bytes = Vec::new();
bytes.extend_from_slice(
// CPU status method
&aml::Method::new(
"CSTA".into(),
1,
true,
vec![
// Take lock defined above
&aml::Acquire::new("\\_SB_.PRES.CPLK".into(), 0xfff),
// Write CPU number (in first argument) to I/O port via field
&aml::Store::new(&aml::Path::new("\\_SB_.PRES.CSEL"), &aml::Arg(0)),
&aml::Store::new(&aml::Local(0), &aml::ZERO),
// Check if CPEN bit is set, if so make the local variable 0xf (see _STA for details of meaning)
&aml::If::new(
&aml::Equal::new(&aml::Path::new("\\_SB_.PRES.CPEN"), &aml::ONE),
vec![&aml::Store::new(&aml::Local(0), &0xfu8)],
),
// Release lock
&aml::Release::new("\\_SB_.PRES.CPLK".into()),
// Return 0 or 0xf
&aml::Return::new(&aml::Local(0)),
],
)
.to_aml_bytes(),
);
bytes
}
}
fn create_cpu_data(num_cpus: u8) -> Vec<u8> {
let mut bytes = Vec::new();
// CPU hotplug controller
bytes.extend_from_slice(
&aml::Device::new(
"_SB_.PRES".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")),
// Mutex to protect concurrent access as we write to choose CPU and then read back status
&aml::Mutex::new("CPLK".into(), 0),
// I/O port for CPU controller
&aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![&aml::IO::new(0x0cd8, 0x0cd8, 0x01, 0x0c)]),
),
// OpRegion and Fields map I/O port into individual field values
&aml::OpRegion::new("PRST".into(), aml::OpRegionSpace::SystemIO, 0x0cd8, 0x0c),
&aml::Field::new(
"PRST".into(),
aml::FieldAccessType::Byte,
aml::FieldUpdateRule::WriteAsZeroes,
vec![
aml::FieldEntry::Reserved(32),
aml::FieldEntry::Named(*b"CPEN", 1),
aml::FieldEntry::Named(*b"CINS", 1),
aml::FieldEntry::Named(*b"CRMV", 1),
aml::FieldEntry::Named(*b"CEJ0", 1),
aml::FieldEntry::Reserved(4),
aml::FieldEntry::Named(*b"CCMD", 8),
],
),
&aml::Field::new(
"PRST".into(),
aml::FieldAccessType::DWord,
aml::FieldUpdateRule::Preserve,
vec![
aml::FieldEntry::Named(*b"CSEL", 32),
aml::FieldEntry::Reserved(32),
aml::FieldEntry::Named(*b"CDAT", 32),
],
),
],
)
.to_aml_bytes(),
);
// CPU devices
let hid = aml::Name::new("_HID".into(), &"ACPI0010");
let uid = aml::Name::new("_CID".into(), &aml::EISAName::new("PNP0A05"));
let mut cpu_data_inner: Vec<&dyn aml::Aml> = vec![&hid, &uid];
// Bundle methods together under a common object
let methods = CPUMethods;
let mut cpu_data_inner: Vec<&dyn aml::Aml> = vec![&hid, &uid, &methods];
let mut cpu_devices = Vec::new();
for cpu_id in 0..num_cpus {
let cpu_device = CPU {
cpu_id,
present: true,
};
let cpu_device = CPU { cpu_id };
cpu_devices.push(cpu_device);
}
@ -182,7 +260,8 @@ fn create_cpu_data(num_cpus: u8) -> Vec<u8> {
cpu_data_inner.push(cpu_device);
}
aml::Device::new("_SB_.CPUS".into(), cpu_data_inner).to_aml_bytes()
bytes.extend_from_slice(&aml::Device::new("_SB_.CPUS".into(), cpu_data_inner).to_aml_bytes());
bytes
}
pub fn create_dsdt_table(

View File

@ -342,12 +342,43 @@ pub struct CpuManager {
vcpus_pause_signalled: Arc<AtomicBool>,
reset_evt: EventFd,
threads: Vec<thread::JoinHandle<()>>,
selected_cpu: u8,
}
impl BusDevice for CpuManager {
fn read(&mut self, _base: u64, _offset: u64, data: &mut [u8]) {}
const CPU_ENABLE_FLAG: usize = 0;
fn write(&mut self, _base: u64, _offset: u64, data: &[u8]) {}
const CPU_STATUS_OFFSET: u64 = 4;
const CPU_SELECTION_OFFSET: u64 = 0;
impl BusDevice for CpuManager {
fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) {
match offset {
CPU_STATUS_OFFSET => {
// All CPUs are currently enabled
data[0] |= 1 << CPU_ENABLE_FLAG;
}
_ => {
warn!(
"Unexpected offset for accessing CPU manager device: {:#}",
offset
);
}
}
}
fn write(&mut self, _base: u64, offset: u64, data: &[u8]) {
match offset {
CPU_SELECTION_OFFSET => {
self.selected_cpu = data[0];
}
_ => {
warn!(
"Unexpected offset for accessing CPU manager device: {:#}",
offset
);
}
}
}
}
impl CpuManager {
@ -371,6 +402,7 @@ impl CpuManager {
vcpus_pause_signalled: Arc::new(AtomicBool::new(false)),
threads: Vec::with_capacity(boot_vcpus as usize),
reset_evt,
selected_cpu: 0,
}));
cpu_manager