// Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: Apache-2.0 #![no_main] use std::fs::File; use std::io::{Read, Write}; use std::os::unix::io::{AsRawFd, FromRawFd}; use std::sync::Arc; use libfuzzer_sys::{fuzz_target, Corpus}; use seccompiler::SeccompAction; use virtio_devices::{VirtioDevice, VirtioInterrupt, VirtioInterruptType}; use virtio_queue::{Queue, QueueT}; use vm_memory::bitmap::AtomicBitmap; use vm_memory::{Bytes, GuestAddress, GuestMemoryAtomic}; use vmm::EpollContext; use vmm_sys_util::eventfd::{EventFd, EFD_NONBLOCK}; type GuestMemoryMmap = vm_memory::GuestMemoryMmap; macro_rules! align { ($n:expr, $align:expr) => {{ $n.div_ceil($align) * $align }}; } const TAP_INPUT_SIZE: usize = 128; const QUEUE_DATA_SIZE: usize = 4; const MEM_SIZE: usize = 32 * 1024 * 1024; // Guest memory gap const GUEST_MEM_GAP: u64 = 1 * 1024 * 1024; // Guest physical address for the first virt queue const BASE_VIRT_QUEUE_ADDR: u64 = MEM_SIZE as u64 + GUEST_MEM_GAP; // Number of queues const QUEUE_NUM: usize = 2; // Max entries in the queue. const QUEUE_SIZE: u16 = 256; // Descriptor table alignment const DESC_TABLE_ALIGN_SIZE: u64 = 16; // Used ring alignment const USED_RING_ALIGN_SIZE: u64 = 4; // Descriptor table size const DESC_TABLE_SIZE: u64 = 16_u64 * QUEUE_SIZE as u64; // Available ring size const AVAIL_RING_SIZE: u64 = 6_u64 + 2 * QUEUE_SIZE as u64; // Padding size before used ring const PADDING_SIZE: u64 = align!(AVAIL_RING_SIZE, USED_RING_ALIGN_SIZE) - AVAIL_RING_SIZE; // Used ring size const USED_RING_SIZE: u64 = 6_u64 + 8 * QUEUE_SIZE as u64; // Virtio-queue size in bytes const QUEUE_BYTES_SIZE: usize = align!( DESC_TABLE_SIZE + AVAIL_RING_SIZE + PADDING_SIZE + USED_RING_SIZE, DESC_TABLE_ALIGN_SIZE ) as usize; fuzz_target!(|bytes: &[u8]| -> Corpus { if bytes.len() < TAP_INPUT_SIZE + (QUEUE_DATA_SIZE + QUEUE_BYTES_SIZE) * QUEUE_NUM || bytes.len() > TAP_INPUT_SIZE + (QUEUE_DATA_SIZE + QUEUE_BYTES_SIZE) * QUEUE_NUM + MEM_SIZE { return Corpus::Reject; } let (dummy_tap_frontend, dummy_tap_backend) = create_socketpair().unwrap(); let if_name = "fuzzer_tap_name".as_bytes().to_vec(); let tap = net_util::Tap::new_for_fuzzing(dummy_tap_frontend, if_name); let mut net = virtio_devices::Net::new_with_tap( "fuzzer_net".to_owned(), vec![tap], None, // guest_mac false, // iommu QUEUE_NUM, QUEUE_SIZE, SeccompAction::Allow, None, EventFd::new(EFD_NONBLOCK).unwrap(), None, true, true, true, ) .unwrap(); let tap_input_bytes = &bytes[..TAP_INPUT_SIZE]; let queue_data = &bytes[TAP_INPUT_SIZE..TAP_INPUT_SIZE + QUEUE_DATA_SIZE * QUEUE_NUM]; let queue_bytes = &bytes[TAP_INPUT_SIZE + QUEUE_DATA_SIZE * QUEUE_NUM ..TAP_INPUT_SIZE + (QUEUE_DATA_SIZE + QUEUE_BYTES_SIZE) * QUEUE_NUM]; let mem_bytes = &bytes[TAP_INPUT_SIZE + (QUEUE_DATA_SIZE + QUEUE_BYTES_SIZE) * QUEUE_NUM..]; // Setup the virt queues with the input bytes let mut queues = setup_virt_queues( &[ &queue_data[..QUEUE_DATA_SIZE].try_into().unwrap(), &queue_data[QUEUE_DATA_SIZE..QUEUE_DATA_SIZE * 2] .try_into() .unwrap(), ], BASE_VIRT_QUEUE_ADDR, ); // Setup the guest memory with the input bytes let mem = GuestMemoryMmap::from_ranges(&[ (GuestAddress(0), MEM_SIZE), (GuestAddress(BASE_VIRT_QUEUE_ADDR), queue_bytes.len()), ]) .unwrap(); if mem .write_slice(queue_bytes, GuestAddress(BASE_VIRT_QUEUE_ADDR)) .is_err() { return Corpus::Reject; } if mem.write_slice(mem_bytes, GuestAddress(0 as u64)).is_err() { return Corpus::Reject; } let guest_memory = GuestMemoryAtomic::new(mem); let input_queue = queues.remove(0); let input_evt = EventFd::new(0).unwrap(); let input_queue_evt = unsafe { EventFd::from_raw_fd(libc::dup(input_evt.as_raw_fd())) }; let output_queue = queues.remove(0); let output_evt = EventFd::new(0).unwrap(); let output_queue_evt = unsafe { EventFd::from_raw_fd(libc::dup(output_evt.as_raw_fd())) }; // Start the thread of dummy tap backend to handle the rx and tx from the virtio-net let exit_evt = EventFd::new(libc::EFD_NONBLOCK).unwrap(); let tap_backend_thread = { let dummy_tap_backend = dummy_tap_backend.try_clone().unwrap(); let tap_input_bytes: [u8; TAP_INPUT_SIZE] = tap_input_bytes[..].try_into().unwrap(); let exit_evt = exit_evt.try_clone().unwrap(); std::thread::Builder::new() .name("dummy_tap_backend".to_string()) .spawn(move || { tap_backend_stub(dummy_tap_backend, &tap_input_bytes, exit_evt); }) .unwrap() }; // Kick the 'queue' events and endpoint event before activate the net device input_queue_evt.write(1).unwrap(); output_queue_evt.write(1).unwrap(); net.activate( guest_memory, Arc::new(NoopVirtioInterrupt {}), vec![(0, input_queue, input_evt), (1, output_queue, output_evt)], ) .unwrap(); // Wait for the events to finish and net device worker thread to return net.wait_for_epoll_threads(); // Terminate the thread for the dummy tap backend exit_evt.write(1).ok(); tap_backend_thread.join().unwrap(); return Corpus::Keep; }); pub struct NoopVirtioInterrupt {} impl VirtioInterrupt for NoopVirtioInterrupt { fn trigger(&self, _int_type: VirtioInterruptType) -> std::result::Result<(), std::io::Error> { Ok(()) } } fn setup_virt_queues(bytes: &[&[u8; QUEUE_DATA_SIZE]], base_addr: u64) -> Vec { let mut queues = Vec::new(); for (i, b) in bytes.iter().enumerate() { let mut q = Queue::new(QUEUE_SIZE).unwrap(); let desc_table_addr = base_addr + (QUEUE_BYTES_SIZE * i) as u64; let avail_ring_addr = desc_table_addr + DESC_TABLE_SIZE; let used_ring_addr = avail_ring_addr + PADDING_SIZE + AVAIL_RING_SIZE; q.try_set_desc_table_address(GuestAddress(desc_table_addr)) .unwrap(); q.try_set_avail_ring_address(GuestAddress(avail_ring_addr)) .unwrap(); q.try_set_used_ring_address(GuestAddress(used_ring_addr)) .unwrap(); q.set_next_avail(b[0] as u16); // 'u8' is enough given the 'QUEUE_SIZE' is small q.set_next_used(b[1] as u16); q.set_event_idx(b[2] % 2 != 0); q.set_size(b[3] as u16 % QUEUE_SIZE); q.set_ready(true); queues.push(q); } queues } fn create_socketpair() -> Result<(File, File), std::io::Error> { let mut fds = [-1, -1]; unsafe { let ret = libc::socketpair( libc::AF_UNIX, libc::SOCK_STREAM | libc::SOCK_NONBLOCK, 0, fds.as_mut_ptr(), ); if ret == -1 { return Err(std::io::Error::last_os_error()); } } let socket1 = unsafe { File::from_raw_fd(fds[0]) }; let socket2 = unsafe { File::from_raw_fd(fds[1]) }; Ok((socket1, socket2)) } enum EpollEvent { Exit = 0, Rx = 1, Tx = 2, Unknown, } impl From for EpollEvent { fn from(v: u64) -> Self { use EpollEvent::*; match v { 0 => Exit, 1 => Rx, 2 => Tx, _ => Unknown, } } } // Handle the rx and tx requests from the virtio-net device fn tap_backend_stub( mut dummy_tap: File, tap_input_bytes: &[u8; TAP_INPUT_SIZE], exit_evt: EventFd, ) { let mut epoll = EpollContext::new().unwrap(); epoll .add_event_custom(&exit_evt, EpollEvent::Exit as u64, epoll::Events::EPOLLIN) .unwrap(); let dummy_tap_write = dummy_tap.try_clone().unwrap(); epoll .add_event_custom( &dummy_tap_write, EpollEvent::Rx as u64, epoll::Events::EPOLLOUT, ) .unwrap(); epoll .add_event_custom(&dummy_tap, EpollEvent::Tx as u64, epoll::Events::EPOLLIN) .unwrap(); let epoll_fd = epoll.as_raw_fd(); let mut events = vec![epoll::Event::new(epoll::Events::empty(), 0); 3]; loop { let num_events = match epoll::wait(epoll_fd, -1, &mut events[..]) { Ok(num_events) => num_events, Err(e) => match e.raw_os_error() { Some(libc::EAGAIN) | Some(libc::EINTR) => continue, _ => panic!("Unexpected epoll::wait error!"), }, }; for event in events.iter().take(num_events) { let dispatch_event: EpollEvent = event.data.into(); match dispatch_event { EpollEvent::Exit => { return; } EpollEvent::Rx => { dummy_tap.write_all(tap_input_bytes).unwrap(); break; } EpollEvent::Tx => { let mut buffer = Vec::new(); dummy_tap.read_to_end(&mut buffer).ok(); break; } _ => { panic!("Unexpected Epoll event"); } } } } }