hypervisor: Refactor core_registers on AArch64

On AArch64, the function `core_registers` and `set_core_registers` are
the same thing of `get/set_regs` on x86_64. Now the names are aligned.
This will benefit supporting `gdb`.

Signed-off-by: Michael Zhao <michael.zhao@arm.com>
This commit is contained in:
Michael Zhao 2022-06-21 10:57:08 +08:00 committed by Xin Wang
parent fc2cc53d51
commit c445513976
3 changed files with 188 additions and 192 deletions

View File

@ -278,7 +278,6 @@ pub type Result<T> = anyhow::Result<T, HypervisorCpuError>;
/// Trait to represent a generic Vcpu
///
pub trait Vcpu: Send + Sync {
#[cfg(target_arch = "x86_64")]
///
/// Returns the vCPU general purpose registers.
///
@ -293,7 +292,6 @@ pub trait Vcpu: Send + Sync {
/// Check if vcpu has attribute.
///
fn has_vcpu_attr(&self, attr: &DeviceAttr) -> Result<()>;
#[cfg(target_arch = "x86_64")]
///
/// Sets the vCPU general purpose registers.
///
@ -428,16 +426,6 @@ pub trait Vcpu: Send + Sync {
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn get_reg_list(&self, reg_list: &mut RegList) -> Result<()>;
///
/// Save the state of the core registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn core_registers(&self, state: &mut StandardRegisters) -> Result<()>;
///
/// Restore the state of the core registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn set_core_registers(&self, state: &StandardRegisters) -> Result<()>;
///
/// Save the state of the system registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]

View File

@ -981,6 +981,103 @@ impl cpu::Vcpu for KvmVcpu {
.get_regs()
.map_err(|e| cpu::HypervisorCpuError::GetStandardRegs(e.into()))
}
///
/// Returns the vCPU general purpose registers.
/// The `KVM_GET_REGS` ioctl is not available on AArch64, `KVM_GET_ONE_REG`
/// is used to get registers one by one.
///
#[cfg(target_arch = "aarch64")]
fn get_regs(&self) -> cpu::Result<StandardRegisters> {
let mut state: StandardRegisters = kvm_regs::default();
let mut off = offset__of!(user_pt_regs, regs);
// There are 31 user_pt_regs:
// https://elixir.free-electrons.com/linux/v4.14.174/source/arch/arm64/include/uapi/asm/ptrace.h#L72
// These actually are the general-purpose registers of the Armv8-a
// architecture (i.e x0-x30 if used as a 64bit register or w0-30 when used as a 32bit register).
for i in 0..31 {
state.regs.regs[i] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
// We are now entering the "Other register" section of the ARMv8-a architecture.
// First one, stack pointer.
let off = offset__of!(user_pt_regs, sp);
state.regs.sp = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Second one, the program counter.
let off = offset__of!(user_pt_regs, pc);
state.regs.pc = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Next is the processor state.
let off = offset__of!(user_pt_regs, pstate);
state.regs.pstate = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// The stack pointer associated with EL1
let off = offset__of!(kvm_regs, sp_el1);
state.sp_el1 = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Exception Link Register for EL1, when taking an exception to EL1, this register
// holds the address to which to return afterwards.
let off = offset__of!(kvm_regs, elr_el1);
state.elr_el1 = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Saved Program Status Registers, there are 5 of them used in the kernel.
let mut off = offset__of!(kvm_regs, spsr);
for i in 0..KVM_NR_SPSR as usize {
state.spsr[i] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
// Now moving on to floting point registers which are stored in the user_fpsimd_state in the kernel:
// https://elixir.free-electrons.com/linux/v4.9.62/source/arch/arm64/include/uapi/asm/kvm.h#L53
let mut off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, vregs);
for i in 0..32 {
state.fp_regs.vregs[i] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U128, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?
.into();
off += mem::size_of::<u128>();
}
// Floating-point Status Register
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpsr);
state.fp_regs.fpsr = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U32, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?
as u32;
// Floating-point Control Register
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpcr);
state.fp_regs.fpcr = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U32, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?
as u32;
Ok(state)
}
#[cfg(target_arch = "x86_64")]
///
/// Sets the vCPU general purpose registers using the `KVM_SET_REGS` ioctl.
@ -991,6 +1088,88 @@ impl cpu::Vcpu for KvmVcpu {
.map_err(|e| cpu::HypervisorCpuError::SetStandardRegs(e.into()))
}
///
/// Sets the vCPU general purpose registers.
/// The `KVM_SET_REGS` ioctl is not available on AArch64, `KVM_SET_ONE_REG`
/// is used to set registers one by one.
///
#[cfg(target_arch = "aarch64")]
fn set_regs(&self, state: &StandardRegisters) -> cpu::Result<()> {
// The function follows the exact identical order from `state`. Look there
// for some additional info on registers.
let mut off = offset__of!(user_pt_regs, regs);
for i in 0..31 {
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U64, off),
state.regs.regs[i],
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
let off = offset__of!(user_pt_regs, sp);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.sp)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(user_pt_regs, pc);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.pc)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(user_pt_regs, pstate);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.pstate)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, sp_el1);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.sp_el1)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, elr_el1);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.elr_el1)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let mut off = offset__of!(kvm_regs, spsr);
for i in 0..KVM_NR_SPSR as usize {
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.spsr[i])
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
let mut off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, vregs);
for i in 0..32 {
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U128, off),
state.fp_regs.vregs[i] as u64,
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += mem::size_of::<u128>();
}
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpsr);
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U32, off),
state.fp_regs.fpsr as u64,
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpcr);
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U32, off),
state.fp_regs.fpcr as u64,
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
Ok(())
}
#[cfg(target_arch = "aarch64")]
///
/// Set attribute for vcpu.
@ -1391,179 +1570,6 @@ impl cpu::Vcpu for KvmVcpu {
.map_err(|e| cpu::HypervisorCpuError::GetRegList(e.into()))
}
///
/// Save the state of the core registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn core_registers(&self, state: &mut StandardRegisters) -> cpu::Result<()> {
let mut off = offset__of!(user_pt_regs, regs);
// There are 31 user_pt_regs:
// https://elixir.free-electrons.com/linux/v4.14.174/source/arch/arm64/include/uapi/asm/ptrace.h#L72
// These actually are the general-purpose registers of the Armv8-a
// architecture (i.e x0-x30 if used as a 64bit register or w0-30 when used as a 32bit register).
for i in 0..31 {
state.regs.regs[i] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
// We are now entering the "Other register" section of the ARMv8-a architecture.
// First one, stack pointer.
let off = offset__of!(user_pt_regs, sp);
state.regs.sp = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Second one, the program counter.
let off = offset__of!(user_pt_regs, pc);
state.regs.pc = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Next is the processor state.
let off = offset__of!(user_pt_regs, pstate);
state.regs.pstate = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// The stack pointer associated with EL1
let off = offset__of!(kvm_regs, sp_el1);
state.sp_el1 = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Exception Link Register for EL1, when taking an exception to EL1, this register
// holds the address to which to return afterwards.
let off = offset__of!(kvm_regs, elr_el1);
state.elr_el1 = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Saved Program Status Registers, there are 5 of them used in the kernel.
let mut off = offset__of!(kvm_regs, spsr);
for i in 0..KVM_NR_SPSR as usize {
state.spsr[i] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
// Now moving on to floting point registers which are stored in the user_fpsimd_state in the kernel:
// https://elixir.free-electrons.com/linux/v4.9.62/source/arch/arm64/include/uapi/asm/kvm.h#L53
let mut off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, vregs);
for i in 0..32 {
state.fp_regs.vregs[i] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U128, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?
.into();
off += mem::size_of::<u128>();
}
// Floating-point Status Register
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpsr);
state.fp_regs.fpsr = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U32, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?
as u32;
// Floating-point Control Register
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpcr);
state.fp_regs.fpcr = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U32, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?
as u32;
Ok(())
}
///
/// Restore the state of the core registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn set_core_registers(&self, state: &StandardRegisters) -> cpu::Result<()> {
// The function follows the exact identical order from `state`. Look there
// for some additional info on registers.
let mut off = offset__of!(user_pt_regs, regs);
for i in 0..31 {
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U64, off),
state.regs.regs[i],
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
let off = offset__of!(user_pt_regs, sp);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.sp)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(user_pt_regs, pc);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.pc)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(user_pt_regs, pstate);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.pstate)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, sp_el1);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.sp_el1)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, elr_el1);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.elr_el1)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let mut off = offset__of!(kvm_regs, spsr);
for i in 0..KVM_NR_SPSR as usize {
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.spsr[i])
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
let mut off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, vregs);
for i in 0..32 {
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U128, off),
state.fp_regs.vregs[i] as u64,
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += mem::size_of::<u128>();
}
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpsr);
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U32, off),
state.fp_regs.fpsr as u64,
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpcr);
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U32, off),
state.fp_regs.fpcr as u64,
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
Ok(())
}
///
/// Save the state of the system registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
@ -1804,7 +1810,7 @@ impl cpu::Vcpu for KvmVcpu {
mpidr: self.read_mpidr()?,
..Default::default()
};
self.core_registers(&mut state.core_regs)?;
state.core_regs = self.get_regs()?;
self.system_registers(&mut state.sys_regs)?;
Ok(state)
@ -1898,7 +1904,7 @@ impl cpu::Vcpu for KvmVcpu {
///
#[cfg(target_arch = "aarch64")]
fn set_state(&self, state: &CpuState) -> cpu::Result<()> {
self.set_core_registers(&state.core_regs)?;
self.set_regs(&state.core_regs)?;
self.set_system_registers(&state.sys_regs)?;
self.set_mp_state(state.mp_state)?;

View File

@ -2498,15 +2498,15 @@ mod tests {
vm.get_preferred_target(&mut kvi).unwrap();
// Must fail when vcpu is not initialized yet.
let mut state = kvm_regs::default();
let res = vcpu.core_registers(&mut state);
let res = vcpu.get_regs();
assert!(res.is_err());
assert_eq!(
format!("{}", res.unwrap_err()),
"Failed to get core register: Exec format error (os error 8)"
);
let res = vcpu.set_core_registers(&state);
let mut state = kvm_regs::default();
let res = vcpu.set_regs(&state);
assert!(res.is_err());
assert_eq!(
format!("{}", res.unwrap_err()),
@ -2514,10 +2514,12 @@ mod tests {
);
vcpu.vcpu_init(&kvi).unwrap();
assert!(vcpu.core_registers(&mut state).is_ok());
let res = vcpu.get_regs();
assert!(res.is_ok());
state = res.unwrap();
assert_eq!(state.regs.pstate, 0x3C5);
assert!(vcpu.set_core_registers(&state).is_ok());
assert!(vcpu.set_regs(&state).is_ok());
let off = offset__of!(user_pt_regs, pstate);
let pstate = vcpu
.get_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))