vm-virtio: Add PCI transport support

Copied from crosvm 107edb3e with one main modification: VirtioPciDevice
implements BusDevice.

We need this modification because it is the only way for us to be able
to add a VirtioPciDevice to the MMIO bus. Bus insertion takes a
BusDevice. The fact that VirtioPciDevice implements PciDevice which
itself implements BusDevice does not mean that Rust will automatically
downcast a VirtioPciDevice into a BusDevice.

crosvm works around that issue by having the PCI, virtio and BusDevice
implementations in the same crate.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This commit is contained in:
Samuel Ortiz 2019-04-18 19:32:41 +02:00
parent 8246434710
commit c2c51dc9d1
4 changed files with 805 additions and 5 deletions

View File

@ -20,20 +20,17 @@ use std::io;
mod device;
mod queue;
pub mod transport;
pub use self::device::*;
pub use self::queue::*;
#[allow(dead_code)]
const DEVICE_INIT: u32 = 0x00;
#[allow(dead_code)]
const DEVICE_ACKNOWLEDGE: u32 = 0x01;
#[allow(dead_code)]
const DEVICE_DRIVER: u32 = 0x02;
#[allow(dead_code)]
const DEVICE_DRIVER_OK: u32 = 0x04;
#[allow(dead_code)]
const DEVICE_FEATURES_OK: u32 = 0x08;
#[allow(dead_code)]
const DEVICE_FAILED: u32 = 0x80;
#[allow(dead_code)]

View File

@ -0,0 +1,7 @@
// Copyright (c) 2019 Intel
mod pci_common_config;
mod pci_device;
pub use pci_common_config::VirtioPciCommonConfig;
pub use pci_device::VirtioPciDevice;

View File

@ -0,0 +1,335 @@
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
extern crate byteorder;
use byteorder::{ByteOrder, LittleEndian};
use vm_memory::GuestAddress;
use crate::{Queue, VirtioDevice};
/// Contains the data for reading and writing the common configuration structure of a virtio PCI
/// device.
///
/// * Registers:
/// ** About the whole device.
/// le32 device_feature_select; // 0x00 // read-write
/// le32 device_feature; // 0x04 // read-only for driver
/// le32 driver_feature_select; // 0x08 // read-write
/// le32 driver_feature; // 0x0C // read-write
/// le16 msix_config; // 0x10 // read-write
/// le16 num_queues; // 0x12 // read-only for driver
/// u8 device_status; // 0x14 // read-write (driver_status)
/// u8 config_generation; // 0x15 // read-only for driver
/// ** About a specific virtqueue.
/// le16 queue_select; // 0x16 // read-write
/// le16 queue_size; // 0x18 // read-write, power of 2, or 0.
/// le16 queue_msix_vector; // 0x1A // read-write
/// le16 queue_enable; // 0x1C // read-write (Ready)
/// le16 queue_notify_off; // 0x1E // read-only for driver
/// le64 queue_desc; // 0x20 // read-write
/// le64 queue_avail; // 0x28 // read-write
/// le64 queue_used; // 0x30 // read-write
pub struct VirtioPciCommonConfig {
pub driver_status: u8,
pub config_generation: u8,
pub device_feature_select: u32,
pub driver_feature_select: u32,
pub queue_select: u16,
}
impl VirtioPciCommonConfig {
pub fn read(
&mut self,
offset: u64,
data: &mut [u8],
queues: &mut Vec<Queue>,
device: &mut dyn VirtioDevice,
) {
assert!(data.len() <= 8);
match data.len() {
1 => {
let v = self.read_common_config_byte(offset);
data[0] = v;
}
2 => {
let v = self.read_common_config_word(offset, queues);
LittleEndian::write_u16(data, v);
}
4 => {
let v = self.read_common_config_dword(offset, device);
LittleEndian::write_u32(data, v);
}
8 => {
let v = self.read_common_config_qword(offset);
LittleEndian::write_u64(data, v);
}
_ => error!("invalid data length for virtio read: len {}", data.len()),
}
}
pub fn write(
&mut self,
offset: u64,
data: &[u8],
queues: &mut Vec<Queue>,
device: &mut dyn VirtioDevice,
) {
assert!(data.len() <= 8);
match data.len() {
1 => self.write_common_config_byte(offset, data[0]),
2 => self.write_common_config_word(offset, LittleEndian::read_u16(data), queues),
4 => {
self.write_common_config_dword(offset, LittleEndian::read_u32(data), queues, device)
}
8 => self.write_common_config_qword(offset, LittleEndian::read_u64(data), queues),
_ => error!("invalid data length for virtio write: len {}", data.len()),
}
}
fn read_common_config_byte(&self, offset: u64) -> u8 {
debug!("read_common_config_byte: offset 0x{:x}", offset);
// The driver is only allowed to do aligned, properly sized access.
match offset {
0x14 => self.driver_status,
0x15 => self.config_generation,
_ => {
warn!("invalid virtio config byte read: 0x{:x}", offset);
0
}
}
}
fn write_common_config_byte(&mut self, offset: u64, value: u8) {
debug!("write_common_config_byte: offset 0x{:x}", offset);
match offset {
0x14 => self.driver_status = value,
_ => {
warn!("invalid virtio config byte write: 0x{:x}", offset);
}
}
}
fn read_common_config_word(&self, offset: u64, queues: &[Queue]) -> u16 {
debug!("read_common_config_word: offset 0x{:x}", offset);
match offset {
0x10 => 0, // TODO msi-x (crbug/854765): self.msix_config,
0x12 => queues.len() as u16, // num_queues
0x16 => self.queue_select,
0x18 => self.with_queue(queues, |q| q.size).unwrap_or(0),
0x1c => {
if self.with_queue(queues, |q| q.ready).unwrap_or(false) {
1
} else {
0
}
}
0x1e => self.queue_select, // notify_off
_ => {
warn!("invalid virtio register word read: 0x{:x}", offset);
0
}
}
}
fn write_common_config_word(&mut self, offset: u64, value: u16, queues: &mut Vec<Queue>) {
debug!("write_common_config_word: offset 0x{:x}", offset);
match offset {
0x10 => (), // TODO msi-x (crbug/854765): self.msix_config = value,
0x16 => self.queue_select = value,
0x18 => self.with_queue_mut(queues, |q| q.size = value),
0x1a => (), // TODO msi-x (crbug/854765): self.with_queue_mut(queues, |q| q.msix_vector = v),
0x1c => self.with_queue_mut(queues, |q| q.ready = value == 1),
_ => {
warn!("invalid virtio register word write: 0x{:x}", offset);
}
}
}
fn read_common_config_dword(&self, offset: u64, device: &dyn VirtioDevice) -> u32 {
debug!("read_common_config_dword: offset 0x{:x}", offset);
match offset {
0x00 => self.device_feature_select,
0x04 => {
// Only 64 bits of features (2 pages) are defined for now, so limit
// device_feature_select to avoid shifting by 64 or more bits.
if self.device_feature_select < 2 {
device.features(self.device_feature_select)
} else {
0
}
}
0x08 => self.driver_feature_select,
_ => {
warn!("invalid virtio register dword read: 0x{:x}", offset);
0
}
}
}
fn write_common_config_dword(
&mut self,
offset: u64,
value: u32,
queues: &mut Vec<Queue>,
device: &mut dyn VirtioDevice,
) {
debug!("write_common_config_dword: offset 0x{:x}", offset);
fn hi(v: &mut GuestAddress, x: u32) {
*v = (*v & 0xffff_ffff) | ((u64::from(x)) << 32)
}
fn lo(v: &mut GuestAddress, x: u32) {
*v = (*v & !0xffff_ffff) | (u64::from(x))
}
match offset {
0x00 => self.device_feature_select = value,
0x08 => self.driver_feature_select = value,
0x0c => {
if self.driver_feature_select < 2 {
device.ack_features(self.driver_feature_select, value);
} else {
warn!(
"invalid ack_features (page {}, value 0x{:x})",
self.driver_feature_select, value
);
}
}
0x20 => self.with_queue_mut(queues, |q| lo(&mut q.desc_table, value)),
0x24 => self.with_queue_mut(queues, |q| hi(&mut q.desc_table, value)),
0x28 => self.with_queue_mut(queues, |q| lo(&mut q.avail_ring, value)),
0x2c => self.with_queue_mut(queues, |q| hi(&mut q.avail_ring, value)),
0x30 => self.with_queue_mut(queues, |q| lo(&mut q.used_ring, value)),
0x34 => self.with_queue_mut(queues, |q| hi(&mut q.used_ring, value)),
_ => {
warn!("invalid virtio register dword write: 0x{:x}", offset);
}
}
}
fn read_common_config_qword(&self, _offset: u64) -> u64 {
debug!("read_common_config_qword: offset 0x{:x}", _offset);
0 // Assume the guest has no reason to read write-only registers.
}
fn write_common_config_qword(&mut self, offset: u64, value: u64, queues: &mut Vec<Queue>) {
debug!("write_common_config_qword: offset 0x{:x}", offset);
match offset {
0x20 => self.with_queue_mut(queues, |q| q.desc_table = GuestAddress(value)),
0x28 => self.with_queue_mut(queues, |q| q.avail_ring = GuestAddress(value)),
0x30 => self.with_queue_mut(queues, |q| q.used_ring = GuestAddress(value)),
_ => {
warn!("invalid virtio register qword write: 0x{:x}", offset);
}
}
}
fn with_queue<U, F>(&self, queues: &[Queue], f: F) -> Option<U>
where
F: FnOnce(&Queue) -> U,
{
queues.get(self.queue_select as usize).map(f)
}
fn with_queue_mut<F: FnOnce(&mut Queue)>(&self, queues: &mut Vec<Queue>, f: F) {
if let Some(queue) = queues.get_mut(self.queue_select as usize) {
f(queue);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ActivateResult;
use std::sync::atomic::AtomicUsize;
use std::sync::Arc;
use vm_memory::GuestMemoryMmap;
use vmm_sys_util::EventFd;
struct DummyDevice(u32);
const QUEUE_SIZE: u16 = 256;
const QUEUE_SIZES: &'static [u16] = &[QUEUE_SIZE];
const DUMMY_FEATURES: u64 = 0x5555_aaaa;
impl VirtioDevice for DummyDevice {
fn device_type(&self) -> u32 {
return self.0;
}
fn queue_max_sizes(&self) -> &[u16] {
QUEUE_SIZES
}
fn activate(
&mut self,
_mem: GuestMemoryMmap,
_interrupt_evt: EventFd,
_status: Arc<AtomicUsize>,
_queues: Vec<Queue>,
_queue_evts: Vec<EventFd>,
) -> ActivateResult {
Ok(())
}
fn features(&self, _page: u32) -> u32 {
DUMMY_FEATURES as u32
}
fn ack_features(&mut self, _page: u32, _value: u32) {}
fn read_config(&self, _offset: u64, _data: &mut [u8]) {}
fn write_config(&mut self, _offset: u64, _data: &[u8]) {}
}
#[test]
fn write_base_regs() {
let mut regs = VirtioPciCommonConfig {
driver_status: 0xaa,
config_generation: 0x55,
device_feature_select: 0x0,
driver_feature_select: 0x0,
queue_select: 0xff,
};
let dev = &mut DummyDevice(0) as &mut dyn VirtioDevice;
let mut queues = Vec::new();
// Can set all bits of driver_status.
regs.write(0x14, &[0x55], &mut queues, dev);
let mut read_back = vec![0x00];
regs.read(0x14, &mut read_back, &mut queues, dev);
assert_eq!(read_back[0], 0x55);
// The config generation register is read only.
regs.write(0x15, &[0xaa], &mut queues, dev);
let mut read_back = vec![0x00];
regs.read(0x15, &mut read_back, &mut queues, dev);
assert_eq!(read_back[0], 0x55);
// Device features is read-only and passed through from the device.
regs.write(0x04, &[0, 0, 0, 0], &mut queues, dev);
let mut read_back = vec![0, 0, 0, 0];
regs.read(0x04, &mut read_back, &mut queues, dev);
assert_eq!(LittleEndian::read_u32(&read_back), DUMMY_FEATURES as u32);
// Feature select registers are read/write.
regs.write(0x00, &[1, 2, 3, 4], &mut queues, dev);
let mut read_back = vec![0, 0, 0, 0];
regs.read(0x00, &mut read_back, &mut queues, dev);
assert_eq!(LittleEndian::read_u32(&read_back), 0x0403_0201);
regs.write(0x08, &[1, 2, 3, 4], &mut queues, dev);
let mut read_back = vec![0, 0, 0, 0];
regs.read(0x08, &mut read_back, &mut queues, dev);
assert_eq!(LittleEndian::read_u32(&read_back), 0x0403_0201);
// 'queue_select' can be read and written.
regs.write(0x16, &[0xaa, 0x55], &mut queues, dev);
let mut read_back = vec![0x00, 0x00];
regs.read(0x16, &mut read_back, &mut queues, dev);
assert_eq!(read_back[0], 0xaa);
assert_eq!(read_back[1], 0x55);
}
}

View File

@ -0,0 +1,461 @@
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
extern crate devices;
extern crate pci;
extern crate vm_allocator;
extern crate vm_memory;
extern crate vmm_sys_util;
use byteorder::{ByteOrder, LittleEndian};
use libc::EFD_NONBLOCK;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use devices::BusDevice;
use pci::{
PciBarConfiguration, PciCapability, PciCapabilityID, PciClassCode, PciConfiguration, PciDevice,
PciDeviceError, PciHeaderType, PciInterruptPin, PciSubclass,
};
use vm_allocator::SystemAllocator;
use vm_memory::{Address, ByteValued, GuestAddress, GuestMemoryMmap, GuestUsize, Le32};
use vmm_sys_util::{EventFd, Result};
use super::VirtioPciCommonConfig;
use crate::{
Queue, VirtioDevice, DEVICE_ACKNOWLEDGE, DEVICE_DRIVER, DEVICE_DRIVER_OK, DEVICE_FAILED,
DEVICE_FEATURES_OK,
};
#[allow(clippy::enum_variant_names)]
enum PciCapabilityType {
CommonConfig = 1,
NotifyConfig = 2,
IsrConfig = 3,
DeviceConfig = 4,
PciConfig = 5,
}
#[allow(dead_code)]
#[repr(packed)]
#[derive(Clone, Copy, Default)]
struct VirtioPciCap {
cap_len: u8, // Generic PCI field: capability length
cfg_type: u8, // Identifies the structure.
pci_bar: u8, // Where to find it.
padding: [u8; 3], // Pad to full dword.
offset: Le32, // Offset within bar.
length: Le32, // Length of the structure, in bytes.
}
// It is safe to implement ByteValued. All members are simple numbers and any value is valid.
unsafe impl ByteValued for VirtioPciCap {}
impl PciCapability for VirtioPciCap {
fn bytes(&self) -> &[u8] {
self.as_slice()
}
fn id(&self) -> PciCapabilityID {
PciCapabilityID::VendorSpecific
}
}
const VIRTIO_PCI_CAPABILITY_BYTES: u8 = 16;
impl VirtioPciCap {
pub fn new(cfg_type: PciCapabilityType, pci_bar: u8, offset: u32, length: u32) -> Self {
VirtioPciCap {
cap_len: VIRTIO_PCI_CAPABILITY_BYTES,
cfg_type: cfg_type as u8,
pci_bar,
padding: [0; 3],
offset: Le32::from(offset),
length: Le32::from(length),
}
}
}
#[allow(dead_code)]
#[repr(packed)]
#[derive(Clone, Copy, Default)]
struct VirtioPciNotifyCap {
cap: VirtioPciCap,
notify_off_multiplier: Le32,
}
// It is safe to implement ByteValued. All members are simple numbers and any value is valid.
unsafe impl ByteValued for VirtioPciNotifyCap {}
impl PciCapability for VirtioPciNotifyCap {
fn bytes(&self) -> &[u8] {
self.as_slice()
}
fn id(&self) -> PciCapabilityID {
PciCapabilityID::VendorSpecific
}
}
impl VirtioPciNotifyCap {
pub fn new(
cfg_type: PciCapabilityType,
pci_bar: u8,
offset: u32,
length: u32,
multiplier: Le32,
) -> Self {
VirtioPciNotifyCap {
cap: VirtioPciCap {
cap_len: std::mem::size_of::<VirtioPciNotifyCap>() as u8,
cfg_type: cfg_type as u8,
pci_bar,
padding: [0; 3],
offset: Le32::from(offset),
length: Le32::from(length),
},
notify_off_multiplier: multiplier,
}
}
}
#[allow(dead_code)]
#[derive(Copy, Clone)]
pub enum PciVirtioSubclass {
NonTransitionalBase = 0xff,
}
impl PciSubclass for PciVirtioSubclass {
fn get_register_value(&self) -> u8 {
*self as u8
}
}
// Allocate one bar for the structs pointed to by the capability structures.
const COMMON_CONFIG_BAR_OFFSET: u64 = 0x0000;
const COMMON_CONFIG_SIZE: u64 = 56;
const ISR_CONFIG_BAR_OFFSET: u64 = 0x1000;
const ISR_CONFIG_SIZE: u64 = 1;
const DEVICE_CONFIG_BAR_OFFSET: u64 = 0x2000;
const DEVICE_CONFIG_SIZE: u64 = 0x1000;
const NOTIFICATION_BAR_OFFSET: u64 = 0x3000;
const NOTIFICATION_SIZE: u64 = 0x1000;
const CAPABILITY_BAR_SIZE: u64 = 0x4000;
const NOTIFY_OFF_MULTIPLIER: u32 = 4; // A dword per notification address.
const VIRTIO_PCI_VENDOR_ID: u16 = 0x1af4;
const VIRTIO_PCI_DEVICE_ID_BASE: u16 = 0x1040; // Add to device type to get device ID.
pub struct VirtioPciDevice {
// PCI configuration registers.
configuration: PciConfiguration,
// virtio PCI common configuration
common_config: VirtioPciCommonConfig,
// Virtio device reference and status
device: Box<VirtioDevice>,
device_activated: bool,
// PCI interrupts.
interrupt_status: Arc<AtomicUsize>,
interrupt_evt: Option<EventFd>,
// virtio queues
queues: Vec<Queue>,
queue_evts: Vec<EventFd>,
// Guest memory
memory: Option<GuestMemoryMmap>,
// Setting PCI BAR
settings_bar: u8,
}
impl VirtioPciDevice {
/// Constructs a new PCI transport for the given virtio device.
pub fn new(memory: GuestMemoryMmap, device: Box<VirtioDevice>) -> Result<Self> {
let mut queue_evts = Vec::new();
for _ in device.queue_max_sizes().iter() {
queue_evts.push(EventFd::new(EFD_NONBLOCK)?)
}
let queues = device
.queue_max_sizes()
.iter()
.map(|&s| Queue::new(s))
.collect();
let pci_device_id = VIRTIO_PCI_DEVICE_ID_BASE + device.device_type() as u16;
let configuration = PciConfiguration::new(
VIRTIO_PCI_VENDOR_ID,
pci_device_id,
PciClassCode::Other,
&PciVirtioSubclass::NonTransitionalBase,
None,
PciHeaderType::Device,
VIRTIO_PCI_VENDOR_ID,
pci_device_id,
);
Ok(VirtioPciDevice {
configuration,
common_config: VirtioPciCommonConfig {
driver_status: 0,
config_generation: 0,
device_feature_select: 0,
driver_feature_select: 0,
queue_select: 0,
},
device,
device_activated: false,
interrupt_status: Arc::new(AtomicUsize::new(0)),
interrupt_evt: None,
queues,
queue_evts,
memory: Some(memory),
settings_bar: 0,
})
}
fn is_driver_ready(&self) -> bool {
let ready_bits =
(DEVICE_ACKNOWLEDGE | DEVICE_DRIVER | DEVICE_DRIVER_OK | DEVICE_FEATURES_OK) as u8;
self.common_config.driver_status == ready_bits
&& self.common_config.driver_status & DEVICE_FAILED as u8 == 0
}
fn are_queues_valid(&self) -> bool {
if let Some(mem) = self.memory.as_ref() {
self.queues.iter().all(|q| q.is_valid(mem))
} else {
false
}
}
fn add_pci_capabilities(
&mut self,
settings_bar: u8,
) -> std::result::Result<(), PciDeviceError> {
// Add pointers to the different configuration structures from the PCI capabilities.
let common_cap = VirtioPciCap::new(
PciCapabilityType::CommonConfig,
settings_bar,
COMMON_CONFIG_BAR_OFFSET as u32,
COMMON_CONFIG_SIZE as u32,
);
self.configuration
.add_capability(&common_cap)
.map_err(PciDeviceError::CapabilitiesSetup)?;
let isr_cap = VirtioPciCap::new(
PciCapabilityType::IsrConfig,
settings_bar,
ISR_CONFIG_BAR_OFFSET as u32,
ISR_CONFIG_SIZE as u32,
);
self.configuration
.add_capability(&isr_cap)
.map_err(PciDeviceError::CapabilitiesSetup)?;
// TODO(dgreid) - set based on device's configuration size?
let device_cap = VirtioPciCap::new(
PciCapabilityType::DeviceConfig,
settings_bar,
DEVICE_CONFIG_BAR_OFFSET as u32,
DEVICE_CONFIG_SIZE as u32,
);
self.configuration
.add_capability(&device_cap)
.map_err(PciDeviceError::CapabilitiesSetup)?;
let notify_cap = VirtioPciNotifyCap::new(
PciCapabilityType::NotifyConfig,
settings_bar,
NOTIFICATION_BAR_OFFSET as u32,
NOTIFICATION_SIZE as u32,
Le32::from(NOTIFY_OFF_MULTIPLIER),
);
self.configuration
.add_capability(&notify_cap)
.map_err(PciDeviceError::CapabilitiesSetup)?;
//TODO(dgreid) - How will the configuration_cap work?
let configuration_cap = VirtioPciCap::new(PciCapabilityType::PciConfig, 0, 0, 0);
self.configuration
.add_capability(&configuration_cap)
.map_err(PciDeviceError::CapabilitiesSetup)?;
self.settings_bar = settings_bar;
Ok(())
}
}
impl PciDevice for VirtioPciDevice {
fn assign_irq(&mut self, irq_evt: EventFd, irq_num: u32, irq_pin: PciInterruptPin) {
self.configuration.set_irq(irq_num as u8, irq_pin);
self.interrupt_evt = Some(irq_evt);
}
fn config_registers(&self) -> &PciConfiguration {
&self.configuration
}
fn config_registers_mut(&mut self) -> &mut PciConfiguration {
&mut self.configuration
}
fn allocate_bars(
&mut self,
allocator: &mut SystemAllocator,
) -> std::result::Result<Vec<(GuestAddress, GuestUsize)>, PciDeviceError> {
let mut ranges = Vec::new();
// Allocate the virtio-pci capability BAR.
// See http://docs.oasis-open.org/virtio/virtio/v1.0/cs04/virtio-v1.0-cs04.html#x1-740004
let virtio_pci_bar_addr = allocator
.allocate_mmio_addresses(None, CAPABILITY_BAR_SIZE)
.ok_or(PciDeviceError::IoAllocationFailed(CAPABILITY_BAR_SIZE))?;
let config = PciBarConfiguration::default()
.set_register_index(0)
.set_address(virtio_pci_bar_addr.raw_value())
.set_size(CAPABILITY_BAR_SIZE);
let virtio_pci_bar =
self.configuration.add_pci_bar(&config).map_err(|e| {
PciDeviceError::IoRegistrationFailed(virtio_pci_bar_addr.raw_value(), e)
})? as u8;
println!(
"VIRTIO PCI BAR starts at 0x{:x}",
virtio_pci_bar_addr.raw_value()
);
ranges.push((virtio_pci_bar_addr, CAPABILITY_BAR_SIZE));
// Once the BARs are allocated, the capabilities can be added to the PCI configuration.
self.add_pci_capabilities(virtio_pci_bar)?;
// Allocate the device specific BARs.
for config in self.device.get_device_bars() {
let device_bar_addr = allocator
.allocate_mmio_addresses(None, config.get_size())
.ok_or_else(|| PciDeviceError::IoAllocationFailed(config.get_size()))?;
config.set_address(device_bar_addr.raw_value());
let _device_bar = self.configuration.add_pci_bar(&config).map_err(|e| {
PciDeviceError::IoRegistrationFailed(device_bar_addr.raw_value(), e)
})?;
ranges.push((device_bar_addr, config.get_size()));
}
Ok(ranges)
}
fn read_bar(&mut self, addr: u64, data: &mut [u8]) {
// The driver is only allowed to do aligned, properly sized access.
let bar0 = u64::from(self.configuration.get_bar_addr(self.settings_bar as usize));
let offset = addr - bar0;
match offset {
o if o < COMMON_CONFIG_BAR_OFFSET + COMMON_CONFIG_SIZE => self.common_config.read(
o - COMMON_CONFIG_BAR_OFFSET,
data,
&mut self.queues,
self.device.as_mut(),
),
o if ISR_CONFIG_BAR_OFFSET <= o && o < ISR_CONFIG_BAR_OFFSET + ISR_CONFIG_SIZE => {
if let Some(v) = data.get_mut(0) {
// Reading this register resets it to 0.
*v = self.interrupt_status.swap(0, Ordering::SeqCst) as u8;
}
}
o if DEVICE_CONFIG_BAR_OFFSET <= o
&& o < DEVICE_CONFIG_BAR_OFFSET + DEVICE_CONFIG_SIZE =>
{
self.device.read_config(o - DEVICE_CONFIG_BAR_OFFSET, data);
}
o if NOTIFICATION_BAR_OFFSET <= o
&& o < NOTIFICATION_BAR_OFFSET + NOTIFICATION_SIZE =>
{
// Handled with ioeventfds.
}
_ => (),
}
}
fn write_bar(&mut self, addr: u64, data: &[u8]) {
let bar0 = u64::from(self.configuration.get_bar_addr(self.settings_bar as usize));
let offset = addr - bar0;
match offset {
o if o < COMMON_CONFIG_BAR_OFFSET + COMMON_CONFIG_SIZE => self.common_config.write(
o - COMMON_CONFIG_BAR_OFFSET,
data,
&mut self.queues,
self.device.as_mut(),
),
o if ISR_CONFIG_BAR_OFFSET <= o && o < ISR_CONFIG_BAR_OFFSET + ISR_CONFIG_SIZE => {
if let Some(v) = data.get(0) {
self.interrupt_status
.fetch_and(!(*v as usize), Ordering::SeqCst);
}
}
o if DEVICE_CONFIG_BAR_OFFSET <= o
&& o < DEVICE_CONFIG_BAR_OFFSET + DEVICE_CONFIG_SIZE =>
{
self.device.write_config(o - DEVICE_CONFIG_BAR_OFFSET, data);
}
o if NOTIFICATION_BAR_OFFSET <= o
&& o < NOTIFICATION_BAR_OFFSET + NOTIFICATION_SIZE =>
{
// Handled with ioeventfds.
}
_ => (),
};
if !self.device_activated && self.is_driver_ready() && self.are_queues_valid() {
if let Some(interrupt_evt) = self.interrupt_evt.take() {
if let Some(mem) = self.memory.take() {
self.device
.activate(
mem,
interrupt_evt,
self.interrupt_status.clone(),
self.queues.clone(),
self.queue_evts.split_off(0),
)
.expect("Failed to activate device");;
self.device_activated = true;
}
}
}
}
}
impl BusDevice for VirtioPciDevice {
fn read(&mut self, offset: u64, data: &mut [u8]) {
self.read_bar(offset, data)
}
fn write(&mut self, offset: u64, data: &[u8]) {
self.write_bar(offset, data)
}
fn write_config_register(&mut self, reg_idx: usize, offset: u64, data: &[u8]) {
if offset as usize + data.len() > 4 {
return;
}
let regs = self.config_registers_mut();
match data.len() {
1 => regs.write_byte(reg_idx * 4 + offset as usize, data[0]),
2 => regs.write_word(
reg_idx * 4 + offset as usize,
u16::from(data[0]) | (u16::from(data[1]) << 8),
),
4 => regs.write_reg(reg_idx, LittleEndian::read_u32(data)),
_ => (),
}
}
fn read_config_register(&self, reg_idx: usize) -> u32 {
self.config_registers().read_reg(reg_idx)
}
}