// Copyright © 2020, Oracle and/or its affiliates. // // Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. // // Portions Copyright 2017 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE-BSD-3-Clause file. // // Copyright © 2019 Intel Corporation // // SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause // #[cfg(target_arch = "x86_64")] use crate::config::CpuTopology; use crate::config::CpusConfig; use crate::device_manager::DeviceManager; use crate::memory_manager::MemoryManager; use crate::seccomp_filters::{get_seccomp_filter, Thread}; #[cfg(target_arch = "x86_64")] use crate::vm::physical_bits; #[cfg(feature = "acpi")] use crate::vm::NumaNodes; use crate::GuestMemoryMmap; use crate::CPU_MANAGER_SNAPSHOT_ID; #[cfg(feature = "acpi")] use acpi_tables::{aml, aml::Aml, sdt::Sdt}; use anyhow::anyhow; #[cfg(target_arch = "x86_64")] use arch::x86_64::SgxEpcSection; #[cfg(target_arch = "x86_64")] use arch::CpuidPatch; use arch::EntryPoint; use devices::interrupt_controller::InterruptController; #[cfg(target_arch = "aarch64")] use hypervisor::kvm::kvm_bindings; use hypervisor::{vm::VmmOps, CpuState, HypervisorCpuError, VmExit}; #[cfg(target_arch = "x86_64")] use hypervisor::{CpuId, CpuIdEntry}; use libc::{c_void, siginfo_t}; use seccomp::{SeccompAction, SeccompFilter}; #[cfg(feature = "acpi")] use std::collections::BTreeMap; use std::os::unix::thread::JoinHandleExt; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::{Arc, Barrier, Mutex}; use std::{cmp, io, result, thread}; use vm_device::BusDevice; #[cfg(feature = "acpi")] use vm_memory::GuestAddress; use vm_memory::GuestMemoryAtomic; use vm_migration::{ Migratable, MigratableError, Pausable, Snapshot, SnapshotDataSection, Snapshottable, Transportable, }; use vmm_sys_util::eventfd::EventFd; use vmm_sys_util::signal::{register_signal_handler, SIGRTMIN}; // CPUID feature bits #[cfg(target_arch = "x86_64")] const TSC_DEADLINE_TIMER_ECX_BIT: u8 = 24; // tsc deadline timer ecx bit. #[cfg(target_arch = "x86_64")] const HYPERVISOR_ECX_BIT: u8 = 31; // Hypervisor ecx bit. #[cfg(target_arch = "x86_64")] const MTRR_EDX_BIT: u8 = 12; // Hypervisor ecx bit. // KVM feature bits #[cfg(target_arch = "x86_64")] const KVM_FEATURE_ASYNC_PF_INT_BIT: u8 = 14; #[cfg(feature = "tdx")] const KVM_FEATURE_CLOCKSOURCE_BIT: u8 = 0; #[cfg(feature = "tdx")] const KVM_FEATURE_CLOCKSOURCE2_BIT: u8 = 3; #[cfg(feature = "tdx")] const KVM_FEATURE_CLOCKSOURCE_STABLE_BIT: u8 = 24; #[cfg(feature = "tdx")] const KVM_FEATURE_ASYNC_PF_BIT: u8 = 4; #[cfg(feature = "tdx")] const KVM_FEATURE_ASYNC_PF_VMEXIT_BIT: u8 = 10; #[cfg(feature = "tdx")] const KVM_FEATURE_STEAL_TIME_BIT: u8 = 5; #[cfg(feature = "acpi")] pub const CPU_MANAGER_ACPI_SIZE: usize = 0xc; #[derive(Debug)] pub enum Error { /// Cannot create the vCPU. VcpuCreate(anyhow::Error), /// Cannot run the VCPUs. VcpuRun(anyhow::Error), /// Cannot spawn a new vCPU thread. VcpuSpawn(io::Error), /// Cannot patch the CPU ID PatchCpuId(anyhow::Error), /// Error configuring VCPU VcpuConfiguration(arch::Error), #[cfg(target_arch = "aarch64")] /// Error fetching prefered target VcpuArmPreferredTarget(hypervisor::HypervisorVmError), #[cfg(target_arch = "aarch64")] /// Error doing vCPU init on Arm. VcpuArmInit(hypervisor::HypervisorCpuError), /// Failed to join on vCPU threads ThreadCleanup(std::boxed::Box), /// Cannot add legacy device to Bus. BusError(vm_device::BusError), /// Asking for more vCPUs that we can have DesiredVCpuCountExceedsMax, /// Cannot create seccomp filter CreateSeccompFilter(seccomp::SeccompError), /// Cannot apply seccomp filter ApplySeccompFilter(seccomp::Error), /// Error starting vCPU after restore StartRestoreVcpu(anyhow::Error), /// Error because an unexpected VmExit type was received. UnexpectedVmExit, /// Failed to allocate MMIO address AllocateMmmioAddress, /// Error populating CPUID with KVM HyperV emulation details #[cfg(target_arch = "x86_64")] CpuidKvmHyperV(vmm_sys_util::fam::Error), /// Error populating CPUID with KVM HyperV emulation details #[cfg(target_arch = "x86_64")] CpuidSgx(arch::x86_64::Error), /// Error populating CPUID with CPU identification #[cfg(target_arch = "x86_64")] CpuidIdentification(vmm_sys_util::fam::Error), #[cfg(feature = "tdx")] InitializeTdx(hypervisor::HypervisorCpuError), } pub type Result = result::Result; #[cfg(all(target_arch = "x86_64", feature = "acpi"))] #[allow(dead_code)] #[repr(packed)] struct LocalApic { pub r#type: u8, pub length: u8, pub processor_id: u8, pub apic_id: u8, pub flags: u32, } #[allow(dead_code)] #[repr(packed)] #[derive(Default)] struct Ioapic { pub r#type: u8, pub length: u8, pub ioapic_id: u8, _reserved: u8, pub apic_address: u32, pub gsi_base: u32, } #[cfg(all(target_arch = "aarch64", feature = "acpi"))] #[repr(packed)] struct GicC { pub r#type: u8, pub length: u8, pub reserved0: u16, pub cpu_interface_number: u32, pub uid: u32, pub flags: u32, pub parking_version: u32, pub performance_interrupt: u32, pub parked_address: u64, pub base_address: u64, pub gicv_base_address: u64, pub gich_base_address: u64, pub vgic_interrupt: u32, pub gicr_base_address: u64, pub mpidr: u64, pub proc_power_effi_class: u8, pub reserved1: u8, pub spe_overflow_interrupt: u16, } #[cfg(all(target_arch = "aarch64", feature = "acpi"))] #[repr(packed)] struct GicD { pub r#type: u8, pub length: u8, pub reserved0: u16, pub gic_id: u32, pub base_address: u64, pub global_irq_base: u32, pub version: u8, pub reserved1: [u8; 3], } #[cfg(all(target_arch = "aarch64", feature = "acpi"))] #[repr(packed)] struct GicR { pub r#type: u8, pub length: u8, pub reserved: u16, pub base_address: u64, pub range_length: u32, } #[cfg(all(target_arch = "aarch64", feature = "acpi"))] #[repr(packed)] struct GicIts { pub r#type: u8, pub length: u8, pub reserved0: u16, pub translation_id: u32, pub base_address: u64, pub reserved1: u32, } #[allow(dead_code)] #[repr(packed)] #[derive(Default)] struct InterruptSourceOverride { pub r#type: u8, pub length: u8, pub bus: u8, pub source: u8, pub gsi: u32, pub flags: u16, } /// A wrapper around creating and using a kvm-based VCPU. pub struct Vcpu { // The hypervisor abstracted CPU. vcpu: Arc, id: u8, #[cfg(target_arch = "aarch64")] mpidr: u64, saved_state: Option, } impl Vcpu { /// Constructs a new VCPU for `vm`. /// /// # Arguments /// /// * `id` - Represents the CPU number between [0, max vcpus). /// * `vm` - The virtual machine this vcpu will get attached to. /// * `vmmops` - Optional object for exit handling. pub fn new( id: u8, vm: &Arc, vmmops: Option>>, ) -> Result>> { let vcpu = vm .create_vcpu(id, vmmops) .map_err(|e| Error::VcpuCreate(e.into()))?; // Initially the cpuid per vCPU is the one supported by this VM. Ok(Arc::new(Mutex::new(Vcpu { vcpu, id, #[cfg(target_arch = "aarch64")] mpidr: 0, saved_state: None, }))) } /// Configures a vcpu and should be called once per vcpu when created. /// /// # Arguments /// /// * `kernel_entry_point` - Kernel entry point address in guest memory and boot protocol used. /// * `vm_memory` - Guest memory. /// * `cpuid` - (x86_64) CpuId, wrapper over the `kvm_cpuid2` structure. pub fn configure( &mut self, #[cfg(target_arch = "aarch64")] vm: &Arc, kernel_entry_point: Option, vm_memory: &GuestMemoryAtomic, #[cfg(target_arch = "x86_64")] cpuid: CpuId, #[cfg(target_arch = "x86_64")] kvm_hyperv: bool, ) -> Result<()> { #[cfg(target_arch = "aarch64")] { self.init(vm)?; self.mpidr = arch::configure_vcpu(&self.vcpu, self.id, kernel_entry_point, vm_memory) .map_err(Error::VcpuConfiguration)?; } info!("Configuring vCPU: cpu_id = {}", self.id); #[cfg(target_arch = "x86_64")] arch::configure_vcpu( &self.vcpu, self.id, kernel_entry_point, vm_memory, cpuid, kvm_hyperv, ) .map_err(Error::VcpuConfiguration)?; Ok(()) } /// Gets the MPIDR register value. #[cfg(target_arch = "aarch64")] pub fn get_mpidr(&self) -> u64 { self.mpidr } /// Gets the saved vCPU state. #[cfg(target_arch = "aarch64")] pub fn get_saved_state(&self) -> Option { self.saved_state.clone() } /// Initializes an aarch64 specific vcpu for booting Linux. #[cfg(target_arch = "aarch64")] pub fn init(&self, vm: &Arc) -> Result<()> { let mut kvi: kvm_bindings::kvm_vcpu_init = kvm_bindings::kvm_vcpu_init::default(); // This reads back the kernel's preferred target type. vm.get_preferred_target(&mut kvi) .map_err(Error::VcpuArmPreferredTarget)?; // We already checked that the capability is supported. kvi.features[0] |= 1 << kvm_bindings::KVM_ARM_VCPU_PSCI_0_2; // Non-boot cpus are powered off initially. if self.id > 0 { kvi.features[0] |= 1 << kvm_bindings::KVM_ARM_VCPU_POWER_OFF; } self.vcpu.vcpu_init(&kvi).map_err(Error::VcpuArmInit) } /// Runs the VCPU until it exits, returning the reason. /// /// Note that the state of the VCPU and associated VM must be setup first for this to do /// anything useful. pub fn run(&self) -> std::result::Result { self.vcpu.run() } } const VCPU_SNAPSHOT_ID: &str = "vcpu"; impl Pausable for Vcpu { fn pause(&mut self) -> std::result::Result<(), MigratableError> { self.saved_state = Some(self.vcpu.state().map_err(|e| { MigratableError::Pause(anyhow!("Could not get vCPU state {:?}", e)) })?); Ok(()) } fn resume(&mut self) -> std::result::Result<(), MigratableError> { if let Some(vcpu_state) = &self.saved_state { self.vcpu.set_state(vcpu_state).map_err(|e| { MigratableError::Pause(anyhow!("Could not set the vCPU state {:?}", e)) })?; } Ok(()) } } impl Snapshottable for Vcpu { fn id(&self) -> String { VCPU_SNAPSHOT_ID.to_string() } fn snapshot(&mut self) -> std::result::Result { let mut vcpu_snapshot = Snapshot::new(&format!("{}", self.id)); vcpu_snapshot.add_data_section(SnapshotDataSection::new_from_state( VCPU_SNAPSHOT_ID, &self.saved_state, )?); Ok(vcpu_snapshot) } fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> { self.saved_state = Some(snapshot.to_state(VCPU_SNAPSHOT_ID)?); Ok(()) } } pub struct CpuManager { config: CpusConfig, #[cfg_attr(target_arch = "aarch64", allow(dead_code))] interrupt_controller: Option>>, #[cfg_attr(target_arch = "aarch64", allow(dead_code))] vm_memory: GuestMemoryAtomic, #[cfg(target_arch = "x86_64")] cpuid: CpuId, #[cfg_attr(target_arch = "aarch64", allow(dead_code))] vm: Arc, vcpus_kill_signalled: Arc, vcpus_pause_signalled: Arc, exit_evt: EventFd, #[cfg_attr(target_arch = "aarch64", allow(dead_code))] reset_evt: EventFd, vcpu_states: Vec, selected_cpu: u8, vcpus: Vec>>, seccomp_action: SeccompAction, vmmops: Arc>, #[cfg(feature = "acpi")] #[cfg_attr(target_arch = "aarch64", allow(dead_code))] acpi_address: GuestAddress, #[cfg(feature = "acpi")] proximity_domain_per_cpu: BTreeMap, } const CPU_ENABLE_FLAG: usize = 0; const CPU_INSERTING_FLAG: usize = 1; const CPU_REMOVING_FLAG: usize = 2; const CPU_EJECT_FLAG: usize = 3; const CPU_STATUS_OFFSET: u64 = 4; const CPU_SELECTION_OFFSET: u64 = 0; impl BusDevice for CpuManager { fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) { // The Linux kernel, quite reasonably, doesn't zero the memory it gives us. data.copy_from_slice(&[0; 8][0..data.len()]); match offset { CPU_SELECTION_OFFSET => { data[0] = self.selected_cpu; } CPU_STATUS_OFFSET => { if self.selected_cpu < self.present_vcpus() { let state = &self.vcpu_states[usize::from(self.selected_cpu)]; if state.active() { data[0] |= 1 << CPU_ENABLE_FLAG; } if state.inserting { data[0] |= 1 << CPU_INSERTING_FLAG; } if state.removing { data[0] |= 1 << CPU_REMOVING_FLAG; } } } _ => { warn!( "Unexpected offset for accessing CPU manager device: {:#}", offset ); } } } fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option> { match offset { CPU_SELECTION_OFFSET => { self.selected_cpu = data[0]; } CPU_STATUS_OFFSET => { let state = &mut self.vcpu_states[usize::from(self.selected_cpu)]; // The ACPI code writes back a 1 to acknowledge the insertion if (data[0] & (1 << CPU_INSERTING_FLAG) == 1 << CPU_INSERTING_FLAG) && state.inserting { state.inserting = false; } // Ditto for removal if (data[0] & (1 << CPU_REMOVING_FLAG) == 1 << CPU_REMOVING_FLAG) && state.removing { state.removing = false; } // Trigger removal of vCPU if data[0] & (1 << CPU_EJECT_FLAG) == 1 << CPU_EJECT_FLAG { if let Err(e) = self.remove_vcpu(self.selected_cpu) { error!("Error removing vCPU: {:?}", e); } } } _ => { warn!( "Unexpected offset for accessing CPU manager device: {:#}", offset ); } } None } } #[derive(Default)] struct VcpuState { inserting: bool, removing: bool, handle: Option>, kill: Arc, vcpu_run_interrupted: Arc, } impl VcpuState { fn active(&self) -> bool { self.handle.is_some() } fn signal_thread(&self) { if let Some(handle) = self.handle.as_ref() { loop { unsafe { libc::pthread_kill(handle.as_pthread_t() as _, SIGRTMIN()); } if self.vcpu_run_interrupted.load(Ordering::SeqCst) { break; } else { // This is more effective than thread::yield_now() at // avoiding a priority inversion with the vCPU thread thread::sleep(std::time::Duration::from_millis(1)); } } } } fn join_thread(&mut self) -> Result<()> { if let Some(handle) = self.handle.take() { handle.join().map_err(Error::ThreadCleanup)? } Ok(()) } fn unpark_thread(&self) { if let Some(handle) = self.handle.as_ref() { handle.thread().unpark() } } } impl CpuManager { #[allow(unused_variables)] #[allow(clippy::too_many_arguments)] pub fn new( config: &CpusConfig, device_manager: &Arc>, memory_manager: &Arc>, vm: Arc, exit_evt: EventFd, reset_evt: EventFd, hypervisor: Arc, seccomp_action: SeccompAction, vmmops: Arc>, #[cfg(feature = "tdx")] tdx_enabled: bool, #[cfg(feature = "acpi")] numa_nodes: &NumaNodes, ) -> Result>> { let guest_memory = memory_manager.lock().unwrap().guest_memory(); let mut vcpu_states = Vec::with_capacity(usize::from(config.max_vcpus)); vcpu_states.resize_with(usize::from(config.max_vcpus), VcpuState::default); #[cfg(target_arch = "x86_64")] let sgx_epc_sections = memory_manager .lock() .unwrap() .sgx_epc_region() .as_ref() .map(|sgx_epc_region| sgx_epc_region.epc_sections().clone()); #[cfg(target_arch = "x86_64")] let cpuid = { let phys_bits = physical_bits(config.max_phys_bits); CpuManager::generate_common_cpuid( hypervisor, &config.topology, sgx_epc_sections, phys_bits, config.kvm_hyperv, #[cfg(feature = "tdx")] tdx_enabled, )? }; let device_manager = device_manager.lock().unwrap(); #[cfg(feature = "acpi")] let acpi_address = device_manager .allocator() .lock() .unwrap() .allocate_mmio_addresses(None, CPU_MANAGER_ACPI_SIZE as u64, None) .ok_or(Error::AllocateMmmioAddress)?; #[cfg(feature = "acpi")] let proximity_domain_per_cpu: BTreeMap = { let mut cpu_list = Vec::new(); for (proximity_domain, numa_node) in numa_nodes.iter() { for cpu in numa_node.cpus().iter() { cpu_list.push((*cpu, *proximity_domain)) } } cpu_list } .into_iter() .collect(); let cpu_manager = Arc::new(Mutex::new(CpuManager { config: config.clone(), interrupt_controller: device_manager.interrupt_controller().clone(), vm_memory: guest_memory, #[cfg(target_arch = "x86_64")] cpuid, vm, vcpus_kill_signalled: Arc::new(AtomicBool::new(false)), vcpus_pause_signalled: Arc::new(AtomicBool::new(false)), vcpu_states, exit_evt, reset_evt, selected_cpu: 0, vcpus: Vec::with_capacity(usize::from(config.max_vcpus)), seccomp_action, vmmops, #[cfg(feature = "acpi")] acpi_address, #[cfg(feature = "acpi")] proximity_domain_per_cpu, })); #[cfg(feature = "acpi")] device_manager .mmio_bus() .insert( cpu_manager.clone(), acpi_address.0, CPU_MANAGER_ACPI_SIZE as u64, ) .map_err(Error::BusError)?; Ok(cpu_manager) } #[cfg(target_arch = "x86_64")] fn generate_common_cpuid( hypervisor: Arc, topology: &Option, sgx_epc_sections: Option>, phys_bits: u8, kvm_hyperv: bool, #[cfg(feature = "tdx")] tdx_enabled: bool, ) -> Result { let cpuid_patches = vec![ // Patch tsc deadline timer bit CpuidPatch { function: 1, index: 0, flags_bit: None, eax_bit: None, ebx_bit: None, ecx_bit: Some(TSC_DEADLINE_TIMER_ECX_BIT), edx_bit: None, }, // Patch hypervisor bit CpuidPatch { function: 1, index: 0, flags_bit: None, eax_bit: None, ebx_bit: None, ecx_bit: Some(HYPERVISOR_ECX_BIT), edx_bit: None, }, // Enable MTRR feature CpuidPatch { function: 1, index: 0, flags_bit: None, eax_bit: None, ebx_bit: None, ecx_bit: None, edx_bit: Some(MTRR_EDX_BIT), }, ]; // Supported CPUID let mut cpuid = hypervisor .get_cpuid() .map_err(|e| Error::PatchCpuId(e.into()))?; CpuidPatch::patch_cpuid(&mut cpuid, cpuid_patches); if let Some(t) = topology { arch::x86_64::update_cpuid_topology( &mut cpuid, t.threads_per_core, t.cores_per_die, t.dies_per_package, ); } if let Some(sgx_epc_sections) = sgx_epc_sections { arch::x86_64::update_cpuid_sgx(&mut cpuid, sgx_epc_sections) .map_err(Error::CpuidSgx)?; } // Update some existing CPUID for entry in cpuid.as_mut_slice().iter_mut() { match entry.function { // Set CPU physical bits 0x8000_0008 => { entry.eax = (entry.eax & 0xffff_ff00) | (phys_bits as u32 & 0xff); } // Disable KVM_FEATURE_ASYNC_PF_INT // This is required until we find out why the asynchronous page // fault is generating unexpected behavior when using interrupt // mechanism. // TODO: Re-enable KVM_FEATURE_ASYNC_PF_INT (#2277) 0x4000_0001 => { entry.eax &= !(1 << KVM_FEATURE_ASYNC_PF_INT_BIT); // These features are not supported by TDX #[cfg(feature = "tdx")] if tdx_enabled { entry.eax &= !(1 << KVM_FEATURE_CLOCKSOURCE_BIT | 1 << KVM_FEATURE_CLOCKSOURCE2_BIT | 1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT | 1 << KVM_FEATURE_ASYNC_PF_BIT | 1 << KVM_FEATURE_ASYNC_PF_VMEXIT_BIT | 1 << KVM_FEATURE_STEAL_TIME_BIT) } } _ => {} } } // Copy CPU identification string for i in 0x8000_0002..=0x8000_0004 { cpuid.retain(|c| c.function != i); let leaf = unsafe { std::arch::x86_64::__cpuid(i) }; cpuid .push(CpuIdEntry { function: i, eax: leaf.eax, ebx: leaf.ebx, ecx: leaf.ecx, edx: leaf.edx, ..Default::default() }) .map_err(Error::CpuidIdentification)?; } if kvm_hyperv { // Remove conflicting entries cpuid.retain(|c| c.function != 0x4000_0000); cpuid.retain(|c| c.function != 0x4000_0001); // See "Hypervisor Top Level Functional Specification" for details // Compliance with "Hv#1" requires leaves up to 0x4000_000a cpuid .push(CpuIdEntry { function: 0x40000000, eax: 0x4000000a, // Maximum cpuid leaf ebx: 0x756e694c, // "Linu" ecx: 0x564b2078, // "x KV" edx: 0x7648204d, // "M Hv" ..Default::default() }) .map_err(Error::CpuidKvmHyperV)?; cpuid .push(CpuIdEntry { function: 0x40000001, eax: 0x31237648, // "Hv#1" ..Default::default() }) .map_err(Error::CpuidKvmHyperV)?; cpuid .push(CpuIdEntry { function: 0x40000002, eax: 0x3839, // "Build number" ebx: 0xa0000, // "Version" ..Default::default() }) .map_err(Error::CpuidKvmHyperV)?; cpuid .push(CpuIdEntry { function: 0x4000_0003, eax: 1 << 1 // AccessPartitionReferenceCounter | 1 << 2 // AccessSynicRegs | 1 << 3 // AccessSyntheticTimerRegs | 1 << 9, // AccessPartitionReferenceTsc edx: 1 << 3, // CPU dynamic partitioning ..Default::default() }) .map_err(Error::CpuidKvmHyperV)?; cpuid .push(CpuIdEntry { function: 0x4000_0004, eax: 1 << 5, // Recommend relaxed timing ..Default::default() }) .map_err(Error::CpuidKvmHyperV)?; for i in 0x4000_0005..=0x4000_000a { cpuid .push(CpuIdEntry { function: i, ..Default::default() }) .map_err(Error::CpuidKvmHyperV)?; } } Ok(cpuid) } fn create_vcpu( &mut self, cpu_id: u8, entry_point: Option, snapshot: Option, ) -> Result>> { info!("Creating vCPU: cpu_id = {}", cpu_id); let vcpu = Vcpu::new(cpu_id, &self.vm, Some(self.vmmops.clone()))?; if let Some(snapshot) = snapshot { // AArch64 vCPUs should be initialized after created. #[cfg(target_arch = "aarch64")] vcpu.lock().unwrap().init(&self.vm)?; vcpu.lock() .unwrap() .restore(snapshot) .expect("Failed to restore vCPU"); } else { let vm_memory = self.vm_memory.clone(); #[cfg(target_arch = "x86_64")] vcpu.lock() .unwrap() .configure( entry_point, &vm_memory, self.cpuid.clone(), self.config.kvm_hyperv, ) .expect("Failed to configure vCPU"); #[cfg(target_arch = "aarch64")] vcpu.lock() .unwrap() .configure(&self.vm, entry_point, &vm_memory) .expect("Failed to configure vCPU"); } // Adding vCPU to the CpuManager's vCPU list. self.vcpus.push(Arc::clone(&vcpu)); Ok(vcpu) } /// Only create new vCPUs if there aren't any inactive ones to reuse fn create_vcpus(&mut self, desired_vcpus: u8, entry_point: Option) -> Result<()> { info!( "Request to create new vCPUs: desired = {}, max = {}, allocated = {}, present = {}", desired_vcpus, self.config.max_vcpus, self.vcpus.len(), self.present_vcpus() ); if desired_vcpus > self.config.max_vcpus { return Err(Error::DesiredVCpuCountExceedsMax); } // Only create vCPUs in excess of all the allocated vCPUs. for cpu_id in self.vcpus.len() as u8..desired_vcpus { self.create_vcpu(cpu_id, entry_point, None)?; } Ok(()) } fn start_vcpu( &mut self, vcpu: Arc>, vcpu_thread_barrier: Arc, inserting: bool, ) -> Result<()> { let cpu_id = vcpu.lock().unwrap().id; let reset_evt = self.reset_evt.try_clone().unwrap(); let exit_evt = self.exit_evt.try_clone().unwrap(); let vcpu_kill_signalled = self.vcpus_kill_signalled.clone(); let vcpu_pause_signalled = self.vcpus_pause_signalled.clone(); let vcpu_kill = self.vcpu_states[usize::from(cpu_id)].kill.clone(); let vcpu_run_interrupted = self.vcpu_states[usize::from(cpu_id)] .vcpu_run_interrupted .clone(); info!("Starting vCPU: cpu_id = {}", cpu_id); // Retrieve seccomp filter for vcpu thread let vcpu_seccomp_filter = get_seccomp_filter(&self.seccomp_action, Thread::Vcpu) .map_err(Error::CreateSeccompFilter)?; #[cfg(target_arch = "x86_64")] let interrupt_controller_clone = self.interrupt_controller.as_ref().cloned(); let handle = Some( thread::Builder::new() .name(format!("vcpu{}", cpu_id)) .spawn(move || { // Apply seccomp filter for vcpu thread. if let Err(e) = SeccompFilter::apply(vcpu_seccomp_filter).map_err(Error::ApplySeccompFilter) { error!("Error applying seccomp filter: {:?}", e); return; } extern "C" fn handle_signal(_: i32, _: *mut siginfo_t, _: *mut c_void) {} // This uses an async signal safe handler to kill the vcpu handles. register_signal_handler(SIGRTMIN(), handle_signal) .expect("Failed to register vcpu signal handler"); // Block until all CPUs are ready. vcpu_thread_barrier.wait(); loop { // If we are being told to pause, we park the thread // until the pause boolean is toggled. // The resume operation is responsible for toggling // the boolean and unpark the thread. // We enter a loop because park() could spuriously // return. We will then park() again unless the // pause boolean has been toggled. // Need to use Ordering::SeqCst as we have multiple // loads and stores to different atomics and we need // to see them in a consistent order in all threads if vcpu_pause_signalled.load(Ordering::SeqCst) { vcpu_run_interrupted.store(true, Ordering::SeqCst); while vcpu_pause_signalled.load(Ordering::SeqCst) { thread::park(); } vcpu_run_interrupted.store(false, Ordering::SeqCst); } // We've been told to terminate if vcpu_kill_signalled.load(Ordering::SeqCst) || vcpu_kill.load(Ordering::SeqCst) { vcpu_run_interrupted.store(true, Ordering::SeqCst); break; } // vcpu.run() returns false on a triple-fault so trigger a reset match vcpu.lock().unwrap().run() { Ok(run) => match run { #[cfg(target_arch = "x86_64")] VmExit::IoapicEoi(vector) => { if let Some(interrupt_controller) = &interrupt_controller_clone { interrupt_controller .lock() .unwrap() .end_of_interrupt(vector); } } VmExit::Ignore => {} VmExit::Hyperv => {} VmExit::Reset => { debug!("VmExit::Reset"); vcpu_run_interrupted.store(true, Ordering::SeqCst); reset_evt.write(1).unwrap(); break; } VmExit::Shutdown => { debug!("VmExit::Shutdown"); vcpu_run_interrupted.store(true, Ordering::SeqCst); exit_evt.write(1).unwrap(); break; } _ => { error!("VCPU generated error: {:?}", Error::UnexpectedVmExit); break; } }, Err(e) => { error!("VCPU generated error: {:?}", Error::VcpuRun(e.into())); break; } } // We've been told to terminate if vcpu_kill_signalled.load(Ordering::SeqCst) || vcpu_kill.load(Ordering::SeqCst) { vcpu_run_interrupted.store(true, Ordering::SeqCst); break; } } }) .map_err(Error::VcpuSpawn)?, ); // On hot plug calls into this function entry_point is None. It is for // those hotplug CPU additions that we need to set the inserting flag. self.vcpu_states[usize::from(cpu_id)].handle = handle; self.vcpu_states[usize::from(cpu_id)].inserting = inserting; Ok(()) } /// Start up as many vCPUs threads as needed to reach `desired_vcpus` fn activate_vcpus(&mut self, desired_vcpus: u8, inserting: bool) -> Result<()> { if desired_vcpus > self.config.max_vcpus { return Err(Error::DesiredVCpuCountExceedsMax); } let vcpu_thread_barrier = Arc::new(Barrier::new( (desired_vcpus - self.present_vcpus() + 1) as usize, )); info!( "Starting vCPUs: desired = {}, allocated = {}, present = {}", desired_vcpus, self.vcpus.len(), self.present_vcpus() ); // This reuses any inactive vCPUs as well as any that were newly created for cpu_id in self.present_vcpus()..desired_vcpus { let vcpu = Arc::clone(&self.vcpus[cpu_id as usize]); self.start_vcpu(vcpu, vcpu_thread_barrier.clone(), inserting)?; } // Unblock all CPU threads. vcpu_thread_barrier.wait(); Ok(()) } fn mark_vcpus_for_removal(&mut self, desired_vcpus: u8) { // Mark vCPUs for removal, actual removal happens on ejection for cpu_id in desired_vcpus..self.present_vcpus() { self.vcpu_states[usize::from(cpu_id)].removing = true; } } fn remove_vcpu(&mut self, cpu_id: u8) -> Result<()> { info!("Removing vCPU: cpu_id = {}", cpu_id); let mut state = &mut self.vcpu_states[usize::from(cpu_id)]; state.kill.store(true, Ordering::SeqCst); state.signal_thread(); state.join_thread()?; state.handle = None; // Once the thread has exited, clear the "kill" so that it can reused state.kill.store(false, Ordering::SeqCst); Ok(()) } pub fn create_boot_vcpus(&mut self, entry_point: Option) -> Result<()> { self.create_vcpus(self.boot_vcpus(), entry_point) } // Starts all the vCPUs that the VM is booting with. Blocks until all vCPUs are running. pub fn start_boot_vcpus(&mut self) -> Result<()> { self.activate_vcpus(self.boot_vcpus(), false) } pub fn start_restored_vcpus(&mut self) -> Result<()> { let vcpu_numbers = self.vcpus.len(); let vcpu_thread_barrier = Arc::new(Barrier::new((vcpu_numbers + 1) as usize)); // Restore the vCPUs in "paused" state. self.vcpus_pause_signalled.store(true, Ordering::SeqCst); for vcpu_index in 0..vcpu_numbers { let vcpu = Arc::clone(&self.vcpus[vcpu_index as usize]); self.start_vcpu(vcpu, vcpu_thread_barrier.clone(), false) .map_err(|e| { Error::StartRestoreVcpu(anyhow!("Failed to start restored vCPUs: {:#?}", e)) })?; } // Unblock all restored CPU threads. vcpu_thread_barrier.wait(); Ok(()) } pub fn resize(&mut self, desired_vcpus: u8) -> Result { match desired_vcpus.cmp(&self.present_vcpus()) { cmp::Ordering::Greater => { self.create_vcpus(desired_vcpus, None)?; self.activate_vcpus(desired_vcpus, true)?; Ok(true) } cmp::Ordering::Less => { self.mark_vcpus_for_removal(desired_vcpus); Ok(true) } _ => Ok(false), } } pub fn shutdown(&mut self) -> Result<()> { // Tell the vCPUs to stop themselves next time they go through the loop self.vcpus_kill_signalled.store(true, Ordering::SeqCst); // Toggle the vCPUs pause boolean self.vcpus_pause_signalled.store(false, Ordering::SeqCst); // Unpark all the VCPU threads. for state in self.vcpu_states.iter() { state.unpark_thread(); } // Signal to the spawned threads (vCPUs and console signal handler). For the vCPU threads // this will interrupt the KVM_RUN ioctl() allowing the loop to check the boolean set // above. for state in self.vcpu_states.iter() { state.signal_thread(); } // Wait for all the threads to finish. This removes the state from the vector. for mut state in self.vcpu_states.drain(..) { state.join_thread()?; } Ok(()) } #[cfg(feature = "tdx")] pub fn initialize_tdx(&self, hob_address: u64) -> Result<()> { for vcpu in &self.vcpus { vcpu.lock() .unwrap() .vcpu .tdx_init(hob_address) .map_err(Error::InitializeTdx)?; } Ok(()) } pub fn boot_vcpus(&self) -> u8 { self.config.boot_vcpus } pub fn max_vcpus(&self) -> u8 { self.config.max_vcpus } #[cfg(target_arch = "x86_64")] pub fn common_cpuid(&self) -> CpuId { self.cpuid.clone() } fn present_vcpus(&self) -> u8 { self.vcpu_states .iter() .fold(0, |acc, state| acc + state.active() as u8) } #[cfg(target_arch = "aarch64")] pub fn get_mpidrs(&self) -> Vec { self.vcpus .iter() .map(|cpu| cpu.lock().unwrap().get_mpidr()) .collect() } #[cfg(target_arch = "aarch64")] pub fn get_saved_states(&self) -> Vec { self.vcpus .iter() .map(|cpu| cpu.lock().unwrap().get_saved_state().unwrap()) .collect() } #[cfg(feature = "acpi")] pub fn create_madt(&self) -> Sdt { use crate::acpi; // This is also checked in the commandline parsing. assert!(self.config.boot_vcpus <= self.config.max_vcpus); let mut madt = Sdt::new(*b"APIC", 44, 5, *b"CLOUDH", *b"CHMADT ", 1); #[cfg(target_arch = "x86_64")] { madt.write(36, arch::layout::APIC_START); for cpu in 0..self.config.max_vcpus { let lapic = LocalApic { r#type: acpi::ACPI_APIC_PROCESSOR, length: 8, processor_id: cpu, apic_id: cpu, flags: if cpu < self.config.boot_vcpus { 1 << MADT_CPU_ENABLE_FLAG } else { 0 }, }; madt.append(lapic); } madt.append(Ioapic { r#type: acpi::ACPI_APIC_IO, length: 12, ioapic_id: 0, apic_address: arch::layout::IOAPIC_START.0 as u32, gsi_base: 0, ..Default::default() }); madt.append(InterruptSourceOverride { r#type: acpi::ACPI_APIC_XRUPT_OVERRIDE, length: 10, bus: 0, source: 4, gsi: 4, flags: 0, }); } #[cfg(target_arch = "aarch64")] { /* Notes: * Ignore Local Interrupt Controller Address at byte offset 36 of MADT table. */ // See section 5.2.12.14 GIC CPU Interface (GICC) Structure in ACPI spec. for cpu in 0..self.config.boot_vcpus { let vcpu = &self.vcpus[cpu as usize]; let mpidr = vcpu.lock().unwrap().get_mpidr(); /* ARMv8 MPIDR format: Bits [63:40] Must be zero Bits [39:32] Aff3 : Match Aff3 of target processor MPIDR Bits [31:24] Must be zero Bits [23:16] Aff2 : Match Aff2 of target processor MPIDR Bits [15:8] Aff1 : Match Aff1 of target processor MPIDR Bits [7:0] Aff0 : Match Aff0 of target processor MPIDR */ let mpidr_mask = 0xff_00ff_ffff; let gicc = GicC { r#type: acpi::ACPI_APIC_GENERIC_CPU_INTERFACE, length: 80, reserved0: 0, cpu_interface_number: cpu as u32, uid: cpu as u32, flags: 1, parking_version: 0, performance_interrupt: 0, parked_address: 0, base_address: 0, gicv_base_address: 0, gich_base_address: 0, vgic_interrupt: 0, gicr_base_address: 0, mpidr: mpidr & mpidr_mask, proc_power_effi_class: 0, reserved1: 0, spe_overflow_interrupt: 0, }; madt.append(gicc); } // GIC Distributor structure. See section 5.2.12.15 in ACPI spec. let gicd = GicD { r#type: acpi::ACPI_APIC_GENERIC_DISTRIBUTOR, length: 24, reserved0: 0, gic_id: 0, base_address: arch::layout::MAPPED_IO_START - 0x0001_0000, global_irq_base: 0, version: 3, reserved1: [0; 3], }; madt.append(gicd); // See 5.2.12.17 GIC Redistributor (GICR) Structure in ACPI spec. let gicr_size: u32 = 0x0001_0000 * 2 * (self.config.boot_vcpus as u32); let gicr_base: u64 = arch::layout::MAPPED_IO_START - 0x0001_0000 - gicr_size as u64; let gicr = GicR { r#type: acpi::ACPI_APIC_GENERIC_REDISTRIBUTOR, length: 16, reserved: 0, base_address: gicr_base, range_length: gicr_size, }; madt.append(gicr); // See 5.2.12.18 GIC Interrupt Translation Service (ITS) Structure in ACPI spec. let gicits = GicIts { r#type: acpi::ACPI_APIC_GENERIC_TRANSLATOR, length: 20, reserved0: 0, translation_id: 0, base_address: gicr_base - 2 * 0x0001_0000, reserved1: 0, }; madt.append(gicits); madt.update_checksum(); } madt } } #[cfg(feature = "acpi")] struct Cpu { cpu_id: u8, proximity_domain: u32, } #[cfg(all(target_arch = "x86_64", feature = "acpi"))] const MADT_CPU_ENABLE_FLAG: usize = 0; #[cfg(feature = "acpi")] impl Cpu { #[cfg(target_arch = "x86_64")] fn generate_mat(&self) -> Vec { let lapic = LocalApic { r#type: 0, length: 8, processor_id: self.cpu_id, apic_id: self.cpu_id, flags: 1 << MADT_CPU_ENABLE_FLAG, }; let mut mat_data: Vec = Vec::new(); mat_data.resize(std::mem::size_of_val(&lapic), 0); unsafe { *(mat_data.as_mut_ptr() as *mut LocalApic) = lapic }; mat_data } } #[cfg(feature = "acpi")] impl Aml for Cpu { fn to_aml_bytes(&self) -> Vec { #[cfg(target_arch = "x86_64")] let mat_data: Vec = self.generate_mat(); aml::Device::new( format!("C{:03}", self.cpu_id).as_str().into(), vec![ &aml::Name::new("_HID".into(), &"ACPI0007"), &aml::Name::new("_UID".into(), &self.cpu_id), // Currently, AArch64 cannot support following fields. /* _STA return value: Bit [0] – Set if the device is present. Bit [1] – Set if the device is enabled and decoding its resources. Bit [2] – Set if the device should be shown in the UI. Bit [3] – Set if the device is functioning properly (cleared if device failed its diagnostics). Bit [4] – Set if the battery is present. Bits [31:5] – Reserved (must be cleared). */ #[cfg(target_arch = "x86_64")] &aml::Method::new( "_STA".into(), 0, false, // Call into CSTA method which will interrogate device vec![&aml::Return::new(&aml::MethodCall::new( "CSTA".into(), vec![&self.cpu_id], ))], ), &aml::Method::new( "_PXM".into(), 0, false, vec![&aml::Return::new(&self.proximity_domain)], ), // The Linux kernel expects every CPU device to have a _MAT entry // containing the LAPIC for this processor with the enabled bit set // even it if is disabled in the MADT (non-boot CPU) #[cfg(target_arch = "x86_64")] &aml::Name::new("_MAT".into(), &aml::Buffer::new(mat_data)), // Trigger CPU ejection #[cfg(target_arch = "x86_64")] &aml::Method::new( "_EJ0".into(), 1, false, // Call into CEJ0 method which will actually eject device vec![&aml::MethodCall::new("CEJ0".into(), vec![&self.cpu_id])], ), ], ) .to_aml_bytes() } } #[cfg(feature = "acpi")] struct CpuNotify { cpu_id: u8, } #[cfg(feature = "acpi")] impl Aml for CpuNotify { fn to_aml_bytes(&self) -> Vec { let object = aml::Path::new(&format!("C{:03}", self.cpu_id)); aml::If::new( &aml::Equal::new(&aml::Arg(0), &self.cpu_id), vec![&aml::Notify::new(&object, &aml::Arg(1))], ) .to_aml_bytes() } } #[cfg(feature = "acpi")] struct CpuMethods { max_vcpus: u8, } #[cfg(feature = "acpi")] impl Aml for CpuMethods { fn to_aml_bytes(&self) -> Vec { let mut bytes = Vec::new(); bytes.extend_from_slice( // CPU status method &aml::Method::new( "CSTA".into(), 1, true, vec![ // Take lock defined above &aml::Acquire::new("\\_SB_.PRES.CPLK".into(), 0xffff), // Write CPU number (in first argument) to I/O port via field &aml::Store::new(&aml::Path::new("\\_SB_.PRES.CSEL"), &aml::Arg(0)), &aml::Store::new(&aml::Local(0), &aml::ZERO), // Check if CPEN bit is set, if so make the local variable 0xf (see _STA for details of meaning) &aml::If::new( &aml::Equal::new(&aml::Path::new("\\_SB_.PRES.CPEN"), &aml::ONE), vec![&aml::Store::new(&aml::Local(0), &0xfu8)], ), // Release lock &aml::Release::new("\\_SB_.PRES.CPLK".into()), // Return 0 or 0xf &aml::Return::new(&aml::Local(0)), ], ) .to_aml_bytes(), ); let mut cpu_notifies = Vec::new(); for cpu_id in 0..self.max_vcpus { cpu_notifies.push(CpuNotify { cpu_id }); } let mut cpu_notifies_refs: Vec<&dyn aml::Aml> = Vec::new(); for cpu_id in 0..self.max_vcpus { cpu_notifies_refs.push(&cpu_notifies[usize::from(cpu_id)]); } bytes.extend_from_slice( &aml::Method::new("CTFY".into(), 2, true, cpu_notifies_refs).to_aml_bytes(), ); bytes.extend_from_slice( &aml::Method::new( "CEJ0".into(), 1, true, vec![ &aml::Acquire::new("\\_SB_.PRES.CPLK".into(), 0xffff), // Write CPU number (in first argument) to I/O port via field &aml::Store::new(&aml::Path::new("\\_SB_.PRES.CSEL"), &aml::Arg(0)), // Set CEJ0 bit &aml::Store::new(&aml::Path::new("\\_SB_.PRES.CEJ0"), &aml::ONE), &aml::Release::new("\\_SB_.PRES.CPLK".into()), ], ) .to_aml_bytes(), ); bytes.extend_from_slice( &aml::Method::new( "CSCN".into(), 0, true, vec![ // Take lock defined above &aml::Acquire::new("\\_SB_.PRES.CPLK".into(), 0xffff), &aml::Store::new(&aml::Local(0), &aml::ZERO), &aml::While::new( &aml::LessThan::new(&aml::Local(0), &self.max_vcpus), vec![ // Write CPU number (in first argument) to I/O port via field &aml::Store::new(&aml::Path::new("\\_SB_.PRES.CSEL"), &aml::Local(0)), // Check if CINS bit is set &aml::If::new( &aml::Equal::new(&aml::Path::new("\\_SB_.PRES.CINS"), &aml::ONE), // Notify device if it is vec![ &aml::MethodCall::new( "CTFY".into(), vec![&aml::Local(0), &aml::ONE], ), // Reset CINS bit &aml::Store::new( &aml::Path::new("\\_SB_.PRES.CINS"), &aml::ONE, ), ], ), // Check if CRMV bit is set &aml::If::new( &aml::Equal::new(&aml::Path::new("\\_SB_.PRES.CRMV"), &aml::ONE), // Notify device if it is (with the eject constant 0x3) vec![ &aml::MethodCall::new( "CTFY".into(), vec![&aml::Local(0), &3u8], ), // Reset CRMV bit &aml::Store::new( &aml::Path::new("\\_SB_.PRES.CRMV"), &aml::ONE, ), ], ), &aml::Add::new(&aml::Local(0), &aml::Local(0), &aml::ONE), ], ), // Release lock &aml::Release::new("\\_SB_.PRES.CPLK".into()), ], ) .to_aml_bytes(), ); bytes } } #[cfg(feature = "acpi")] impl Aml for CpuManager { fn to_aml_bytes(&self) -> Vec { let mut bytes = Vec::new(); // CPU hotplug controller #[cfg(target_arch = "x86_64")] bytes.extend_from_slice( &aml::Device::new( "_SB_.PRES".into(), vec![ &aml::Name::new("_HID".into(), &aml::EisaName::new("PNP0A06")), &aml::Name::new("_UID".into(), &"CPU Hotplug Controller"), // Mutex to protect concurrent access as we write to choose CPU and then read back status &aml::Mutex::new("CPLK".into(), 0), &aml::Name::new( "_CRS".into(), &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( aml::AddressSpaceCachable::NotCacheable, true, self.acpi_address.0 as u64, self.acpi_address.0 + CPU_MANAGER_ACPI_SIZE as u64 - 1, )]), ), // OpRegion and Fields map MMIO range into individual field values &aml::OpRegion::new( "PRST".into(), aml::OpRegionSpace::SystemMemory, self.acpi_address.0 as usize, CPU_MANAGER_ACPI_SIZE, ), &aml::Field::new( "PRST".into(), aml::FieldAccessType::Byte, aml::FieldUpdateRule::WriteAsZeroes, vec![ aml::FieldEntry::Reserved(32), aml::FieldEntry::Named(*b"CPEN", 1), aml::FieldEntry::Named(*b"CINS", 1), aml::FieldEntry::Named(*b"CRMV", 1), aml::FieldEntry::Named(*b"CEJ0", 1), aml::FieldEntry::Reserved(4), aml::FieldEntry::Named(*b"CCMD", 8), ], ), &aml::Field::new( "PRST".into(), aml::FieldAccessType::DWord, aml::FieldUpdateRule::Preserve, vec![ aml::FieldEntry::Named(*b"CSEL", 32), aml::FieldEntry::Reserved(32), aml::FieldEntry::Named(*b"CDAT", 32), ], ), ], ) .to_aml_bytes(), ); // CPU devices let hid = aml::Name::new("_HID".into(), &"ACPI0010"); let uid = aml::Name::new("_CID".into(), &aml::EisaName::new("PNP0A05")); // Bundle methods together under a common object let methods = CpuMethods { max_vcpus: self.config.max_vcpus, }; let mut cpu_data_inner: Vec<&dyn aml::Aml> = vec![&hid, &uid, &methods]; let mut cpu_devices = Vec::new(); for cpu_id in 0..self.config.max_vcpus { let proximity_domain = *self.proximity_domain_per_cpu.get(&cpu_id).unwrap_or(&0); let cpu_device = Cpu { cpu_id, proximity_domain, }; cpu_devices.push(cpu_device); } for cpu_device in cpu_devices.iter() { cpu_data_inner.push(cpu_device); } bytes.extend_from_slice( &aml::Device::new("_SB_.CPUS".into(), cpu_data_inner).to_aml_bytes(), ); bytes } } impl Pausable for CpuManager { fn pause(&mut self) -> std::result::Result<(), MigratableError> { // Tell the vCPUs to pause themselves next time they exit self.vcpus_pause_signalled.store(true, Ordering::SeqCst); // Signal to the spawned threads (vCPUs and console signal handler). For the vCPU threads // this will interrupt the KVM_RUN ioctl() allowing the loop to check the boolean set // above. for state in self.vcpu_states.iter() { state.signal_thread(); } for vcpu in self.vcpus.iter() { let mut vcpu = vcpu.lock().unwrap(); vcpu.pause()?; #[cfg(all(feature = "kvm", target_arch = "x86_64"))] if !self.config.kvm_hyperv { vcpu.vcpu.notify_guest_clock_paused().map_err(|e| { MigratableError::Pause(anyhow!( "Could not notify guest it has been paused {:?}", e )) })?; } } Ok(()) } fn resume(&mut self) -> std::result::Result<(), MigratableError> { for vcpu in self.vcpus.iter() { vcpu.lock().unwrap().resume()?; } // Toggle the vCPUs pause boolean self.vcpus_pause_signalled.store(false, Ordering::SeqCst); // Unpark all the VCPU threads. // Once unparked, the next thing they will do is checking for the pause // boolean. Since it'll be set to false, they will exit their pause loop // and go back to vmx root. for state in self.vcpu_states.iter() { state.unpark_thread(); } Ok(()) } } impl Snapshottable for CpuManager { fn id(&self) -> String { CPU_MANAGER_SNAPSHOT_ID.to_string() } fn snapshot(&mut self) -> std::result::Result { let mut cpu_manager_snapshot = Snapshot::new(CPU_MANAGER_SNAPSHOT_ID); // The CpuManager snapshot is a collection of all vCPUs snapshots. for vcpu in &self.vcpus { let cpu_snapshot = vcpu.lock().unwrap().snapshot()?; cpu_manager_snapshot.add_snapshot(cpu_snapshot); } Ok(cpu_manager_snapshot) } fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> { for (cpu_id, snapshot) in snapshot.snapshots.iter() { debug!("Restoring VCPU {}", cpu_id); self.create_vcpu(cpu_id.parse::().unwrap(), None, Some(*snapshot.clone())) .map_err(|e| MigratableError::Restore(anyhow!("Could not create vCPU {:?}", e)))?; } Ok(()) } } impl Transportable for CpuManager {} impl Migratable for CpuManager {} #[cfg(all(feature = "kvm", target_arch = "x86_64"))] #[cfg(test)] mod tests { use arch::x86_64::interrupts::*; use arch::x86_64::regs::*; use hypervisor::x86_64::{FpuState, LapicState, StandardRegisters}; #[test] fn test_setlint() { let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().expect("new VM fd creation failed"); assert!(hv.check_required_extensions().is_ok()); // Calling get_lapic will fail if there is no irqchip before hand. assert!(vm.create_irq_chip().is_ok()); let vcpu = vm.create_vcpu(0, None).unwrap(); let klapic_before: LapicState = vcpu.get_lapic().unwrap(); // Compute the value that is expected to represent LVT0 and LVT1. let lint0 = get_klapic_reg(&klapic_before, APIC_LVT0); let lint1 = get_klapic_reg(&klapic_before, APIC_LVT1); let lint0_mode_expected = set_apic_delivery_mode(lint0, APIC_MODE_EXTINT); let lint1_mode_expected = set_apic_delivery_mode(lint1, APIC_MODE_NMI); set_lint(&vcpu).unwrap(); // Compute the value that represents LVT0 and LVT1 after set_lint. let klapic_actual: LapicState = vcpu.get_lapic().unwrap(); let lint0_mode_actual = get_klapic_reg(&klapic_actual, APIC_LVT0); let lint1_mode_actual = get_klapic_reg(&klapic_actual, APIC_LVT1); assert_eq!(lint0_mode_expected, lint0_mode_actual); assert_eq!(lint1_mode_expected, lint1_mode_actual); } #[test] fn test_setup_fpu() { let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().expect("new VM fd creation failed"); let vcpu = vm.create_vcpu(0, None).unwrap(); setup_fpu(&vcpu).unwrap(); let expected_fpu: FpuState = FpuState { fcw: 0x37f, mxcsr: 0x1f80, ..Default::default() }; let actual_fpu: FpuState = vcpu.get_fpu().unwrap(); // TODO: auto-generate kvm related structures with PartialEq on. assert_eq!(expected_fpu.fcw, actual_fpu.fcw); // Setting the mxcsr register from FpuState inside setup_fpu does not influence anything. // See 'kvm_arch_vcpu_ioctl_set_fpu' from arch/x86/kvm/x86.c. // The mxcsr will stay 0 and the assert below fails. Decide whether or not we should // remove it at all. // assert!(expected_fpu.mxcsr == actual_fpu.mxcsr); } #[test] fn test_setup_msrs() { use hypervisor::arch::x86::msr_index; use hypervisor::x86_64::{MsrEntries, MsrEntry}; let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().expect("new VM fd creation failed"); let vcpu = vm.create_vcpu(0, None).unwrap(); setup_msrs(&vcpu).unwrap(); // This test will check against the last MSR entry configured (the tenth one). // See create_msr_entries for details. let mut msrs = MsrEntries::from_entries(&[MsrEntry { index: msr_index::MSR_IA32_MISC_ENABLE, ..Default::default() }]) .unwrap(); // get_msrs returns the number of msrs that it succeed in reading. We only want to read 1 // in this test case scenario. let read_msrs = vcpu.get_msrs(&mut msrs).unwrap(); assert_eq!(read_msrs, 1); // Official entries that were setup when we did setup_msrs. We need to assert that the // tenth one (i.e the one with index msr_index::MSR_IA32_MISC_ENABLE has the data we // expect. let entry_vec = hypervisor::x86_64::boot_msr_entries(); assert_eq!(entry_vec.as_slice()[9], msrs.as_slice()[0]); } #[test] fn test_setup_regs() { let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().expect("new VM fd creation failed"); let vcpu = vm.create_vcpu(0, None).unwrap(); let expected_regs: StandardRegisters = StandardRegisters { rflags: 0x0000000000000002u64, rbx: arch::layout::PVH_INFO_START.0, rip: 1, ..Default::default() }; setup_regs(&vcpu, expected_regs.rip).unwrap(); let actual_regs: StandardRegisters = vcpu.get_regs().unwrap(); assert_eq!(actual_regs, expected_regs); } } #[cfg(target_arch = "aarch64")] #[cfg(test)] mod tests { use crate::GuestMemoryMmap; use arch::aarch64::layout; use arch::aarch64::regs::*; use hypervisor::kvm::aarch64::{is_system_register, MPIDR_EL1}; use hypervisor::kvm::kvm_bindings::{ kvm_one_reg, kvm_regs, kvm_vcpu_init, user_pt_regs, KVM_REG_ARM64, KVM_REG_ARM64_SYSREG, KVM_REG_ARM_CORE, KVM_REG_SIZE_U64, }; use hypervisor::{arm64_core_reg_id, offset__of}; use std::mem; use vm_memory::GuestAddress; #[test] fn test_setup_regs() { let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().unwrap(); let vcpu = vm.create_vcpu(0, None).unwrap(); let mut regions = Vec::new(); regions.push(( GuestAddress(layout::RAM_64BIT_START), (layout::FDT_MAX_SIZE + 0x1000) as usize, )); let mem = GuestMemoryMmap::from_ranges(®ions).expect("Cannot initialize memory"); let res = setup_regs(&vcpu, 0, 0x0, &mem); // Must fail when vcpu is not initialized yet. assert!(res.is_err()); let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default(); vm.get_preferred_target(&mut kvi).unwrap(); vcpu.vcpu_init(&kvi).unwrap(); assert!(setup_regs(&vcpu, 0, 0x0, &mem).is_ok()); } #[test] fn test_read_mpidr() { let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().unwrap(); let vcpu = vm.create_vcpu(0, None).unwrap(); let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default(); vm.get_preferred_target(&mut kvi).unwrap(); // Must fail when vcpu is not initialized yet. assert!(vcpu.read_mpidr().is_err()); vcpu.vcpu_init(&kvi).unwrap(); assert_eq!(vcpu.read_mpidr().unwrap(), 0x80000000); } #[test] fn test_is_system_register() { let offset = offset__of!(user_pt_regs, pc); let regid = arm64_core_reg_id!(KVM_REG_SIZE_U64, offset); assert!(!is_system_register(regid)); let regid = KVM_REG_ARM64 as u64 | KVM_REG_SIZE_U64 as u64 | KVM_REG_ARM64_SYSREG as u64; assert!(is_system_register(regid)); } #[test] fn test_save_restore_core_regs() { let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().unwrap(); let vcpu = vm.create_vcpu(0, None).unwrap(); let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default(); vm.get_preferred_target(&mut kvi).unwrap(); // Must fail when vcpu is not initialized yet. let mut state = kvm_regs::default(); let res = vcpu.core_registers(&mut state); assert!(res.is_err()); assert_eq!( format!("{}", res.unwrap_err()), "Failed to get core register: Exec format error (os error 8)" ); let res = vcpu.set_core_registers(&mut state); assert!(res.is_err()); assert_eq!( format!("{}", res.unwrap_err()), "Failed to set core register: Exec format error (os error 8)" ); vcpu.vcpu_init(&kvi).unwrap(); assert!(vcpu.core_registers(&mut state).is_ok()); assert_eq!(state.regs.pstate, 0x3C5); assert!(vcpu.set_core_registers(&state).is_ok()); let off = offset__of!(user_pt_regs, pstate); let pstate = vcpu .get_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off)) .expect("Failed to call kvm get one reg"); assert_eq!(state.regs.pstate, pstate); } #[test] fn test_save_restore_system_regs() { let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().unwrap(); let vcpu = vm.create_vcpu(0, None).unwrap(); let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default(); vm.get_preferred_target(&mut kvi).unwrap(); // Must fail when vcpu is not initialized yet. let mut state: Vec = Vec::new(); let res = vcpu.system_registers(&mut state); assert!(res.is_err()); assert_eq!( format!("{}", res.unwrap_err()), "Failed to retrieve list of registers: Exec format error (os error 8)" ); state.push(kvm_one_reg { id: MPIDR_EL1, addr: 0x00, }); let res = vcpu.set_system_registers(&mut state); assert!(res.is_err()); assert_eq!( format!("{}", res.unwrap_err()), "Failed to set system register: Exec format error (os error 8)" ); vcpu.vcpu_init(&kvi).unwrap(); assert!(vcpu.system_registers(&mut state).is_ok()); let initial_mpidr: u64 = vcpu.read_mpidr().expect("Fail to read mpidr"); assert!(state.contains(&kvm_one_reg { id: MPIDR_EL1, addr: initial_mpidr })); assert!(vcpu.set_system_registers(&state).is_ok()); let mpidr: u64 = vcpu.read_mpidr().expect("Fail to read mpidr"); assert_eq!(initial_mpidr, mpidr); } #[test] fn test_get_set_mpstate() { let hv = hypervisor::new().unwrap(); let vm = hv.create_vm().unwrap(); let vcpu = vm.create_vcpu(0, None).unwrap(); let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default(); vm.get_preferred_target(&mut kvi).unwrap(); let res = vcpu.get_mp_state(); assert!(res.is_ok()); assert!(vcpu.set_mp_state(res.unwrap()).is_ok()); } }