The snapshot and restore of AArch64 Gic was done in Vm. Now it is moved
to DeviceManager.
The benefit is that the restore can be done while the Gic is created in
DeviceManager.
While the moving of state data from Vm snapshot to DeviceManager
snapshot breaks the compatability of migration from older versions.
Signed-off-by: Michael Zhao <michael.zhao@arm.com>
Given the recent factorization that happened in vm.rs, we're now able to
merge Vm::new_from_snapshot with Vm::new.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This moves the devices creation out of the dedicated restore function
which will be eventually removed.
This factorizes the creation of all devices into a single location.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This allows the clock restoration to be moved out of the dedicated
restore function, which will eventually be removed.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Based on all the work that has already been merged, it is now possible
to fully move DeviceManager out of the previous restore model, meaning
there's no need for a dedicated restore() function to be implemented
there.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Every Vcpu is now created with the right state if there's an available
snapshot associated with it. This simplifies the restore logic.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Following the new restore design, it is not appropriate to set every
virtio device threads into a paused state after they've been started.
This is why we remove the line of code pausing the devices only after
they've been restored, and replace it with a small patch in every virtio
device implementation. When a virtio device is created as part of a
restored VM, the associated "paused" boolean is set to true. This
ensures the corresponding thread will be directly parked when being
started, avoiding the thread to be in a different state than the one it
was on the source VM during the snapshot.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
To synthesize the interactions between the virtio-net device and the tap
interface, the fuzzer utilizes a pair of unix domain sockets: one socket
(e.g. the dummy tap frontend) is used to construct the 'net_util::Tap'
instance for creating a virtio-net device; the other socket (e.g. the
dummy tap backend) is used in a epoll loop for handling the tx and rx
requests from the virtio-net device.
Signed-off-by: Bo Chen <chen.bo@intel.com>
Three functions are added:
* 'Tap::new_for_fuzzing()' a custom constructor that creates a dummy
`Tap` interface directly from `File` backed by Unix domain socket;
* 'Tap::mtu()' a custom function that returns hard-coded mtu;
* 'Net::wait_for_epoll_threads()'.
Two functions are reused with modifications to work with the dummy 'Tap'
interface:
* 'Net::new_with_tap()' is made public for fuzzing;
* 'Net::activate()' is modified to not call into 'Tap::set_offload()'
for fuzzing.
Signed-off-by: Bo Chen <chen.bo@intel.com>
To me the most logical place to document the policy is right next to the
version itself.
Fixes: #4318
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Now that VirtioPciDevice, VfioPciDevice and VfioUserPciDevice have all
been moved to the new restore design, there's no need to keep the old
way around, therefore the restore() implementations for MsiConfig,
MsixConfig and PciConfiguration can be removed.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This is some preliminatory work for moving both VfioUser and Vfio to the
new restore design.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This integer overflow was triggered with fuzzing on the virtio-net
device. The integer overflow is from the wrong assumption that the
packets read from or written to the tap device is always larger than the
size of a virtio-net header.
Signed-off-by: Bo Chen <chen.bo@intel.com>
Moving the Ioapic object to the new restore design, meaning the Ioapic
is created directly with the right state, and it shares the same
codepath as when it's created from scratch.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Extend the existing `custom-image.md` document with a new section on how
to create a custom image that contains NVIDIA drivers that are required
for our VFIO baremetal CI.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Re-enable the VFIO integration now the machine is back online.
The image has been updated to rely on Ubuntu 22.04 (Jammy) and it's
smaller given only the NVIDIA drivers along with the nvidia-smi tool are
installed.
The test to verify the GPU is functional has been simplified given it
only relies on nvidia-smi to validate it has been able to find the Tesla
T4 card, meaning the associated driver was loaded correctly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This uncouples it from the features used for building the binary under
test allowing it to use the default build features.
This change also removes the feature control from the test scripts where
it was never used (e.g. run_integration_tests_sgx.sh)
This allows the combined binary to be used for all testing but allows
the disabling of tests known not to work under mshv.
Fixes: #4915
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This will help with debugging issues like #4917 since we can find which
ioctl causes the error.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Creating a dedicated Result type for VirtioPciDevice, associated with
the new VirtioPciDeviceError enum. This allows for a clearer handling of
the errors generated through VirtioPciDevice::new().
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The code for restoring a VirtioPciDevice has been updated, including the
dependencies VirtioPciCommonConfig, MsixConfig and PciConfiguration.
It's important to note that both PciConfiguration and MsixConfig still
have restore() implementations because Vfio and VfioUser devices still
rely on the old way for restore.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This allows the unification of the same testing methodology with aarch64
and removes a user of the Bionic image.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
In the new process, `device::Gic::new()` covers additional actions:
1. Creating `hypervisor::vGic`
2. Initializing interrupt routings
The change makes the vGic device ready in the beginning of
`DeviceManager::create_devices()`. This can unblock the GIC related
devices initialization in the `DeviceManager`.
Signed-off-by: Michael Zhao <michael.zhao@arm.com>
Moving the creation of the vCPUs before the DeviceManager gets created
will allow for the aarch64 vGIC to be created before the DeviceManager
as well in a follow up patch. The end goal being to adopt the same
creation sequence for both x86_64 and aarch64, and keeping in mind that
the vGIC requires every vCPU to be created.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Split the vCPU creation into two distincts parts. On the one hand we
create the actual Vcpu object with the creation of the hypervisor::Vcpu.
And on the other hand, we configure the existing Vcpu, setting registers
to proper values (such as setting the entry point).
This will allow for further work to move the creation earlier in the
boot, so that the hypervisor::Vcpu will be already created when the
DeviceManager gets created.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Michael Zhao <michael.zhao@arm.com>
The CpuManager is now created before the DeviceManager. This is required
as preliminary work for creating the vCPUs before the DeviceManager,
which is required to ensure both x86_64 and aarch64 follow the same
sequence.
It's important to note the optimization for faster PIO accesses on the
PCI config space had to be removed given the VmOps was required by the
CpuManager and by the Vcpu by extension. But given the PciConfigIo is
created as part of the DeviceManager, there was no proper way of moving
things around so that we could provide PciConfigIo early enough.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>