// Copyright © 2019 Intel Corporation // // SPDX-License-Identifier: Apache-2.0 // #[macro_use] extern crate event_monitor; #[macro_use] extern crate lazy_static; #[macro_use] extern crate log; #[macro_use] extern crate serde_derive; #[cfg(test)] #[macro_use] extern crate credibility; use crate::api::{ ApiError, ApiRequest, ApiResponse, ApiResponsePayload, VmInfo, VmReceiveMigrationData, VmSendMigrationData, VmmPingResponse, }; use crate::config::{ DeviceConfig, DiskConfig, FsConfig, NetConfig, PmemConfig, RestoreConfig, VmConfig, VsockConfig, }; use crate::migration::{get_vm_snapshot, recv_vm_snapshot}; use crate::seccomp_filters::{get_seccomp_filter, Thread}; use crate::vm::{Error as VmError, Vm, VmState}; use anyhow::anyhow; use libc::EFD_NONBLOCK; use seccomp::{SeccompAction, SeccompFilter}; use serde::ser::{Serialize, SerializeStruct, Serializer}; use std::fs::File; use std::io; use std::io::{Read, Write}; use std::os::unix::io::{AsRawFd, FromRawFd, RawFd}; use std::os::unix::net::UnixListener; use std::os::unix::net::UnixStream; use std::path::PathBuf; use std::sync::mpsc::{Receiver, RecvError, SendError, Sender}; use std::sync::{Arc, Mutex}; use std::{result, thread}; use thiserror::Error; use vm_memory::bitmap::AtomicBitmap; use vm_migration::protocol::*; use vm_migration::{MigratableError, Pausable, Snapshot, Snapshottable, Transportable}; use vmm_sys_util::eventfd::EventFd; pub mod api; pub mod config; pub mod cpu; pub mod device_manager; pub mod device_tree; pub mod interrupt; pub mod memory_manager; pub mod migration; pub mod seccomp_filters; pub mod vm; #[cfg(feature = "acpi")] mod acpi; type GuestMemoryMmap = vm_memory::GuestMemoryMmap; type GuestRegionMmap = vm_memory::GuestRegionMmap; /// Errors associated with VMM management #[derive(Debug, Error)] #[allow(clippy::large_enum_variant)] pub enum Error { /// API request receive error #[error("Error receiving API request: {0}")] ApiRequestRecv(#[source] RecvError), /// API response send error #[error("Error sending API request: {0}")] ApiResponseSend(#[source] SendError), /// Cannot bind to the UNIX domain socket path #[error("Error binding to UNIX domain socket: {0}")] Bind(#[source] io::Error), /// Cannot clone EventFd. #[error("Error cloning EventFd: {0}")] EventFdClone(#[source] io::Error), /// Cannot create EventFd. #[error("Error creating EventFd: {0}")] EventFdCreate(#[source] io::Error), /// Cannot read from EventFd. #[error("Error reading from EventFd: {0}")] EventFdRead(#[source] io::Error), /// Cannot create epoll context. #[error("Error creating epoll context: {0}")] Epoll(#[source] io::Error), /// Cannot create HTTP thread #[error("Error spawning HTTP thread: {0}")] HttpThreadSpawn(#[source] io::Error), /// Cannot handle the VM STDIN stream #[error("Error handling VM stdin: {0:?}")] Stdin(VmError), /// Cannot handle the VM pty stream #[error("Error handling VM pty: {0:?}")] Pty(VmError), /// Cannot reboot the VM #[error("Error rebooting VM: {0:?}")] VmReboot(VmError), /// Cannot create VMM thread #[error("Error spawning VMM thread {0:?}")] VmmThreadSpawn(#[source] io::Error), /// Cannot shut the VMM down #[error("Error shutting down VMM: {0:?}")] VmmShutdown(VmError), /// Cannot create seccomp filter #[error("Error creating seccomp filter: {0}")] CreateSeccompFilter(seccomp::SeccompError), /// Cannot apply seccomp filter #[error("Error applying seccomp filter: {0}")] ApplySeccompFilter(seccomp::Error), /// Error activating virtio devices #[error("Error activating virtio devices: {0:?}")] ActivateVirtioDevices(VmError), /// Error creating API server #[error("Error creating API server {0:?}")] CreateApiServer(micro_http::ServerError), /// Error binding API server socket #[error("Error creation API server's socket {0:?}")] CreateApiServerSocket(#[source] io::Error), } pub type Result = result::Result; #[derive(Debug, Clone, Copy, PartialEq)] pub enum EpollDispatch { Exit, Reset, Stdin, Api, ActivateVirtioDevices, Pty, } pub struct EpollContext { epoll_file: File, dispatch_table: Vec>, } impl EpollContext { pub fn new() -> result::Result { let epoll_fd = epoll::create(true)?; // Use 'File' to enforce closing on 'epoll_fd' let epoll_file = unsafe { File::from_raw_fd(epoll_fd) }; // Initial capacity needs to be large enough to hold: // * 1 exit event // * 1 reset event // * 1 stdin event // * 1 API event let mut dispatch_table = Vec::with_capacity(5); dispatch_table.push(None); Ok(EpollContext { epoll_file, dispatch_table, }) } pub fn add_stdin(&mut self) -> result::Result<(), io::Error> { let dispatch_index = self.dispatch_table.len() as u64; epoll::ctl( self.epoll_file.as_raw_fd(), epoll::ControlOptions::EPOLL_CTL_ADD, libc::STDIN_FILENO, epoll::Event::new(epoll::Events::EPOLLIN, dispatch_index), )?; self.dispatch_table.push(Some(EpollDispatch::Stdin)); Ok(()) } fn add_event(&mut self, fd: &T, token: EpollDispatch) -> result::Result<(), io::Error> where T: AsRawFd, { let dispatch_index = self.dispatch_table.len() as u64; epoll::ctl( self.epoll_file.as_raw_fd(), epoll::ControlOptions::EPOLL_CTL_ADD, fd.as_raw_fd(), epoll::Event::new(epoll::Events::EPOLLIN, dispatch_index), )?; self.dispatch_table.push(Some(token)); Ok(()) } } impl AsRawFd for EpollContext { fn as_raw_fd(&self) -> RawFd { self.epoll_file.as_raw_fd() } } pub struct PciDeviceInfo { pub id: String, pub bdf: u32, } impl Serialize for PciDeviceInfo { fn serialize(&self, serializer: S) -> std::result::Result where S: Serializer, { // Transform the PCI b/d/f into a standardized string. let segment = (self.bdf >> 16) & 0xffff; let bus = (self.bdf >> 8) & 0xff; let device = (self.bdf >> 3) & 0x1f; let function = self.bdf & 0x7; let bdf_str = format!( "{:04x}:{:02x}:{:02x}.{:01x}", segment, bus, device, function ); // Serialize the structure. let mut state = serializer.serialize_struct("PciDeviceInfo", 2)?; state.serialize_field("id", &self.id)?; state.serialize_field("bdf", &bdf_str)?; state.end() } } #[allow(clippy::too_many_arguments)] pub fn start_vmm_thread( vmm_version: String, http_path: &Option, http_fd: Option, api_event: EventFd, api_sender: Sender, api_receiver: Receiver, seccomp_action: &SeccompAction, hypervisor: Arc, ) -> Result>> { let http_api_event = api_event.try_clone().map_err(Error::EventFdClone)?; // Retrieve seccomp filter let vmm_seccomp_filter = get_seccomp_filter(seccomp_action, Thread::Vmm).map_err(Error::CreateSeccompFilter)?; let vmm_seccomp_action = seccomp_action.clone(); let thread = thread::Builder::new() .name("vmm".to_string()) .spawn(move || { // Apply seccomp filter for VMM thread. SeccompFilter::apply(vmm_seccomp_filter).map_err(Error::ApplySeccompFilter)?; let mut vmm = Vmm::new( vmm_version.to_string(), api_event, vmm_seccomp_action, hypervisor, )?; vmm.control_loop(Arc::new(api_receiver)) }) .map_err(Error::VmmThreadSpawn)?; // The VMM thread is started, we can start serving HTTP requests if let Some(http_path) = http_path { api::start_http_path_thread(http_path, http_api_event, api_sender, seccomp_action)?; } else if let Some(http_fd) = http_fd { api::start_http_fd_thread(http_fd, http_api_event, api_sender, seccomp_action)?; } Ok(thread) } #[derive(Clone, Deserialize, Serialize)] struct VmMigrationConfig { vm_config: Arc>, #[cfg(all(feature = "kvm", target_arch = "x86_64"))] common_cpuid: hypervisor::CpuId, } pub struct Vmm { epoll: EpollContext, exit_evt: EventFd, reset_evt: EventFd, api_evt: EventFd, version: String, vm: Option, vm_config: Option>>, seccomp_action: SeccompAction, hypervisor: Arc, activate_evt: EventFd, } impl Vmm { fn new( vmm_version: String, api_evt: EventFd, seccomp_action: SeccompAction, hypervisor: Arc, ) -> Result { let mut epoll = EpollContext::new().map_err(Error::Epoll)?; let exit_evt = EventFd::new(EFD_NONBLOCK).map_err(Error::EventFdCreate)?; let reset_evt = EventFd::new(EFD_NONBLOCK).map_err(Error::EventFdCreate)?; let activate_evt = EventFd::new(EFD_NONBLOCK).map_err(Error::EventFdCreate)?; if unsafe { libc::isatty(libc::STDIN_FILENO as i32) } != 0 { epoll.add_stdin().map_err(Error::Epoll)?; } epoll .add_event(&exit_evt, EpollDispatch::Exit) .map_err(Error::Epoll)?; epoll .add_event(&reset_evt, EpollDispatch::Reset) .map_err(Error::Epoll)?; epoll .add_event(&activate_evt, EpollDispatch::ActivateVirtioDevices) .map_err(Error::Epoll)?; epoll .add_event(&api_evt, EpollDispatch::Api) .map_err(Error::Epoll)?; Ok(Vmm { epoll, exit_evt, reset_evt, api_evt, version: vmm_version, vm: None, vm_config: None, seccomp_action, hypervisor, activate_evt, }) } fn vm_create(&mut self, config: Arc>) -> result::Result<(), VmError> { // We only store the passed VM config. // The VM will be created when being asked to boot it. if self.vm_config.is_none() { self.vm_config = Some(config); Ok(()) } else { Err(VmError::VmAlreadyCreated) } } fn vm_boot(&mut self) -> result::Result<(), VmError> { // If we don't have a config, we can not boot a VM. if self.vm_config.is_none() { return Err(VmError::VmMissingConfig); }; // Create a new VM if we don't have one yet. if self.vm.is_none() { let exit_evt = self.exit_evt.try_clone().map_err(VmError::EventFdClone)?; let reset_evt = self.reset_evt.try_clone().map_err(VmError::EventFdClone)?; let activate_evt = self .activate_evt .try_clone() .map_err(VmError::EventFdClone)?; if let Some(ref vm_config) = self.vm_config { let vm = Vm::new( Arc::clone(vm_config), exit_evt, reset_evt, &self.seccomp_action, self.hypervisor.clone(), activate_evt, None, None, )?; if let Some(serial_pty) = vm.serial_pty() { self.epoll .add_event(&serial_pty.main, EpollDispatch::Pty) .map_err(VmError::EventfdError)?; }; if let Some(console_pty) = vm.console_pty() { self.epoll .add_event(&console_pty.main, EpollDispatch::Pty) .map_err(VmError::EventfdError)?; }; self.vm = Some(vm); } } // Now we can boot the VM. if let Some(ref mut vm) = self.vm { vm.boot() } else { Err(VmError::VmNotCreated) } } fn vm_pause(&mut self) -> result::Result<(), VmError> { if let Some(ref mut vm) = self.vm { vm.pause().map_err(VmError::Pause) } else { Err(VmError::VmNotRunning) } } fn vm_resume(&mut self) -> result::Result<(), VmError> { if let Some(ref mut vm) = self.vm { vm.resume().map_err(VmError::Resume) } else { Err(VmError::VmNotRunning) } } fn vm_snapshot(&mut self, destination_url: &str) -> result::Result<(), VmError> { if let Some(ref mut vm) = self.vm { vm.snapshot() .map_err(VmError::Snapshot) .and_then(|snapshot| { vm.send(&snapshot, destination_url) .map_err(VmError::SnapshotSend) }) } else { Err(VmError::VmNotRunning) } } fn vm_restore(&mut self, restore_cfg: RestoreConfig) -> result::Result<(), VmError> { if self.vm.is_some() || self.vm_config.is_some() { return Err(VmError::VmAlreadyCreated); } let source_url = restore_cfg.source_url.as_path().to_str(); if source_url.is_none() { return Err(VmError::RestoreSourceUrlPathToStr); } // Safe to unwrap as we checked it was Some(&str). let source_url = source_url.unwrap(); let snapshot = recv_vm_snapshot(source_url).map_err(VmError::Restore)?; let vm_snapshot = get_vm_snapshot(&snapshot).map_err(VmError::Restore)?; #[cfg(all(feature = "kvm", target_arch = "x86_64"))] self.vm_check_cpuid_compatibility(&vm_snapshot.config, &vm_snapshot.common_cpuid) .map_err(VmError::Restore)?; self.vm_config = Some(Arc::clone(&vm_snapshot.config)); let exit_evt = self.exit_evt.try_clone().map_err(VmError::EventFdClone)?; let reset_evt = self.reset_evt.try_clone().map_err(VmError::EventFdClone)?; let activate_evt = self .activate_evt .try_clone() .map_err(VmError::EventFdClone)?; let vm = Vm::new_from_snapshot( &snapshot, exit_evt, reset_evt, Some(source_url), restore_cfg.prefault, &self.seccomp_action, self.hypervisor.clone(), activate_evt, )?; self.vm = Some(vm); // Now we can restore the rest of the VM. if let Some(ref mut vm) = self.vm { vm.restore(snapshot).map_err(VmError::Restore) } else { Err(VmError::VmNotCreated) } } fn vm_shutdown(&mut self) -> result::Result<(), VmError> { if let Some(ref mut vm) = self.vm.take() { vm.shutdown() } else { Err(VmError::VmNotRunning) } } fn vm_reboot(&mut self) -> result::Result<(), VmError> { // Without ACPI, a reset is equivalent to a shutdown // On AArch64, before ACPI is supported, we simply jump over this check and continue to reset. #[cfg(all(target_arch = "x86_64", not(feature = "acpi")))] { if self.vm.is_some() { self.exit_evt.write(1).unwrap(); return Ok(()); } } // First we stop the current VM and create a new one. if let Some(ref mut vm) = self.vm { let config = vm.get_config(); let serial_pty = vm.serial_pty(); let console_pty = vm.console_pty(); self.vm_shutdown()?; let exit_evt = self.exit_evt.try_clone().map_err(VmError::EventFdClone)?; let reset_evt = self.reset_evt.try_clone().map_err(VmError::EventFdClone)?; let activate_evt = self .activate_evt .try_clone() .map_err(VmError::EventFdClone)?; // The Linux kernel fires off an i8042 reset after doing the ACPI reset so there may be // an event sitting in the shared reset_evt. Without doing this we get very early reboots // during the boot process. if self.reset_evt.read().is_ok() { warn!("Spurious second reset event received. Ignoring."); } self.vm = Some(Vm::new( config, exit_evt, reset_evt, &self.seccomp_action, self.hypervisor.clone(), activate_evt, serial_pty, console_pty, )?); } // Then we start the new VM. if let Some(ref mut vm) = self.vm { vm.boot() } else { Err(VmError::VmNotCreated) } } fn vm_info(&self) -> result::Result { match &self.vm_config { Some(config) => { let state = match &self.vm { Some(vm) => vm.get_state()?, None => VmState::Created, }; let config = Arc::clone(config); let mut memory_actual_size = config.lock().unwrap().memory.total_size(); if let Some(vm) = &self.vm { memory_actual_size -= vm.balloon_size(); } let device_tree = self.vm.as_ref().map(|vm| vm.device_tree()); Ok(VmInfo { config, state, memory_actual_size, device_tree, }) } None => Err(VmError::VmNotCreated), } } fn vmm_ping(&self) -> VmmPingResponse { VmmPingResponse { version: self.version.clone(), } } fn vm_delete(&mut self) -> result::Result<(), VmError> { if self.vm_config.is_none() { return Ok(()); } // If a VM is booted, we first try to shut it down. if self.vm.is_some() { self.vm_shutdown()?; } self.vm_config = None; event!("vm", "deleted"); Ok(()) } fn vmm_shutdown(&mut self) -> result::Result<(), VmError> { self.vm_delete()?; event!("vmm", "shutdown"); Ok(()) } fn vm_resize( &mut self, desired_vcpus: Option, desired_ram: Option, desired_balloon: Option, ) -> result::Result<(), VmError> { if let Some(ref mut vm) = self.vm { if let Err(e) = vm.resize(desired_vcpus, desired_ram, desired_balloon) { error!("Error when resizing VM: {:?}", e); Err(e) } else { Ok(()) } } else { Err(VmError::VmNotRunning) } } fn vm_resize_zone(&mut self, id: String, desired_ram: u64) -> result::Result<(), VmError> { if let Some(ref mut vm) = self.vm { if let Err(e) = vm.resize_zone(id, desired_ram) { error!("Error when resizing VM: {:?}", e); Err(e) } else { Ok(()) } } else { Err(VmError::VmNotRunning) } } fn vm_add_device(&mut self, device_cfg: DeviceConfig) -> result::Result, VmError> { if let Some(ref mut vm) = self.vm { let info = vm.add_device(device_cfg).map_err(|e| { error!("Error when adding new device to the VM: {:?}", e); e })?; serde_json::to_vec(&info).map_err(VmError::SerializeJson) } else { Err(VmError::VmNotRunning) } } fn vm_remove_device(&mut self, id: String) -> result::Result<(), VmError> { if let Some(ref mut vm) = self.vm { if let Err(e) = vm.remove_device(id) { error!("Error when removing new device to the VM: {:?}", e); Err(e) } else { Ok(()) } } else { Err(VmError::VmNotRunning) } } fn vm_add_disk(&mut self, disk_cfg: DiskConfig) -> result::Result, VmError> { if let Some(ref mut vm) = self.vm { let info = vm.add_disk(disk_cfg).map_err(|e| { error!("Error when adding new disk to the VM: {:?}", e); e })?; serde_json::to_vec(&info).map_err(VmError::SerializeJson) } else { Err(VmError::VmNotRunning) } } fn vm_add_fs(&mut self, fs_cfg: FsConfig) -> result::Result, VmError> { if let Some(ref mut vm) = self.vm { let info = vm.add_fs(fs_cfg).map_err(|e| { error!("Error when adding new fs to the VM: {:?}", e); e })?; serde_json::to_vec(&info).map_err(VmError::SerializeJson) } else { Err(VmError::VmNotRunning) } } fn vm_add_pmem(&mut self, pmem_cfg: PmemConfig) -> result::Result, VmError> { if let Some(ref mut vm) = self.vm { let info = vm.add_pmem(pmem_cfg).map_err(|e| { error!("Error when adding new pmem device to the VM: {:?}", e); e })?; serde_json::to_vec(&info).map_err(VmError::SerializeJson) } else { Err(VmError::VmNotRunning) } } fn vm_add_net(&mut self, net_cfg: NetConfig) -> result::Result, VmError> { if let Some(ref mut vm) = self.vm { let info = vm.add_net(net_cfg).map_err(|e| { error!("Error when adding new network device to the VM: {:?}", e); e })?; serde_json::to_vec(&info).map_err(VmError::SerializeJson) } else { Err(VmError::VmNotRunning) } } fn vm_add_vsock(&mut self, vsock_cfg: VsockConfig) -> result::Result, VmError> { if let Some(ref mut vm) = self.vm { let info = vm.add_vsock(vsock_cfg).map_err(|e| { error!("Error when adding new vsock device to the VM: {:?}", e); e })?; serde_json::to_vec(&info).map_err(VmError::SerializeJson) } else { Err(VmError::VmNotRunning) } } fn vm_counters(&mut self) -> result::Result, VmError> { if let Some(ref mut vm) = self.vm { let info = vm.counters().map_err(|e| { error!("Error when getting counters from the VM: {:?}", e); e })?; serde_json::to_vec(&info).map_err(VmError::SerializeJson) } else { Err(VmError::VmNotRunning) } } fn vm_power_button(&mut self) -> result::Result<(), VmError> { if let Some(ref mut vm) = self.vm { vm.power_button() } else { Err(VmError::VmNotRunning) } } fn vm_receive_config( &mut self, req: &Request, socket: &mut T, ) -> std::result::Result where T: Read + Write, { // Read in config data let mut data = Vec::with_capacity(req.length() as usize); unsafe { data.set_len(req.length() as usize); } socket .read_exact(&mut data) .map_err(MigratableError::MigrateSocket)?; let vm_migration_config: VmMigrationConfig = serde_json::from_slice(&data).map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error deserialising config: {}", e)) })?; #[cfg(all(feature = "kvm", target_arch = "x86_64"))] self.vm_check_cpuid_compatibility( &vm_migration_config.vm_config, &vm_migration_config.common_cpuid, )?; let exit_evt = self.exit_evt.try_clone().map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error cloning exit EventFd: {}", e)) })?; let reset_evt = self.reset_evt.try_clone().map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error cloning reset EventFd: {}", e)) })?; let activate_evt = self.activate_evt.try_clone().map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error cloning activate EventFd: {}", e)) })?; self.vm_config = Some(vm_migration_config.vm_config); let vm = Vm::new_from_migration( self.vm_config.clone().unwrap(), exit_evt, reset_evt, &self.seccomp_action, self.hypervisor.clone(), activate_evt, ) .map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error creating VM from snapshot: {:?}", e)) })?; Response::ok().write_to(socket)?; Ok(vm) } fn vm_receive_state( &mut self, req: &Request, socket: &mut T, mut vm: Vm, ) -> std::result::Result<(), MigratableError> where T: Read + Write, { // Read in state data let mut data = Vec::with_capacity(req.length() as usize); unsafe { data.set_len(req.length() as usize); } socket .read_exact(&mut data) .map_err(MigratableError::MigrateSocket)?; let snapshot: Snapshot = serde_json::from_slice(&data).map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error deserialising snapshot: {}", e)) })?; #[cfg(all(feature = "kvm", target_arch = "x86_64"))] vm.load_clock_from_snapshot(&snapshot) .map_err(|e| MigratableError::MigrateReceive(anyhow!("Error resume clock: {:?}", e)))?; // Create VM vm.restore(snapshot).map_err(|e| { Response::error().write_to(socket).ok(); e })?; self.vm = Some(vm); Response::ok().write_to(socket)?; Ok(()) } fn vm_receive_memory( &mut self, req: &Request, socket: &mut T, vm: &mut Vm, ) -> std::result::Result<(), MigratableError> where T: Read + Write, { // Read table let table = MemoryRangeTable::read_from(socket, req.length())?; // And then read the memory itself vm.receive_memory_regions(&table, socket).map_err(|e| { Response::error().write_to(socket).ok(); e })?; Response::ok().write_to(socket)?; Ok(()) } fn socket_url_to_path(url: &str) -> result::Result { url.strip_prefix("unix:") .ok_or_else(|| { MigratableError::MigrateSend(anyhow!("Could not extract path from URL: {}", url)) }) .map(|s| s.into()) } fn vm_receive_migration( &mut self, receive_data_migration: VmReceiveMigrationData, ) -> result::Result<(), MigratableError> { info!( "Receiving migration: receiver_url = {}", receive_data_migration.receiver_url ); let path = Self::socket_url_to_path(&receive_data_migration.receiver_url)?; let listener = UnixListener::bind(&path).map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error binding to UNIX socket: {}", e)) })?; let (mut socket, _addr) = listener.accept().map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error accepting on UNIX socket: {}", e)) })?; std::fs::remove_file(&path).map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error unlinking UNIX socket: {}", e)) })?; let mut started = false; let mut vm: Option = None; loop { let req = Request::read_from(&mut socket)?; match req.command() { Command::Invalid => info!("Invalid Command Received"), Command::Start => { info!("Start Command Received"); started = true; Response::ok().write_to(&mut socket)?; } Command::Config => { info!("Config Command Received"); if !started { warn!("Migration not started yet"); Response::error().write_to(&mut socket)?; continue; } vm = Some(self.vm_receive_config(&req, &mut socket)?); } Command::State => { info!("State Command Received"); if !started { warn!("Migration not started yet"); Response::error().write_to(&mut socket)?; continue; } if let Some(vm) = vm.take() { self.vm_receive_state(&req, &mut socket, vm)?; } else { warn!("Configuration not sent yet"); Response::error().write_to(&mut socket)?; } } Command::Memory => { info!("Memory Command Received"); if !started { warn!("Migration not started yet"); Response::error().write_to(&mut socket)?; continue; } if let Some(ref mut vm) = vm.as_mut() { self.vm_receive_memory(&req, &mut socket, vm)?; } else { warn!("Configuration not sent yet"); Response::error().write_to(&mut socket)?; } } Command::Complete => { info!("Complete Command Received"); if let Some(ref mut vm) = self.vm.as_mut() { vm.resume()?; Response::ok().write_to(&mut socket)?; } else { warn!("VM not created yet"); Response::error().write_to(&mut socket)?; } break; } Command::Abandon => { info!("Abandon Command Received"); self.vm = None; self.vm_config = None; Response::ok().write_to(&mut socket).ok(); break; } } } Ok(()) } // Returns true if there were dirty pages to send fn vm_maybe_send_dirty_pages( vm: &mut Vm, socket: &mut T, ) -> result::Result where T: Read + Write, { // Send (dirty) memory table let table = vm.dirty_memory_range_table()?; // But if there are no regions go straight to pause if table.regions().is_empty() { return Ok(false); } Request::memory(table.length()).write_to(socket).unwrap(); table.write_to(socket)?; // And then the memory itself vm.send_memory_regions(&table, socket)?; let res = Response::read_from(socket)?; if res.status() != Status::Ok { warn!("Error during dirty memory migration"); Request::abandon().write_to(socket)?; Response::read_from(socket).ok(); return Err(MigratableError::MigrateSend(anyhow!( "Error during dirty memory migration" ))); } Ok(true) } fn vm_send_migration( &mut self, send_data_migration: VmSendMigrationData, ) -> result::Result<(), MigratableError> { info!( "Sending migration: destination_url = {}", send_data_migration.destination_url ); if let Some(ref mut vm) = self.vm { let path = Self::socket_url_to_path(&send_data_migration.destination_url)?; let mut socket = UnixStream::connect(&path).map_err(|e| { MigratableError::MigrateSend(anyhow!("Error connecting to UNIX socket: {}", e)) })?; // Start the migration Request::start().write_to(&mut socket)?; let res = Response::read_from(&mut socket)?; if res.status() != Status::Ok { warn!("Error starting migration"); Request::abandon().write_to(&mut socket)?; Response::read_from(&mut socket).ok(); return Err(MigratableError::MigrateSend(anyhow!( "Error starting migration" ))); } // Send config let vm_config = vm.get_config(); #[cfg(all(feature = "kvm", target_arch = "x86_64"))] let common_cpuid = { #[cfg(feature = "tdx")] let tdx_enabled = vm_config.lock().unwrap().tdx.is_some(); let phys_bits = vm::physical_bits( vm_config.lock().unwrap().cpus.max_phys_bits, #[cfg(feature = "tdx")] tdx_enabled, ); arch::generate_common_cpuid( self.hypervisor.clone(), None, None, phys_bits, vm_config.lock().unwrap().cpus.kvm_hyperv, #[cfg(feature = "tdx")] tdx_enabled, ) .map_err(|e| { MigratableError::MigrateReceive(anyhow!( "Error generating common cpuid': {:?}", e )) })? }; let vm_migration_config = VmMigrationConfig { vm_config, #[cfg(all(feature = "kvm", target_arch = "x86_64"))] common_cpuid, }; let config_data = serde_json::to_vec(&vm_migration_config).unwrap(); Request::config(config_data.len() as u64).write_to(&mut socket)?; socket .write_all(&config_data) .map_err(MigratableError::MigrateSocket)?; let res = Response::read_from(&mut socket)?; if res.status() != Status::Ok { warn!("Error during config migration"); Request::abandon().write_to(&mut socket)?; Response::read_from(&mut socket).ok(); return Err(MigratableError::MigrateSend(anyhow!( "Error during config migration" ))); } // Start logging dirty pages vm.start_memory_dirty_log()?; // Send memory table let table = vm.memory_range_table()?; Request::memory(table.length()) .write_to(&mut socket) .unwrap(); table.write_to(&mut socket)?; // And then the memory itself vm.send_memory_regions(&table, &mut socket)?; let res = Response::read_from(&mut socket)?; if res.status() != Status::Ok { warn!("Error during memory migration"); Request::abandon().write_to(&mut socket)?; Response::read_from(&mut socket).ok(); return Err(MigratableError::MigrateSend(anyhow!( "Error during memory migration" ))); } // Try at most 5 passes of dirty memory sending const MAX_DIRTY_MIGRATIONS: usize = 5; for i in 0..MAX_DIRTY_MIGRATIONS { info!("Dirty memory migration {} of {}", i, MAX_DIRTY_MIGRATIONS); if !Self::vm_maybe_send_dirty_pages(vm, &mut socket)? { break; } } // Now pause VM vm.pause()?; // Send last batch of dirty pages Self::vm_maybe_send_dirty_pages(vm, &mut socket)?; // Stop logging dirty pages vm.stop_memory_dirty_log()?; // Capture snapshot and send it let vm_snapshot = vm.snapshot()?; let snapshot_data = serde_json::to_vec(&vm_snapshot).unwrap(); Request::state(snapshot_data.len() as u64).write_to(&mut socket)?; socket .write_all(&snapshot_data) .map_err(MigratableError::MigrateSocket)?; let res = Response::read_from(&mut socket)?; if res.status() != Status::Ok { warn!("Error during state migration"); Request::abandon().write_to(&mut socket)?; Response::read_from(&mut socket).ok(); return Err(MigratableError::MigrateSend(anyhow!( "Error during state migration" ))); } // Complete the migration Request::complete().write_to(&mut socket)?; let res = Response::read_from(&mut socket)?; if res.status() != Status::Ok { warn!("Error completing migration"); Request::abandon().write_to(&mut socket)?; Response::read_from(&mut socket).ok(); return Err(MigratableError::MigrateSend(anyhow!( "Error completing migration" ))); } info!("Migration complete"); Ok(()) } else { Err(MigratableError::MigrateSend(anyhow!("VM is not running"))) } } #[cfg(all(feature = "kvm", target_arch = "x86_64"))] fn vm_check_cpuid_compatibility( &self, src_vm_config: &Arc>, src_vm_cpuid: &hypervisor::CpuId, ) -> result::Result<(), MigratableError> { // We check the `CPUID` compatibility of between the source vm and destination, which is // mostly about feature compatibility and "topology/sgx" leaves are not relevant. let dest_cpuid = &{ let vm_config = &src_vm_config.lock().unwrap(); #[cfg(feature = "tdx")] let tdx_enabled = vm_config.tdx.is_some(); let phys_bits = vm::physical_bits( vm_config.cpus.max_phys_bits, #[cfg(feature = "tdx")] tdx_enabled, ); arch::generate_common_cpuid( self.hypervisor.clone(), None, None, phys_bits, vm_config.cpus.kvm_hyperv, #[cfg(feature = "tdx")] tdx_enabled, ) .map_err(|e| { MigratableError::MigrateReceive(anyhow!("Error generating common cpuid: {:?}", e)) })? }; arch::CpuidFeatureEntry::check_cpuid_compatibility(src_vm_cpuid, dest_cpuid).map_err(|e| { MigratableError::MigrateReceive(anyhow!( "Error checking cpu feature compatibility': {:?}", e )) }) } fn control_loop(&mut self, api_receiver: Arc>) -> Result<()> { const EPOLL_EVENTS_LEN: usize = 100; let mut events = vec![epoll::Event::new(epoll::Events::empty(), 0); EPOLL_EVENTS_LEN]; let epoll_fd = self.epoll.as_raw_fd(); 'outer: loop { let num_events = match epoll::wait(epoll_fd, -1, &mut events[..]) { Ok(res) => res, Err(e) => { if e.kind() == io::ErrorKind::Interrupted { // It's well defined from the epoll_wait() syscall // documentation that the epoll loop can be interrupted // before any of the requested events occurred or the // timeout expired. In both those cases, epoll_wait() // returns an error of type EINTR, but this should not // be considered as a regular error. Instead it is more // appropriate to retry, by calling into epoll_wait(). continue; } return Err(Error::Epoll(e)); } }; for event in events.iter().take(num_events) { let dispatch_idx = event.data as usize; if let Some(dispatch_type) = self.epoll.dispatch_table[dispatch_idx] { match dispatch_type { EpollDispatch::Exit => { info!("VM exit event"); // Consume the event. self.exit_evt.read().map_err(Error::EventFdRead)?; self.vmm_shutdown().map_err(Error::VmmShutdown)?; break 'outer; } EpollDispatch::Reset => { info!("VM reset event"); // Consume the event. self.reset_evt.read().map_err(Error::EventFdRead)?; self.vm_reboot().map_err(Error::VmReboot)?; } EpollDispatch::Stdin => { if let Some(ref vm) = self.vm { vm.handle_stdin().map_err(Error::Stdin)?; } } EpollDispatch::ActivateVirtioDevices => { if let Some(ref vm) = self.vm { let count = self.activate_evt.read().map_err(Error::EventFdRead)?; info!( "Trying to activate pending virtio devices: count = {}", count ); vm.activate_virtio_devices() .map_err(Error::ActivateVirtioDevices)?; } } EpollDispatch::Pty => { if let Some(ref vm) = self.vm { vm.handle_pty().map_err(Error::Pty)?; } } EpollDispatch::Api => { // Consume the event. self.api_evt.read().map_err(Error::EventFdRead)?; // Read from the API receiver channel let api_request = api_receiver.recv().map_err(Error::ApiRequestRecv)?; info!("API request event: {:?}", api_request); match api_request { ApiRequest::VmCreate(config, sender) => { let response = self .vm_create(config) .map_err(ApiError::VmCreate) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmDelete(sender) => { let response = self .vm_delete() .map_err(ApiError::VmDelete) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmBoot(sender) => { let response = self .vm_boot() .map_err(ApiError::VmBoot) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmShutdown(sender) => { let response = self .vm_shutdown() .map_err(ApiError::VmShutdown) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmReboot(sender) => { let response = self .vm_reboot() .map_err(ApiError::VmReboot) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmInfo(sender) => { let response = self .vm_info() .map_err(ApiError::VmInfo) .map(ApiResponsePayload::VmInfo); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmmPing(sender) => { let response = ApiResponsePayload::VmmPing(self.vmm_ping()); sender.send(Ok(response)).map_err(Error::ApiResponseSend)?; } ApiRequest::VmPause(sender) => { let response = self .vm_pause() .map_err(ApiError::VmPause) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmResume(sender) => { let response = self .vm_resume() .map_err(ApiError::VmResume) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmSnapshot(snapshot_data, sender) => { let response = self .vm_snapshot(&snapshot_data.destination_url) .map_err(ApiError::VmSnapshot) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmRestore(restore_data, sender) => { let response = self .vm_restore(restore_data.as_ref().clone()) .map_err(ApiError::VmRestore) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmmShutdown(sender) => { let response = self .vmm_shutdown() .map_err(ApiError::VmmShutdown) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; break 'outer; } ApiRequest::VmResize(resize_data, sender) => { let response = self .vm_resize( resize_data.desired_vcpus, resize_data.desired_ram, resize_data.desired_balloon, ) .map_err(ApiError::VmResize) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmResizeZone(resize_zone_data, sender) => { let response = self .vm_resize_zone( resize_zone_data.id.clone(), resize_zone_data.desired_ram, ) .map_err(ApiError::VmResizeZone) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmAddDevice(add_device_data, sender) => { let response = self .vm_add_device(add_device_data.as_ref().clone()) .map_err(ApiError::VmAddDevice) .map(ApiResponsePayload::VmAction); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmRemoveDevice(remove_device_data, sender) => { let response = self .vm_remove_device(remove_device_data.id.clone()) .map_err(ApiError::VmRemoveDevice) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmAddDisk(add_disk_data, sender) => { let response = self .vm_add_disk(add_disk_data.as_ref().clone()) .map_err(ApiError::VmAddDisk) .map(ApiResponsePayload::VmAction); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmAddFs(add_fs_data, sender) => { let response = self .vm_add_fs(add_fs_data.as_ref().clone()) .map_err(ApiError::VmAddFs) .map(ApiResponsePayload::VmAction); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmAddPmem(add_pmem_data, sender) => { let response = self .vm_add_pmem(add_pmem_data.as_ref().clone()) .map_err(ApiError::VmAddPmem) .map(ApiResponsePayload::VmAction); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmAddNet(add_net_data, sender) => { let response = self .vm_add_net(add_net_data.as_ref().clone()) .map_err(ApiError::VmAddNet) .map(ApiResponsePayload::VmAction); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmAddVsock(add_vsock_data, sender) => { let response = self .vm_add_vsock(add_vsock_data.as_ref().clone()) .map_err(ApiError::VmAddVsock) .map(ApiResponsePayload::VmAction); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmCounters(sender) => { let response = self .vm_counters() .map_err(ApiError::VmInfo) .map(ApiResponsePayload::VmAction); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmReceiveMigration(receive_migration_data, sender) => { let response = self .vm_receive_migration( receive_migration_data.as_ref().clone(), ) .map_err(ApiError::VmReceiveMigration) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmSendMigration(send_migration_data, sender) => { let response = self .vm_send_migration(send_migration_data.as_ref().clone()) .map_err(ApiError::VmSendMigration) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } ApiRequest::VmPowerButton(sender) => { let response = self .vm_power_button() .map_err(ApiError::VmPowerButton) .map(|_| ApiResponsePayload::Empty); sender.send(response).map_err(Error::ApiResponseSend)?; } } } } } } } Ok(()) } } const CPU_MANAGER_SNAPSHOT_ID: &str = "cpu-manager"; const MEMORY_MANAGER_SNAPSHOT_ID: &str = "memory-manager"; const DEVICE_MANAGER_SNAPSHOT_ID: &str = "device-manager";