The PciDevice trait is supposed to describe only functions related to
PCI. The specific method ioeventfds() has nothing to do with PCI, but
instead would be more specific to virtio transport devices.
This commit removes the ioeventfds() method from the PciDevice trait,
adding some convenient helper as_any() to retrieve the Any trait from
the structure behing the PciDevice trait. This is the only way to keep
calling into ioeventfds() function from VirtioPciDevice, so that we can
still properly reprogram the PCI BAR.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Storing a strong reference to the AddressManager behind the
DeviceRelocation trait results in a cyclic reference count.
Use a weak reference to break that dependency.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Based on the value being written to the BAR, the implementation can
now detect if the BAR is being moved to another address. If that is the
case, it invokes move_bar() function from the DeviceRelocation trait.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In order to trigger the PCI BAR reprogramming from PciConfigIo and
PciConfigMmmio, we need the PciBus to have a hold onto the trait
implementation of DeviceRelocation.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
By implementing the DeviceRelocation trait for the AddressManager
structure, we now have a way to let the PCI BAR reprogramming happen.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In order to reuse the SystemAllocator later at runtime, it is moved into
the new structure AddressManager. The goal is to have a hold onto the
SystemAllocator and both IO and MMIO buses so that we can use them
later.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In case a VFIO devices is being attached behind a virtual IOMMU, we
should not automatically map the entire guest memory for the specific
device.
A VFIO device attached to the virtual IOMMU will be driven with IOVAs,
hence we should simply wait for the requests coming from the virtual
IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
When VFIO devices are created and if the device is attached to the
virtual IOMMU, the ExternalDmaMapping trait implementation is created
and associated with the device. The idea is to build a hash map of
device IDs with their associated trait implementation.
This hash map is provided to the virtual IOMMU device so that it knows
how to properly trigger external mappings associated with VFIO devices.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
With this implementation of the trait ExternalDmaMapping, we now have
the tool to provide to the virtual IOMMU to trigger the map/unmap on
behalf of the guest.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The VFIO container is the object needed to update the VFIO mapping
associated with a VFIO device. This patch allows the device manager
to have access to the VFIO container.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This patch attaches VFIO devices to the virtual IOMMU if they are
identified as they should be, based on the option "iommu=on". This
simply takes care of adding the PCI device ID to the ACPI IORT table.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit is the glue between the virtio-pci devices attached to the
vIOMMU, and the IORT ACPI table exposing them to the guest as sitting
behind this vIOMMU.
An important thing is the trait implementation provided to the virtio
vrings for each device attached to the vIOMMU, as they need to perform
proper address translation before they can access the buffers.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In case some virtio devices are attached to the virtual IOMMU, their
vring addresses need to be translated from IOVA into GPA. Otherwise it
makes no sense to try to access them, and they would cause out of range
errors.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Adding virtio feature VIRTIO_F_IOMMU_PLATFORM when explicitly asked by
the user. The need for this feature is to be able to attach the virtio
device to a virtual IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Adding virtio feature VIRTIO_F_IOMMU_PLATFORM when explicitly asked by
the user. The need for this feature is to be able to attach the virtio
device to a virtual IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Adding virtio feature VIRTIO_F_IOMMU_PLATFORM when explicitly asked by
the user. The need for this feature is to be able to attach the virtio
device to a virtual IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Adding virtio feature VIRTIO_F_IOMMU_PLATFORM when explicitly asked by
the user. The need for this feature is to be able to attach the virtio
device to a virtual IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Adding virtio feature VIRTIO_F_IOMMU_PLATFORM when explicitly asked by
the user. The need for this feature is to be able to attach the virtio
device to a virtual IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Adding virtio feature VIRTIO_F_IOMMU_PLATFORM when explicitly asked by
the user. The need for this feature is to be able to attach the virtio
device to a virtual IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The virtio specification defines a device can be reset, which was not
supported by this virtio-console implementation. The reason it is needed
is to support unbinding this device from the guest driver, and rebind it
to vfio-pci driver.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
They point to a vm_virtio structure (VhostUserConfig) and in order to
make the whole config serializable (through the serde crate for
example), we'd have to add a serde dependency to the vm_virtio crate.
Instead we use a local, serializable structure and convert it to
VhostUserConfig from the DeviceManager code.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Based off of crosvm revision b5237bbcf074eb30cf368a138c0835081e747d71
add a CMOS device. This environments that can't use KVM clock to get the
current time (e.g. Windows and EFI.)
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Refactor the PCI datastructures to move the device ownership to a PciBus
struct. This PciBus struct can then be used by both a PciConfigIo and
PciConfigMmio in order to expose the configuration space via both IO
port and also via MMIO for PCI MMCONFIG.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
In order to avoid introducing a dependency on arch in the devices crate
pass the constant in to the IOAPIC device creation.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Rerrange "use" statements and make rename variables and fields to
indicate they might be unused.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This removes the register_devices() function with all that functionality
spread across the places where the devices are created.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Mark exit_evt with an underscore it may be unused (it is ignored if the
"acpi" feature is not turned on.)
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Add (non-default) support for using MMIO for virtio devices. This can be
tested by:
cargo build --no-default-features --features "mmio"
All necessary options will be included injected into the kernel
commandline.
Fixes: #243
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Rather than calling it at the very start of the VM execution (i.e. when
the VCPUs are created) do it as part of the DeviceManager creation.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Create the virtio devices independently of adding them to the PCI bus.
Instead accrue the devices in a vector and add them to the bus en-masse.
This will allow the virtio device creation to be used independently of
PCI based transport.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This commit relies on the new vsock::unix module to create the backend
that will be used from the virtio-vsock device.
The concept of backend is interesting here as it would allow for a vhost
kernel backend to be plugged if that was needed someday.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Based on previous patch introducing the new flag "--vsock", this commit
creates a new virtio-vsock device based on the presence of this flag.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The default number of MSI-X vector allocated was 2, which is the minimum
defined by the virtio specification. The reason for this minimum is that
virtio needs at least one interrupt to signal that configuration changed
and at least one to specify something happened regarding the virtqueues.
But this current implementation is not optimal because our VMM supports
as many MSI-X vectors as allowed by the MSI-X specification (2048 max).
For that reason, the current patch relies on the number of virtqueues
needed by the virtio device to determine the right amount of MSI-X
vectors needed. It's important not to forget the dedicated vector for
any configuration change too.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Refactor out DeviceManager into it's own file. This is part of a bigger
effort to reduce complexity in the vm.rs file but will also allow future
separation to allow making PCI support optional.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>