AArch64: Implement AArch64 vCPU states save/restore

This commit adds methods to save/restore AArch64 vCPU registers,
including:

1. The AArch64 `VcpuKvmState` structure.

2. Some `Vcpu` trait methods of the `KvmVcpu` structure to
enable the save/restore of the AArch64 vCPU states.

Signed-off-by: Henry Wang <Henry.Wang@arm.com>
This commit is contained in:
Henry Wang 2020-08-30 16:44:39 +08:00 committed by Rob Bradford
parent e3d45be6f7
commit ffafeda4b6
4 changed files with 335 additions and 13 deletions

View File

@ -10,6 +10,8 @@
#[cfg(target_arch = "aarch64")]
use crate::aarch64::VcpuInit;
#[cfg(target_arch = "aarch64")]
use crate::aarch64::{OneRegister, RegList, StandardRegisters};
use crate::{CpuState, MpState};
#[cfg(target_arch = "x86_64")]
@ -154,10 +156,30 @@ pub enum HypervisorCpuError {
#[error("Failed to enable HyperV SynIC")]
EnableHyperVSynIC(#[source] anyhow::Error),
///
/// Getting AArch64 core register error
///
#[error("Failed to get core register: {0}")]
GetCoreRegister(#[source] anyhow::Error),
///
/// Setting AArch64 core register error
///
#[error("Failed to set core register: {0}")]
SetCoreRegister(#[source] anyhow::Error),
///
/// Getting AArch64 registers list error
///
#[error("Failed to retrieve list of registers: {0}")]
GetRegList(#[source] anyhow::Error),
///
/// Getting AArch64 system register error
///
#[error("Failed to get system register: {0}")]
GetSysRegister(#[source] anyhow::Error),
///
/// Setting AArch64 system register error
///
#[error("Failed to set system register: {0}")]
SetSysRegister(#[source] anyhow::Error),
}
#[derive(Debug)]
@ -311,6 +333,32 @@ pub trait Vcpu: Send + Sync {
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn get_one_reg(&self, reg_id: u64) -> Result<u64>;
///
/// Gets a list of the guest registers that are supported for the
/// KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn get_reg_list(&self, reg_list: &mut RegList) -> Result<()>;
///
/// Save the state of the core registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn core_registers(&self, state: &mut StandardRegisters) -> Result<()>;
///
/// Restore the state of the core registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn set_core_registers(&self, state: &StandardRegisters) -> Result<()>;
///
/// Save the state of the system registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn system_registers(&self, state: &mut Vec<OneRegister>) -> Result<()>;
///
/// Restore the state of the system registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn set_system_registers(&self, state: &[OneRegister]) -> Result<()>;
///
/// Read the MPIDR - Multiprocessor Affinity Register.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]

View File

@ -12,14 +12,16 @@
/// Export generically-named wrappers of kvm-bindings for Unix-based platforms
///
use crate::kvm::{KvmError, KvmResult};
pub use kvm_bindings::kvm_vcpu_init as VcpuInit;
use kvm_bindings::{
KVM_REG_ARM64, KVM_REG_ARM64_SYSREG, KVM_REG_ARM64_SYSREG_CRM_MASK,
KVM_REG_ARM64_SYSREG_CRM_SHIFT, KVM_REG_ARM64_SYSREG_CRN_MASK, KVM_REG_ARM64_SYSREG_CRN_SHIFT,
KVM_REG_ARM64_SYSREG_OP0_MASK, KVM_REG_ARM64_SYSREG_OP0_SHIFT, KVM_REG_ARM64_SYSREG_OP1_MASK,
KVM_REG_ARM64_SYSREG_OP1_SHIFT, KVM_REG_ARM64_SYSREG_OP2_MASK, KVM_REG_ARM64_SYSREG_OP2_SHIFT,
KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_CORE, KVM_REG_SIZE_MASK, KVM_REG_SIZE_U32,
KVM_REG_SIZE_U64,
kvm_mp_state, kvm_one_reg, kvm_regs, KVM_REG_ARM64, KVM_REG_ARM64_SYSREG,
KVM_REG_ARM64_SYSREG_CRM_MASK, KVM_REG_ARM64_SYSREG_CRM_SHIFT, KVM_REG_ARM64_SYSREG_CRN_MASK,
KVM_REG_ARM64_SYSREG_CRN_SHIFT, KVM_REG_ARM64_SYSREG_OP0_MASK, KVM_REG_ARM64_SYSREG_OP0_SHIFT,
KVM_REG_ARM64_SYSREG_OP1_MASK, KVM_REG_ARM64_SYSREG_OP1_SHIFT, KVM_REG_ARM64_SYSREG_OP2_MASK,
KVM_REG_ARM64_SYSREG_OP2_SHIFT, KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_CORE, KVM_REG_SIZE_MASK,
KVM_REG_SIZE_U32, KVM_REG_SIZE_U64,
};
pub use kvm_bindings::{
kvm_one_reg as OneRegister, kvm_regs as StandardRegisters, kvm_vcpu_init as VcpuInit, RegList,
};
use serde_derive::{Deserialize, Serialize};
pub use {kvm_ioctls::Cap, kvm_ioctls::Kvm};
@ -128,5 +130,13 @@ pub fn check_required_kvm_extensions(kvm: &Kvm) -> KvmResult<()> {
Ok(())
}
#[derive(Clone, Serialize, Deserialize)]
pub struct VcpuKvmState {}
#[derive(Clone, Default, Serialize, Deserialize)]
pub struct VcpuKvmState {
pub mp_state: kvm_mp_state,
pub core_regs: kvm_regs,
pub sys_regs: Vec<kvm_one_reg>,
// We will be using the mpidr for passing it to the VmState.
// The VmState will give this away for saving restoring the icc and redistributor
// registers.
pub mpidr: u64,
}

View File

@ -10,12 +10,15 @@
#[cfg(target_arch = "aarch64")]
pub use crate::aarch64::{
check_required_kvm_extensions, VcpuInit, VcpuKvmState as CpuState, MPIDR_EL1,
check_required_kvm_extensions, is_system_register, VcpuInit, VcpuKvmState as CpuState,
MPIDR_EL1,
};
use crate::cpu;
use crate::device;
use crate::hypervisor;
use crate::vm;
#[cfg(target_arch = "aarch64")]
use crate::{arm64_core_reg_id, offset__of};
use kvm_ioctls::{NoDatamatch, VcpuFd, VmFd};
use serde_derive::{Deserialize, Serialize};
use std::os::unix::io::{AsRawFd, RawFd};
@ -33,6 +36,9 @@ use x86_64::{
check_required_kvm_extensions, FpuState, SpecialRegisters, StandardRegisters, KVM_TSS_ADDRESS,
};
#[cfg(target_arch = "aarch64")]
use aarch64::{OneRegister, RegList, StandardRegisters};
#[cfg(target_arch = "x86_64")]
pub use x86_64::{
CpuId, CpuIdEntry, ExtendedControlRegisters, LapicState, MsrEntries, VcpuKvmState as CpuState,
@ -48,6 +54,13 @@ use crate::arch::x86::NUM_IOAPIC_PINS;
// aarch64 dependencies
#[cfg(target_arch = "aarch64")]
pub mod aarch64;
#[cfg(target_arch = "aarch64")]
use kvm_bindings::{
kvm_regs, user_fpsimd_state, user_pt_regs, KVM_NR_SPSR, KVM_REG_ARM64, KVM_REG_ARM_CORE,
KVM_REG_SIZE_U128, KVM_REG_SIZE_U32, KVM_REG_SIZE_U64,
};
#[cfg(target_arch = "aarch64")]
use std::mem;
pub use kvm_bindings;
pub use kvm_bindings::{
@ -766,6 +779,241 @@ impl cpu::Vcpu for KvmVcpu {
.map_err(|e| cpu::HypervisorCpuError::GetOneReg(e.into()))
}
///
/// Gets a list of the guest registers that are supported for the
/// KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn get_reg_list(&self, reg_list: &mut RegList) -> cpu::Result<()> {
self.fd
.get_reg_list(reg_list)
.map_err(|e| cpu::HypervisorCpuError::GetRegList(e.into()))
}
///
/// Save the state of the core registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn core_registers(&self, state: &mut StandardRegisters) -> cpu::Result<()> {
let mut off = offset__of!(user_pt_regs, regs);
// There are 31 user_pt_regs:
// https://elixir.free-electrons.com/linux/v4.14.174/source/arch/arm64/include/uapi/asm/ptrace.h#L72
// These actually are the general-purpose registers of the Armv8-a
// architecture (i.e x0-x30 if used as a 64bit register or w0-30 when used as a 32bit register).
for i in 0..31 {
state.regs.regs[i] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
// We are now entering the "Other register" section of the ARMv8-a architecture.
// First one, stack pointer.
let off = offset__of!(user_pt_regs, sp);
state.regs.sp = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Second one, the program counter.
let off = offset__of!(user_pt_regs, pc);
state.regs.pc = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Next is the processor state.
let off = offset__of!(user_pt_regs, pstate);
state.regs.pstate = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// The stack pointer associated with EL1
let off = offset__of!(kvm_regs, sp_el1);
state.sp_el1 = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Exception Link Register for EL1, when taking an exception to EL1, this register
// holds the address to which to return afterwards.
let off = offset__of!(kvm_regs, elr_el1);
state.elr_el1 = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
// Saved Program Status Registers, there are 5 of them used in the kernel.
let mut off = offset__of!(kvm_regs, spsr);
for i in 0..KVM_NR_SPSR as usize {
state.spsr[i] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
// Now moving on to floting point registers which are stored in the user_fpsimd_state in the kernel:
// https://elixir.free-electrons.com/linux/v4.9.62/source/arch/arm64/include/uapi/asm/kvm.h#L53
let mut off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, vregs);
for i in 0..32 {
state.fp_regs.vregs[i][0] = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U128, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?;
off += mem::size_of::<u128>();
}
// Floating-point Status Register
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpsr);
state.fp_regs.fpsr = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U32, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?
as u32;
// Floating-point Control Register
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpcr);
state.fp_regs.fpcr = self
.fd
.get_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U32, off))
.map_err(|e| cpu::HypervisorCpuError::GetCoreRegister(e.into()))?
as u32;
Ok(())
}
///
/// Restore the state of the core registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn set_core_registers(&self, state: &StandardRegisters) -> cpu::Result<()> {
// The function follows the exact identical order from `state`. Look there
// for some additional info on registers.
let mut off = offset__of!(user_pt_regs, regs);
for i in 0..31 {
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U64, off),
state.regs.regs[i],
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
let off = offset__of!(user_pt_regs, sp);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.sp)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(user_pt_regs, pc);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.pc)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(user_pt_regs, pstate);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.regs.pstate)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, sp_el1);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.sp_el1)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, elr_el1);
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.elr_el1)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let mut off = offset__of!(kvm_regs, spsr);
for i in 0..KVM_NR_SPSR as usize {
self.fd
.set_one_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off), state.spsr[i])
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += std::mem::size_of::<u64>();
}
let mut off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, vregs);
for i in 0..32 {
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U128, off),
state.fp_regs.vregs[i][0],
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
off += mem::size_of::<u128>();
}
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpsr);
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U32, off),
state.fp_regs.fpsr as u64,
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
let off = offset__of!(kvm_regs, fp_regs) + offset__of!(user_fpsimd_state, fpcr);
self.fd
.set_one_reg(
arm64_core_reg_id!(KVM_REG_SIZE_U32, off),
state.fp_regs.fpcr as u64,
)
.map_err(|e| cpu::HypervisorCpuError::SetCoreRegister(e.into()))?;
Ok(())
}
///
/// Save the state of the system registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn system_registers(&self, state: &mut Vec<OneRegister>) -> cpu::Result<()> {
// Call KVM_GET_REG_LIST to get all registers available to the guest. For ArmV8 there are
// around 500 registers.
let mut reg_list = RegList::new(512);
self.fd
.get_reg_list(&mut reg_list)
.map_err(|e| cpu::HypervisorCpuError::GetRegList(e.into()))?;
// At this point reg_list should contain: core registers and system registers.
// The register list contains the number of registers and their ids. We will be needing to
// call KVM_GET_ONE_REG on each id in order to save all of them. We carve out from the list
// the core registers which are represented in the kernel by kvm_regs structure and for which
// we can calculate the id based on the offset in the structure.
reg_list.retain(|regid| *regid != 0);
reg_list.as_slice().to_vec().sort();
reg_list.retain(|regid| is_system_register(*regid));
// Now, for the rest of the registers left in the previously fetched register list, we are
// simply calling KVM_GET_ONE_REG.
let indices = reg_list.as_slice();
for (_pos, index) in indices.iter().enumerate() {
if _pos > 230 {
break;
}
state.push(kvm_bindings::kvm_one_reg {
id: *index,
addr: self
.fd
.get_one_reg(*index)
.map_err(|e| cpu::HypervisorCpuError::GetSysRegister(e.into()))?,
});
}
Ok(())
}
///
/// Restore the state of the system registers.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
fn set_system_registers(&self, state: &[OneRegister]) -> cpu::Result<()> {
for reg in state {
self.fd
.set_one_reg(reg.id, reg.addr)
.map_err(|e| cpu::HypervisorCpuError::SetSysRegister(e.into()))?;
}
Ok(())
}
///
/// Read the MPIDR - Multiprocessor Affinity Register.
///
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
@ -883,9 +1131,19 @@ impl cpu::Vcpu for KvmVcpu {
mp_state,
})
}
///
/// Get the current AArch64 CPU state
///
#[cfg(target_arch = "aarch64")]
fn state(&self) -> cpu::Result<CpuState> {
unimplemented!();
let mut state = CpuState::default();
// Get this vCPUs multiprocessing state.
state.mp_state = self.get_mp_state()?;
self.core_registers(&mut state.core_regs)?;
self.system_registers(&mut state.sys_regs)?;
state.mpidr = self.read_mpidr()?;
Ok(state)
}
#[cfg(target_arch = "x86_64")]
///
@ -969,10 +1227,15 @@ impl cpu::Vcpu for KvmVcpu {
Ok(())
}
#[allow(unused_variables)]
///
/// Restore the previously saved AArch64 CPU state
///
#[cfg(target_arch = "aarch64")]
fn set_state(&self, state: &CpuState) -> cpu::Result<()> {
warn!("CPU state was not restored");
self.set_core_registers(&state.core_regs)?;
self.set_system_registers(&state.sys_regs)?;
self.set_mp_state(state.mp_state)?;
Ok(())
}
}

View File

@ -20,6 +20,7 @@
#[macro_use]
extern crate anyhow;
#[cfg(target_arch = "x86_64")]
#[macro_use]
extern crate log;
extern crate serde;