cloud-hypervisor/vm-virtio/src/transport/pci_common_config.rs
Cathy Zhang 14eddf72b4 vm-virtio: Simplify virtio feature handling
Remove duplicated code across the different devices by handling
the virtio feature pages in VirtioDevice itself rather than
in the backends. This works as no virtio devices use feature
bits beyond 64-bits.

Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
2020-02-07 08:32:21 +00:00

345 lines
13 KiB
Rust

// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
extern crate byteorder;
use crate::{Queue, VirtioDevice};
use byteorder::{ByteOrder, LittleEndian};
use std::sync::atomic::{AtomicU16, Ordering};
use std::sync::{Arc, Mutex};
use vm_memory::GuestAddress;
/// Contains the data for reading and writing the common configuration structure of a virtio PCI
/// device.
///
/// * Registers:
/// ** About the whole device.
/// le32 device_feature_select; // 0x00 // read-write
/// le32 device_feature; // 0x04 // read-only for driver
/// le32 driver_feature_select; // 0x08 // read-write
/// le32 driver_feature; // 0x0C // read-write
/// le16 msix_config; // 0x10 // read-write
/// le16 num_queues; // 0x12 // read-only for driver
/// u8 device_status; // 0x14 // read-write (driver_status)
/// u8 config_generation; // 0x15 // read-only for driver
/// ** About a specific virtqueue.
/// le16 queue_select; // 0x16 // read-write
/// le16 queue_size; // 0x18 // read-write, power of 2, or 0.
/// le16 queue_msix_vector; // 0x1A // read-write
/// le16 queue_enable; // 0x1C // read-write (Ready)
/// le16 queue_notify_off; // 0x1E // read-only for driver
/// le64 queue_desc; // 0x20 // read-write
/// le64 queue_avail; // 0x28 // read-write
/// le64 queue_used; // 0x30 // read-write
pub struct VirtioPciCommonConfig {
pub driver_status: u8,
pub config_generation: u8,
pub device_feature_select: u32,
pub driver_feature_select: u32,
pub queue_select: u16,
pub msix_config: Arc<AtomicU16>,
}
impl VirtioPciCommonConfig {
pub fn read(
&mut self,
offset: u64,
data: &mut [u8],
queues: &mut Vec<Queue>,
device: Arc<Mutex<dyn VirtioDevice>>,
) {
assert!(data.len() <= 8);
match data.len() {
1 => {
let v = self.read_common_config_byte(offset);
data[0] = v;
}
2 => {
let v = self.read_common_config_word(offset, queues);
LittleEndian::write_u16(data, v);
}
4 => {
let v = self.read_common_config_dword(offset, device);
LittleEndian::write_u32(data, v);
}
8 => {
let v = self.read_common_config_qword(offset);
LittleEndian::write_u64(data, v);
}
_ => error!("invalid data length for virtio read: len {}", data.len()),
}
}
pub fn write(
&mut self,
offset: u64,
data: &[u8],
queues: &mut Vec<Queue>,
device: Arc<Mutex<dyn VirtioDevice>>,
) {
assert!(data.len() <= 8);
match data.len() {
1 => self.write_common_config_byte(offset, data[0]),
2 => self.write_common_config_word(offset, LittleEndian::read_u16(data), queues),
4 => {
self.write_common_config_dword(offset, LittleEndian::read_u32(data), queues, device)
}
8 => self.write_common_config_qword(offset, LittleEndian::read_u64(data), queues),
_ => error!("invalid data length for virtio write: len {}", data.len()),
}
}
fn read_common_config_byte(&self, offset: u64) -> u8 {
debug!("read_common_config_byte: offset 0x{:x}", offset);
// The driver is only allowed to do aligned, properly sized access.
match offset {
0x14 => self.driver_status,
0x15 => self.config_generation,
_ => {
warn!("invalid virtio config byte read: 0x{:x}", offset);
0
}
}
}
fn write_common_config_byte(&mut self, offset: u64, value: u8) {
debug!("write_common_config_byte: offset 0x{:x}", offset);
match offset {
0x14 => self.driver_status = value,
_ => {
warn!("invalid virtio config byte write: 0x{:x}", offset);
}
}
}
fn read_common_config_word(&self, offset: u64, queues: &[Queue]) -> u16 {
debug!("read_common_config_word: offset 0x{:x}", offset);
match offset {
0x10 => self.msix_config.load(Ordering::SeqCst),
0x12 => queues.len() as u16, // num_queues
0x16 => self.queue_select,
0x18 => self.with_queue(queues, |q| q.size).unwrap_or(0),
0x1a => self.with_queue(queues, |q| q.vector).unwrap_or(0),
0x1c => {
if self.with_queue(queues, |q| q.ready).unwrap_or(false) {
1
} else {
0
}
}
0x1e => self.queue_select, // notify_off
_ => {
warn!("invalid virtio register word read: 0x{:x}", offset);
0
}
}
}
fn write_common_config_word(&mut self, offset: u64, value: u16, queues: &mut Vec<Queue>) {
debug!("write_common_config_word: offset 0x{:x}", offset);
match offset {
0x10 => self.msix_config.store(value, Ordering::SeqCst),
0x16 => self.queue_select = value,
0x18 => self.with_queue_mut(queues, |q| q.size = value),
0x1a => self.with_queue_mut(queues, |q| q.vector = value),
0x1c => self.with_queue_mut(queues, |q| q.enable(value == 1)),
_ => {
warn!("invalid virtio register word write: 0x{:x}", offset);
}
}
}
fn read_common_config_dword(&self, offset: u64, device: Arc<Mutex<dyn VirtioDevice>>) -> u32 {
debug!("read_common_config_dword: offset 0x{:x}", offset);
match offset {
0x00 => self.device_feature_select,
0x04 => {
let locked_device = device.lock().unwrap();
// Only 64 bits of features (2 pages) are defined for now, so limit
// device_feature_select to avoid shifting by 64 or more bits.
if self.device_feature_select < 2 {
(locked_device.features() >> (self.device_feature_select * 32)) as u32
} else {
0
}
}
0x08 => self.driver_feature_select,
_ => {
warn!("invalid virtio register dword read: 0x{:x}", offset);
0
}
}
}
fn write_common_config_dword(
&mut self,
offset: u64,
value: u32,
queues: &mut Vec<Queue>,
device: Arc<Mutex<dyn VirtioDevice>>,
) {
debug!("write_common_config_dword: offset 0x{:x}", offset);
fn hi(v: &mut GuestAddress, x: u32) {
*v = (*v & 0xffff_ffff) | ((u64::from(x)) << 32)
}
fn lo(v: &mut GuestAddress, x: u32) {
*v = (*v & !0xffff_ffff) | (u64::from(x))
}
match offset {
0x00 => self.device_feature_select = value,
0x08 => self.driver_feature_select = value,
0x0c => {
if self.driver_feature_select < 2 {
let mut locked_device = device.lock().unwrap();
locked_device
.ack_features(u64::from(value) << (self.driver_feature_select * 32));
} else {
warn!(
"invalid ack_features (page {}, value 0x{:x})",
self.driver_feature_select, value
);
}
}
0x20 => self.with_queue_mut(queues, |q| lo(&mut q.desc_table, value)),
0x24 => self.with_queue_mut(queues, |q| hi(&mut q.desc_table, value)),
0x28 => self.with_queue_mut(queues, |q| lo(&mut q.avail_ring, value)),
0x2c => self.with_queue_mut(queues, |q| hi(&mut q.avail_ring, value)),
0x30 => self.with_queue_mut(queues, |q| lo(&mut q.used_ring, value)),
0x34 => self.with_queue_mut(queues, |q| hi(&mut q.used_ring, value)),
_ => {
warn!("invalid virtio register dword write: 0x{:x}", offset);
}
}
}
fn read_common_config_qword(&self, _offset: u64) -> u64 {
debug!("read_common_config_qword: offset 0x{:x}", _offset);
0 // Assume the guest has no reason to read write-only registers.
}
fn write_common_config_qword(&mut self, offset: u64, value: u64, queues: &mut Vec<Queue>) {
debug!("write_common_config_qword: offset 0x{:x}", offset);
match offset {
0x20 => self.with_queue_mut(queues, |q| q.desc_table = GuestAddress(value)),
0x28 => self.with_queue_mut(queues, |q| q.avail_ring = GuestAddress(value)),
0x30 => self.with_queue_mut(queues, |q| q.used_ring = GuestAddress(value)),
_ => {
warn!("invalid virtio register qword write: 0x{:x}", offset);
}
}
}
fn with_queue<U, F>(&self, queues: &[Queue], f: F) -> Option<U>
where
F: FnOnce(&Queue) -> U,
{
queues.get(self.queue_select as usize).map(f)
}
fn with_queue_mut<F: FnOnce(&mut Queue)>(&self, queues: &mut Vec<Queue>, f: F) {
if let Some(queue) = queues.get_mut(self.queue_select as usize) {
f(queue);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{ActivateResult, VirtioInterrupt};
use arc_swap::ArcSwap;
use std::sync::Arc;
use vm_memory::GuestMemoryMmap;
use vmm_sys_util::eventfd::EventFd;
struct DummyDevice(u32);
const QUEUE_SIZE: u16 = 256;
const QUEUE_SIZES: &'static [u16] = &[QUEUE_SIZE];
const DUMMY_FEATURES: u64 = 0x5555_aaaa;
impl VirtioDevice for DummyDevice {
fn device_type(&self) -> u32 {
return self.0;
}
fn queue_max_sizes(&self) -> &[u16] {
QUEUE_SIZES
}
fn activate(
&mut self,
_mem: Arc<ArcSwap<GuestMemoryMmap>>,
_interrupt_evt: Arc<dyn VirtioInterrupt>,
_queues: Vec<Queue>,
_queue_evts: Vec<EventFd>,
) -> ActivateResult {
Ok(())
}
fn features(&self) -> u64 {
DUMMY_FEATURES
}
fn ack_features(&mut self, _value: u64) {}
fn read_config(&self, _offset: u64, _data: &mut [u8]) {}
fn write_config(&mut self, _offset: u64, _data: &[u8]) {}
}
#[test]
fn write_base_regs() {
let mut regs = VirtioPciCommonConfig {
driver_status: 0xaa,
config_generation: 0x55,
device_feature_select: 0x0,
driver_feature_select: 0x0,
queue_select: 0xff,
msix_config: Arc::new(AtomicU16::new(0)),
};
let dev = Arc::new(Mutex::new(DummyDevice(0)));
let mut queues = Vec::new();
// Can set all bits of driver_status.
regs.write(0x14, &[0x55], &mut queues, dev.clone());
let mut read_back = vec![0x00];
regs.read(0x14, &mut read_back, &mut queues, dev.clone());
assert_eq!(read_back[0], 0x55);
// The config generation register is read only.
regs.write(0x15, &[0xaa], &mut queues, dev.clone());
let mut read_back = vec![0x00];
regs.read(0x15, &mut read_back, &mut queues, dev.clone());
assert_eq!(read_back[0], 0x55);
// Device features is read-only and passed through from the device.
regs.write(0x04, &[0, 0, 0, 0], &mut queues, dev.clone());
let mut read_back = vec![0, 0, 0, 0];
regs.read(0x04, &mut read_back, &mut queues, dev.clone());
assert_eq!(LittleEndian::read_u32(&read_back), DUMMY_FEATURES as u32);
// Feature select registers are read/write.
regs.write(0x00, &[1, 2, 3, 4], &mut queues, dev.clone());
let mut read_back = vec![0, 0, 0, 0];
regs.read(0x00, &mut read_back, &mut queues, dev.clone());
assert_eq!(LittleEndian::read_u32(&read_back), 0x0403_0201);
regs.write(0x08, &[1, 2, 3, 4], &mut queues, dev.clone());
let mut read_back = vec![0, 0, 0, 0];
regs.read(0x08, &mut read_back, &mut queues, dev.clone());
assert_eq!(LittleEndian::read_u32(&read_back), 0x0403_0201);
// 'queue_select' can be read and written.
regs.write(0x16, &[0xaa, 0x55], &mut queues, dev.clone());
let mut read_back = vec![0x00, 0x00];
regs.read(0x16, &mut read_back, &mut queues, dev.clone());
assert_eq!(read_back[0], 0xaa);
assert_eq!(read_back[1], 0x55);
}
}