In order to properly initialize the kvm regs/sregs structs for
the guest, the load_kernel() return type must specify which
boot protocol to use with the entry point address it returns.
Make load_kernel() return an EntryPoint struct containing the
required information. This structure will later be used
in the vCPU configuration methods to setup the appropriate
initial conditions for the guest.
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Create supporting definitions to use the hvm start info and memory
map table entry struct definitions from the linux-loader crate in
order to enable PVH boot protocol support
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Using the existing layout module start documenting the major regions of
RAM and those areas that are reserved. Some of the constants have also
been renamed to be more consistent and some functions that returned
constant variables have been replaced.
Future commits will move more constants into this file to make it the
canonical source of information about the memory layout.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The command "cargo build --no-default-features" does not recursively
disable the default features across the workspace. Instead add an acpi
feature at the top-level, making it default, and then make that feature
conditional on all the crate acpi features.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Latest clippy version complains about our existing code for the
following reasons:
- trait objects without an explicit `dyn` are deprecated
- `...` range patterns are deprecated
- lint `clippy::const_static_lifetime` has been renamed to
`clippy::redundant_static_lifetimes`
- unnecessary `unsafe` block
- unneeded return statement
All these issues have been fixed through this patch, and rustfmt has
been run to cleanup potential formatting errors due to those changes.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
We want to be able to differentiate between memory regions that must be
managed separately from the main address space (e.g. the 32-bit memory
hole) and ones that are reserved (i.e. from which we don't want to allow
the VMM to allocate address ranges.
We are going to use a reserved memory region for restricting the 32-bit
memory hole from expanding beyond the IOAPIC and TSS addresses.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
With this new AddressAllocator as part of the SystemAllocator, the
VMM can now decide with finer granularity where to place memory.
By allocating the RAM and the hole into the MMIO address space, we
ensure that no memory will be allocated by accident where the RAM or
where the hole is.
And by creating the new MMIO hole address space, we create a subset
of the entire MMIO address space where we can place 32 bits BARs for
example.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
VMM may load different format kernel image to start guest, we currently
only have elf loader support, so add bzimage loader support in case
that VMM would like to load bzimage.
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Both crates are based on Firecracker commit 9cdb5b2.
They are ported to the new memory model and tests have been fixed
accordingly.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>