// Copyright 2019 Intel Corporation. All Rights Reserved. // SPDX-License-Identifier: Apache-2.0 // // Portions Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. // SPDX-License-Identifier: Apache-2.0 // // Portions Copyright 2017 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the THIRD-PARTY file. /// This is the `VirtioDevice` implementation for our vsock device. It handles the virtio-level /// device logic: feature negotiation, device configuration, and device activation. /// The run-time device logic (i.e. event-driven data handling) is implemented by /// `super::epoll_handler::EpollHandler`. /// /// We aim to conform to the VirtIO v1.1 spec: /// https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html /// /// The vsock device has two input parameters: a CID to identify the device, and a `VsockBackend` /// to use for offloading vsock traffic. /// /// Upon its activation, the vsock device creates its `EpollHandler`, passes it the event-interested /// file descriptors, and registers these descriptors with the VMM `EpollContext`. Going forward, /// the `EpollHandler` will get notified whenever an event occurs on the just-registered FDs: /// - an RX queue FD; /// - a TX queue FD; /// - an event queue FD; and /// - a backend FD. /// use super::{VsockBackend, VsockPacket}; use crate::seccomp_filters::Thread; use crate::Error as DeviceError; use crate::GuestMemoryMmap; use crate::VirtioInterrupt; use crate::{ thread_helper::spawn_virtio_thread, ActivateResult, EpollHelper, EpollHelperError, EpollHelperHandler, VirtioCommon, VirtioDevice, VirtioDeviceType, VirtioInterruptType, EPOLL_HELPER_EVENT_LAST, VIRTIO_F_IN_ORDER, VIRTIO_F_IOMMU_PLATFORM, VIRTIO_F_VERSION_1, }; use anyhow::anyhow; use byteorder::{ByteOrder, LittleEndian}; use seccompiler::SeccompAction; use std::io; use std::os::unix::io::AsRawFd; use std::path::PathBuf; use std::result; use std::sync::atomic::AtomicBool; use std::sync::{Arc, Barrier, RwLock}; use versionize::{VersionMap, Versionize, VersionizeResult}; use versionize_derive::Versionize; use virtio_queue::Queue; use virtio_queue::QueueOwnedT; use virtio_queue::QueueT; use vm_memory::GuestAddressSpace; use vm_memory::GuestMemoryAtomic; use vm_migration::{ Migratable, MigratableError, Pausable, Snapshot, Snapshottable, Transportable, VersionMapped, }; use vm_virtio::AccessPlatform; use vmm_sys_util::eventfd::EventFd; const QUEUE_SIZE: u16 = 256; const NUM_QUEUES: usize = 3; const QUEUE_SIZES: &[u16] = &[QUEUE_SIZE; NUM_QUEUES]; // New descriptors are pending on the rx queue. pub const RX_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 1; // New descriptors are pending on the tx queue. pub const TX_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 2; // New descriptors are pending on the event queue. pub const EVT_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 3; // Notification coming from the backend. pub const BACKEND_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 4; /// The `VsockEpollHandler` implements the runtime logic of our vsock device: /// 1. Respond to TX queue events by wrapping virtio buffers into `VsockPacket`s, then sending those /// packets to the `VsockBackend`; /// 2. Forward backend FD event notifications to the `VsockBackend`; /// 3. Fetch incoming packets from the `VsockBackend` and place them into the virtio RX queue; /// 4. Whenever we have processed some virtio buffers (either TX or RX), let the driver know by /// raising our assigned IRQ. /// /// In a nutshell, the `VsockEpollHandler` logic looks like this: /// - on TX queue event: /// - fetch all packets from the TX queue and send them to the backend; then /// - if the backend has queued up any incoming packets, fetch them into any available RX buffers. /// - on RX queue event: /// - fetch any incoming packets, queued up by the backend, into newly available RX buffers. /// - on backend event: /// - forward the event to the backend; then /// - again, attempt to fetch any incoming packets queued by the backend into virtio RX buffers. /// pub struct VsockEpollHandler { pub mem: GuestMemoryAtomic, pub queues: Vec, pub queue_evts: Vec, pub kill_evt: EventFd, pub pause_evt: EventFd, pub interrupt_cb: Arc, pub backend: Arc>, pub access_platform: Option>, } impl VsockEpollHandler where B: VsockBackend, { /// Signal the guest driver that we've used some virtio buffers that it had previously made /// available. /// fn signal_used_queue(&self, queue_index: u16) -> result::Result<(), DeviceError> { debug!("vsock: raising IRQ"); self.interrupt_cb .trigger(VirtioInterruptType::Queue(queue_index)) .map_err(|e| { error!("Failed to signal used queue: {:?}", e); DeviceError::FailedSignalingUsedQueue(e) }) } /// Walk the driver-provided RX queue buffers and attempt to fill them up with any data that we /// have pending. /// fn process_rx(&mut self) -> result::Result<(), DeviceError> { debug!("vsock: epoll_handler::process_rx()"); let mut used_descs = false; while let Some(mut desc_chain) = self.queues[0].pop_descriptor_chain(self.mem.memory()) { let used_len = match VsockPacket::from_rx_virtq_head( &mut desc_chain, self.access_platform.as_ref(), ) { Ok(mut pkt) => { if self.backend.write().unwrap().recv_pkt(&mut pkt).is_ok() { pkt.hdr().len() as u32 + pkt.len() } else { // We are using a consuming iterator over the virtio buffers, so, if we can't // fill in this buffer, we'll need to undo the last iterator step. self.queues[0].go_to_previous_position(); break; } } Err(e) => { warn!("vsock: RX queue error: {:?}", e); 0 } }; self.queues[0] .add_used(desc_chain.memory(), desc_chain.head_index(), used_len) .map_err(DeviceError::QueueAddUsed)?; used_descs = true; } if used_descs { self.signal_used_queue(0) } else { Ok(()) } } /// Walk the driver-provided TX queue buffers, package them up as vsock packets, and send them to /// the backend for processing. /// fn process_tx(&mut self) -> result::Result<(), DeviceError> { debug!("vsock: epoll_handler::process_tx()"); let mut used_descs = false; while let Some(mut desc_chain) = self.queues[1].pop_descriptor_chain(self.mem.memory()) { let pkt = match VsockPacket::from_tx_virtq_head( &mut desc_chain, self.access_platform.as_ref(), ) { Ok(pkt) => pkt, Err(e) => { error!("vsock: error reading TX packet: {:?}", e); self.queues[1] .add_used(desc_chain.memory(), desc_chain.head_index(), 0) .map_err(DeviceError::QueueAddUsed)?; used_descs = true; continue; } }; if self.backend.write().unwrap().send_pkt(&pkt).is_err() { self.queues[1].go_to_previous_position(); break; } self.queues[1] .add_used(desc_chain.memory(), desc_chain.head_index(), 0) .map_err(DeviceError::QueueAddUsed)?; used_descs = true; } if used_descs { self.signal_used_queue(1) } else { Ok(()) } } fn run( &mut self, paused: Arc, paused_sync: Arc, ) -> result::Result<(), EpollHelperError> { let mut helper = EpollHelper::new(&self.kill_evt, &self.pause_evt)?; helper.add_event(self.queue_evts[0].as_raw_fd(), RX_QUEUE_EVENT)?; helper.add_event(self.queue_evts[1].as_raw_fd(), TX_QUEUE_EVENT)?; helper.add_event(self.queue_evts[2].as_raw_fd(), EVT_QUEUE_EVENT)?; helper.add_event(self.backend.read().unwrap().get_polled_fd(), BACKEND_EVENT)?; helper.run(paused, paused_sync, self)?; Ok(()) } } impl EpollHelperHandler for VsockEpollHandler where B: VsockBackend, { fn handle_event( &mut self, _helper: &mut EpollHelper, event: &epoll::Event, ) -> result::Result<(), EpollHelperError> { let evset = match epoll::Events::from_bits(event.events) { Some(evset) => evset, None => { let evbits = event.events; warn!("epoll: ignoring unknown event set: 0x{:x}", evbits); return Ok(()); } }; let ev_type = event.data as u16; match ev_type { RX_QUEUE_EVENT => { debug!("vsock: RX queue event"); self.queue_evts[0].read().map_err(|e| { EpollHelperError::HandleEvent(anyhow!("Failed to get RX queue event: {:?}", e)) })?; if self.backend.read().unwrap().has_pending_rx() { self.process_rx().map_err(|e| { EpollHelperError::HandleEvent(anyhow!( "Failed to process RX queue: {:?}", e )) })?; } } TX_QUEUE_EVENT => { debug!("vsock: TX queue event"); self.queue_evts[1].read().map_err(|e| { EpollHelperError::HandleEvent(anyhow!("Failed to get TX queue event: {:?}", e)) })?; self.process_tx().map_err(|e| { EpollHelperError::HandleEvent(anyhow!("Failed to process TX queue: {:?}", e)) })?; // The backend may have queued up responses to the packets we sent during TX queue // processing. If that happened, we need to fetch those responses and place them // into RX buffers. if self.backend.read().unwrap().has_pending_rx() { self.process_rx().map_err(|e| { EpollHelperError::HandleEvent(anyhow!( "Failed to process RX queue: {:?}", e )) })?; } } EVT_QUEUE_EVENT => { debug!("vsock: EVT queue event"); self.queue_evts[2].read().map_err(|e| { EpollHelperError::HandleEvent(anyhow!("Failed to get EVT queue event: {:?}", e)) })?; } BACKEND_EVENT => { debug!("vsock: backend event"); self.backend.write().unwrap().notify(evset); // After the backend has been kicked, it might've freed up some resources, so we // can attempt to send it more data to process. // In particular, if `self.backend.send_pkt()` halted the TX queue processing (by // returning an error) at some point in the past, now is the time to try walking the // TX queue again. self.process_tx().map_err(|e| { EpollHelperError::HandleEvent(anyhow!("Failed to process TX queue: {:?}", e)) })?; if self.backend.read().unwrap().has_pending_rx() { self.process_rx().map_err(|e| { EpollHelperError::HandleEvent(anyhow!( "Failed to process RX queue: {:?}", e )) })?; } } _ => { return Err(EpollHelperError::HandleEvent(anyhow!( "Unknown event for virtio-vsock" ))); } } Ok(()) } } /// Virtio device exposing virtual socket to the guest. pub struct Vsock { common: VirtioCommon, id: String, cid: u64, backend: Arc>, path: PathBuf, seccomp_action: SeccompAction, exit_evt: EventFd, } #[derive(Versionize)] pub struct VsockState { pub avail_features: u64, pub acked_features: u64, } impl VersionMapped for VsockState {} impl Vsock where B: VsockBackend, { /// Create a new virtio-vsock device with the given VM CID and vsock /// backend. pub fn new( id: String, cid: u64, path: PathBuf, backend: B, iommu: bool, seccomp_action: SeccompAction, exit_evt: EventFd, ) -> io::Result> { let mut avail_features = 1u64 << VIRTIO_F_VERSION_1 | 1u64 << VIRTIO_F_IN_ORDER; if iommu { avail_features |= 1u64 << VIRTIO_F_IOMMU_PLATFORM; } Ok(Vsock { common: VirtioCommon { device_type: VirtioDeviceType::Vsock as u32, avail_features, paused_sync: Some(Arc::new(Barrier::new(2))), queue_sizes: QUEUE_SIZES.to_vec(), min_queues: NUM_QUEUES as u16, ..Default::default() }, id, cid, backend: Arc::new(RwLock::new(backend)), path, seccomp_action, exit_evt, }) } fn state(&self) -> VsockState { VsockState { avail_features: self.common.avail_features, acked_features: self.common.acked_features, } } fn set_state(&mut self, state: &VsockState) { self.common.avail_features = state.avail_features; self.common.acked_features = state.acked_features; } } impl Drop for Vsock where B: VsockBackend, { fn drop(&mut self) { if let Some(kill_evt) = self.common.kill_evt.take() { // Ignore the result because there is nothing we can do about it. let _ = kill_evt.write(1); } } } impl VirtioDevice for Vsock where B: VsockBackend + Sync + 'static, { fn device_type(&self) -> u32 { self.common.device_type } fn queue_max_sizes(&self) -> &[u16] { &self.common.queue_sizes } fn features(&self) -> u64 { self.common.avail_features } fn ack_features(&mut self, value: u64) { self.common.ack_features(value) } fn read_config(&self, offset: u64, data: &mut [u8]) { match offset { 0 if data.len() == 8 => LittleEndian::write_u64(data, self.cid), 0 if data.len() == 4 => LittleEndian::write_u32(data, (self.cid & 0xffff_ffff) as u32), 4 if data.len() == 4 => { LittleEndian::write_u32(data, ((self.cid >> 32) & 0xffff_ffff) as u32) } _ => warn!( "vsock: virtio-vsock received invalid read request of {} bytes at offset {}", data.len(), offset ), } } fn activate( &mut self, mem: GuestMemoryAtomic, interrupt_cb: Arc, queues: Vec<(usize, Queue, EventFd)>, ) -> ActivateResult { self.common.activate(&queues, &interrupt_cb)?; let (kill_evt, pause_evt) = self.common.dup_eventfds(); let mut virtqueues = Vec::new(); let mut queue_evts = Vec::new(); for (_, queue, queue_evt) in queues { virtqueues.push(queue); queue_evts.push(queue_evt); } let mut handler = VsockEpollHandler { mem, queues: virtqueues, queue_evts, kill_evt, pause_evt, interrupt_cb, backend: self.backend.clone(), access_platform: self.common.access_platform.clone(), }; let paused = self.common.paused.clone(); let paused_sync = self.common.paused_sync.clone(); let mut epoll_threads = Vec::new(); spawn_virtio_thread( &self.id, &self.seccomp_action, Thread::VirtioVsock, &mut epoll_threads, &self.exit_evt, move || handler.run(paused, paused_sync.unwrap()), )?; self.common.epoll_threads = Some(epoll_threads); event!("virtio-device", "activated", "id", &self.id); Ok(()) } fn reset(&mut self) -> Option> { let result = self.common.reset(); event!("virtio-device", "reset", "id", &self.id); result } fn shutdown(&mut self) { std::fs::remove_file(&self.path).ok(); } fn set_access_platform(&mut self, access_platform: Arc) { self.common.set_access_platform(access_platform) } } impl Pausable for Vsock where B: VsockBackend + Sync + 'static, { fn pause(&mut self) -> result::Result<(), MigratableError> { self.common.pause() } fn resume(&mut self) -> result::Result<(), MigratableError> { self.common.resume() } } impl Snapshottable for Vsock where B: VsockBackend + Sync + 'static, { fn id(&self) -> String { self.id.clone() } fn snapshot(&mut self) -> std::result::Result { Snapshot::new_from_versioned_state(&self.id, &self.state()) } fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> { self.set_state(&snapshot.to_versioned_state(&self.id)?); Ok(()) } } impl Transportable for Vsock where B: VsockBackend + Sync + 'static {} impl Migratable for Vsock where B: VsockBackend + Sync + 'static {} #[cfg(test)] mod tests { use super::super::tests::{NoopVirtioInterrupt, TestContext}; use super::super::*; use super::*; use crate::vsock::device::{BACKEND_EVENT, EVT_QUEUE_EVENT, RX_QUEUE_EVENT, TX_QUEUE_EVENT}; use crate::ActivateError; use libc::EFD_NONBLOCK; #[test] fn test_virtio_device() { let mut ctx = TestContext::new(); let avail_features = 1u64 << VIRTIO_F_VERSION_1 | 1u64 << VIRTIO_F_IN_ORDER; let device_features = avail_features; let driver_features: u64 = avail_features | 1 | (1 << 32); let device_pages = [ (device_features & 0xffff_ffff) as u32, (device_features >> 32) as u32, ]; let driver_pages = [ (driver_features & 0xffff_ffff) as u32, (driver_features >> 32) as u32, ]; assert_eq!(ctx.device.device_type(), VirtioDeviceType::Vsock as u32); assert_eq!(ctx.device.queue_max_sizes(), QUEUE_SIZES); assert_eq!(ctx.device.features() as u32, device_pages[0]); assert_eq!((ctx.device.features() >> 32) as u32, device_pages[1]); // Ack device features, page 0. ctx.device.ack_features(u64::from(driver_pages[0])); // Ack device features, page 1. ctx.device.ack_features(u64::from(driver_pages[1]) << 32); // Check that no side effect are present, and that the acked features are exactly the same // as the device features. assert_eq!( ctx.device.common.acked_features, device_features & driver_features ); // Test reading 32-bit chunks. let mut data = [0u8; 8]; ctx.device.read_config(0, &mut data[..4]); assert_eq!( u64::from(LittleEndian::read_u32(&data)), ctx.cid & 0xffff_ffff ); ctx.device.read_config(4, &mut data[4..]); assert_eq!( u64::from(LittleEndian::read_u32(&data[4..])), (ctx.cid >> 32) & 0xffff_ffff ); // Test reading 64-bit. let mut data = [0u8; 8]; ctx.device.read_config(0, &mut data); assert_eq!(LittleEndian::read_u64(&data), ctx.cid); // Check that out-of-bounds reading doesn't mutate the destination buffer. let mut data = [0u8, 1, 2, 3, 4, 5, 6, 7]; ctx.device.read_config(2, &mut data); assert_eq!(data, [0u8, 1, 2, 3, 4, 5, 6, 7]); // Just covering lines here, since the vsock device has no writable config. // A warning is, however, logged, if the guest driver attempts to write any config data. ctx.device.write_config(0, &data[..4]); let memory = GuestMemoryAtomic::new(ctx.mem.clone()); // Test a bad activation. let bad_activate = ctx.device .activate(memory.clone(), Arc::new(NoopVirtioInterrupt {}), Vec::new()); match bad_activate { Err(ActivateError::BadActivate) => (), other => panic!("{:?}", other), } // Test a correct activation. ctx.device .activate( memory, Arc::new(NoopVirtioInterrupt {}), vec![ ( 0, Queue::new(256).unwrap(), EventFd::new(EFD_NONBLOCK).unwrap(), ), ( 1, Queue::new(256).unwrap(), EventFd::new(EFD_NONBLOCK).unwrap(), ), ( 2, Queue::new(256).unwrap(), EventFd::new(EFD_NONBLOCK).unwrap(), ), ], ) .unwrap(); } #[test] fn test_irq() { // Test case: successful IRQ signaling. { let test_ctx = TestContext::new(); let ctx = test_ctx.create_epoll_handler_context(); let _queue: Queue = Queue::new(256).unwrap(); assert!(ctx.handler.signal_used_queue(0).is_ok()); } } #[test] fn test_txq_event() { // Test case: // - the driver has something to send (there's data in the TX queue); and // - the backend has no pending RX data. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(false); ctx.signal_txq_event(); // The available TX descriptor should have been used. assert_eq!(ctx.guest_txvq.used.idx.get(), 1); // The available RX descriptor should be untouched. assert_eq!(ctx.guest_rxvq.used.idx.get(), 0); } // Test case: // - the driver has something to send (there's data in the TX queue); and // - the backend also has some pending RX data. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(true); ctx.signal_txq_event(); // Both available RX and TX descriptors should have been used. assert_eq!(ctx.guest_txvq.used.idx.get(), 1); assert_eq!(ctx.guest_rxvq.used.idx.get(), 1); } // Test case: // - the driver has something to send (there's data in the TX queue); and // - the backend errors out and cannot process the TX queue. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(false); ctx.handler .backend .write() .unwrap() .set_tx_err(Some(VsockError::NoData)); ctx.signal_txq_event(); // Both RX and TX queues should be untouched. assert_eq!(ctx.guest_txvq.used.idx.get(), 0); assert_eq!(ctx.guest_rxvq.used.idx.get(), 0); } // Test case: // - the driver supplied a malformed TX buffer. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); // Invalidate the packet header descriptor, by setting its length to 0. ctx.guest_txvq.dtable[0].len.set(0); ctx.signal_txq_event(); // The available descriptor should have been consumed, but no packet should have // reached the backend. assert_eq!(ctx.guest_txvq.used.idx.get(), 1); assert_eq!(ctx.handler.backend.read().unwrap().tx_ok_cnt, 0); } // Test case: spurious TXQ_EVENT. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); let events = epoll::Events::EPOLLIN; let event = epoll::Event::new(events, TX_QUEUE_EVENT as u64); let mut epoll_helper = EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap(); assert!( ctx.handler.handle_event(&mut epoll_helper, &event).is_err(), "handle_event() should have failed" ); } } #[test] fn test_rxq_event() { // Test case: // - there is pending RX data in the backend; and // - the driver makes RX buffers available; and // - the backend successfully places its RX data into the queue. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(true); ctx.handler .backend .write() .unwrap() .set_rx_err(Some(VsockError::NoData)); ctx.signal_rxq_event(); // The available RX buffer should've been left untouched. assert_eq!(ctx.guest_rxvq.used.idx.get(), 0); } // Test case: // - there is pending RX data in the backend; and // - the driver makes RX buffers available; and // - the backend errors out, when attempting to receive data. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(true); ctx.signal_rxq_event(); // The available RX buffer should have been used. assert_eq!(ctx.guest_rxvq.used.idx.get(), 1); } // Test case: the driver provided a malformed RX descriptor chain. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); // Invalidate the packet header descriptor, by setting its length to 0. ctx.guest_rxvq.dtable[0].len.set(0); // The chain should've been processed, without employing the backend. assert!(ctx.handler.process_rx().is_ok()); assert_eq!(ctx.guest_rxvq.used.idx.get(), 1); assert_eq!(ctx.handler.backend.read().unwrap().rx_ok_cnt, 0); } // Test case: spurious RXQ_EVENT. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(false); let events = epoll::Events::EPOLLIN; let event = epoll::Event::new(events, RX_QUEUE_EVENT as u64); let mut epoll_helper = EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap(); assert!( ctx.handler.handle_event(&mut epoll_helper, &event).is_err(), "handle_event() should have failed" ); } } #[test] fn test_evq_event() { // Test case: spurious EVQ_EVENT. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(false); let events = epoll::Events::EPOLLIN; let event = epoll::Event::new(events, EVT_QUEUE_EVENT as u64); let mut epoll_helper = EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap(); assert!( ctx.handler.handle_event(&mut epoll_helper, &event).is_err(), "handle_event() should have failed" ); } } #[test] fn test_backend_event() { // Test case: // - a backend event is received; and // - the backend has pending RX data. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(true); let events = epoll::Events::EPOLLIN; let event = epoll::Event::new(events, BACKEND_EVENT as u64); let mut epoll_helper = EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap(); assert!(ctx.handler.handle_event(&mut epoll_helper, &event).is_ok()); // The backend should've received this event. assert_eq!( ctx.handler.backend.read().unwrap().evset, Some(epoll::Events::EPOLLIN) ); // TX queue processing should've been triggered. assert_eq!(ctx.guest_txvq.used.idx.get(), 1); // RX queue processing should've been triggered. assert_eq!(ctx.guest_rxvq.used.idx.get(), 1); } // Test case: // - a backend event is received; and // - the backend doesn't have any pending RX data. { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); ctx.handler.backend.write().unwrap().set_pending_rx(false); let events = epoll::Events::EPOLLIN; let event = epoll::Event::new(events, BACKEND_EVENT as u64); let mut epoll_helper = EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap(); assert!(ctx.handler.handle_event(&mut epoll_helper, &event).is_ok()); // The backend should've received this event. assert_eq!( ctx.handler.backend.read().unwrap().evset, Some(epoll::Events::EPOLLIN) ); // TX queue processing should've been triggered. assert_eq!(ctx.guest_txvq.used.idx.get(), 1); // The RX queue should've been left untouched. assert_eq!(ctx.guest_rxvq.used.idx.get(), 0); } } #[test] fn test_unknown_event() { let test_ctx = TestContext::new(); let mut ctx = test_ctx.create_epoll_handler_context(); let events = epoll::Events::EPOLLIN; let event = epoll::Event::new(events, 0xff); let mut epoll_helper = EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap(); assert!( ctx.handler.handle_event(&mut epoll_helper, &event).is_err(), "handle_event() should have failed" ); } }