mirror of
https://github.com/cloud-hypervisor/cloud-hypervisor.git
synced 2024-11-04 19:11:11 +00:00
2c8045343c
188078467d
made clear that resize should
only happen when dealing with a "dynamic" CpuManager. Although this is
very much correct, it causes a regression on Kata Containers (and on any
other consumer of Cloud Hypervisor) in cases where a resize would be
triggered but the vCPUs values wouldn't be changed.
There's no doubt Kata Containers could do better and do not call a
resize in such situations, and that's something that should **also** be
solved there. However, we should also work this around on Cloud
Hypervisor side as it introduces a regression with the current Kata
Containers code.
Signed-off-by: Fabiano Fidêncio <fabiano.fidencio@intel.com>
2346 lines
85 KiB
Rust
2346 lines
85 KiB
Rust
// Copyright © 2020, Oracle and/or its affiliates.
|
||
//
|
||
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
||
//
|
||
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style license that can be
|
||
// found in the LICENSE-BSD-3-Clause file.
|
||
//
|
||
// Copyright © 2019 Intel Corporation
|
||
//
|
||
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
|
||
//
|
||
|
||
use crate::config::CpusConfig;
|
||
use crate::device_manager::DeviceManager;
|
||
#[cfg(feature = "gdb")]
|
||
use crate::gdb::{get_raw_tid, Debuggable, DebuggableError};
|
||
use crate::memory_manager::MemoryManager;
|
||
use crate::seccomp_filters::{get_seccomp_filter, Thread};
|
||
#[cfg(target_arch = "x86_64")]
|
||
use crate::vm::physical_bits;
|
||
use crate::GuestMemoryMmap;
|
||
use crate::CPU_MANAGER_SNAPSHOT_ID;
|
||
use acpi_tables::{aml, aml::Aml, sdt::Sdt};
|
||
use anyhow::anyhow;
|
||
use arch::EntryPoint;
|
||
use arch::NumaNodes;
|
||
use devices::interrupt_controller::InterruptController;
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
use gdbstub_arch::x86::reg::{X86SegmentRegs, X86_64CoreRegs};
|
||
#[cfg(target_arch = "aarch64")]
|
||
use hypervisor::kvm::kvm_bindings;
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
use hypervisor::x86_64::{SpecialRegisters, StandardRegisters};
|
||
#[cfg(target_arch = "x86_64")]
|
||
use hypervisor::CpuId;
|
||
use hypervisor::{vm::VmmOps, CpuState, HypervisorCpuError, VmExit};
|
||
#[cfg(feature = "tdx")]
|
||
use hypervisor::{TdxExitDetails, TdxExitStatus};
|
||
use libc::{c_void, siginfo_t};
|
||
use seccompiler::{apply_filter, SeccompAction};
|
||
use std::collections::BTreeMap;
|
||
use std::os::unix::thread::JoinHandleExt;
|
||
use std::sync::atomic::{AtomicBool, Ordering};
|
||
use std::sync::{Arc, Barrier, Mutex};
|
||
use std::{cmp, io, result, thread};
|
||
use vm_device::BusDevice;
|
||
use vm_memory::GuestAddress;
|
||
use vm_memory::GuestMemoryAtomic;
|
||
use vm_migration::{
|
||
Migratable, MigratableError, Pausable, Snapshot, SnapshotDataSection, Snapshottable,
|
||
Transportable,
|
||
};
|
||
use vmm_sys_util::eventfd::EventFd;
|
||
use vmm_sys_util::signal::{register_signal_handler, SIGRTMIN};
|
||
|
||
pub const CPU_MANAGER_ACPI_SIZE: usize = 0xc;
|
||
|
||
#[derive(Debug)]
|
||
pub enum Error {
|
||
/// Cannot create the vCPU.
|
||
VcpuCreate(anyhow::Error),
|
||
|
||
/// Cannot run the VCPUs.
|
||
VcpuRun(anyhow::Error),
|
||
|
||
/// Cannot spawn a new vCPU thread.
|
||
VcpuSpawn(io::Error),
|
||
|
||
/// Cannot generate common CPUID
|
||
CommonCpuId(arch::Error),
|
||
|
||
/// Error configuring VCPU
|
||
VcpuConfiguration(arch::Error),
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
/// Error fetching prefered target
|
||
VcpuArmPreferredTarget(hypervisor::HypervisorVmError),
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
/// Error doing vCPU init on Arm.
|
||
VcpuArmInit(hypervisor::HypervisorCpuError),
|
||
|
||
/// Failed to join on vCPU threads
|
||
ThreadCleanup(std::boxed::Box<dyn std::any::Any + std::marker::Send>),
|
||
|
||
/// Cannot add legacy device to Bus.
|
||
BusError(vm_device::BusError),
|
||
|
||
/// Asking for more vCPUs that we can have
|
||
DesiredVCpuCountExceedsMax,
|
||
|
||
/// Cannot create seccomp filter
|
||
CreateSeccompFilter(seccompiler::Error),
|
||
|
||
/// Cannot apply seccomp filter
|
||
ApplySeccompFilter(seccompiler::Error),
|
||
|
||
/// Error starting vCPU after restore
|
||
StartRestoreVcpu(anyhow::Error),
|
||
|
||
/// Error because an unexpected VmExit type was received.
|
||
UnexpectedVmExit,
|
||
|
||
/// Failed to allocate MMIO address
|
||
AllocateMmmioAddress,
|
||
|
||
#[cfg(feature = "tdx")]
|
||
InitializeTdx(hypervisor::HypervisorCpuError),
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
InitPmu(hypervisor::HypervisorCpuError),
|
||
|
||
/// Failed scheduling the thread on the expected CPU set.
|
||
ScheduleCpuSet,
|
||
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
/// Error on debug related CPU ops.
|
||
CpuDebug(hypervisor::HypervisorCpuError),
|
||
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
/// Failed to translate guest virtual address.
|
||
TranslateVirtualAddress(hypervisor::HypervisorCpuError),
|
||
|
||
/// CPU hotplug/unplug not supported
|
||
ResizingNotSupported,
|
||
|
||
#[cfg(all(feature = "amx", target_arch = "x86_64"))]
|
||
/// "Failed to setup AMX.
|
||
AmxEnable(anyhow::Error),
|
||
}
|
||
pub type Result<T> = result::Result<T, Error>;
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
#[allow(dead_code)]
|
||
#[repr(packed)]
|
||
struct LocalApic {
|
||
pub r#type: u8,
|
||
pub length: u8,
|
||
pub processor_id: u8,
|
||
pub apic_id: u8,
|
||
pub flags: u32,
|
||
}
|
||
|
||
#[allow(dead_code)]
|
||
#[repr(packed)]
|
||
#[derive(Default)]
|
||
struct Ioapic {
|
||
pub r#type: u8,
|
||
pub length: u8,
|
||
pub ioapic_id: u8,
|
||
_reserved: u8,
|
||
pub apic_address: u32,
|
||
pub gsi_base: u32,
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
#[allow(dead_code)]
|
||
#[repr(packed)]
|
||
struct GicC {
|
||
pub r#type: u8,
|
||
pub length: u8,
|
||
pub reserved0: u16,
|
||
pub cpu_interface_number: u32,
|
||
pub uid: u32,
|
||
pub flags: u32,
|
||
pub parking_version: u32,
|
||
pub performance_interrupt: u32,
|
||
pub parked_address: u64,
|
||
pub base_address: u64,
|
||
pub gicv_base_address: u64,
|
||
pub gich_base_address: u64,
|
||
pub vgic_interrupt: u32,
|
||
pub gicr_base_address: u64,
|
||
pub mpidr: u64,
|
||
pub proc_power_effi_class: u8,
|
||
pub reserved1: u8,
|
||
pub spe_overflow_interrupt: u16,
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
#[allow(dead_code)]
|
||
#[repr(packed)]
|
||
struct GicD {
|
||
pub r#type: u8,
|
||
pub length: u8,
|
||
pub reserved0: u16,
|
||
pub gic_id: u32,
|
||
pub base_address: u64,
|
||
pub global_irq_base: u32,
|
||
pub version: u8,
|
||
pub reserved1: [u8; 3],
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
#[allow(dead_code)]
|
||
#[repr(packed)]
|
||
struct GicR {
|
||
pub r#type: u8,
|
||
pub length: u8,
|
||
pub reserved: u16,
|
||
pub base_address: u64,
|
||
pub range_length: u32,
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
#[allow(dead_code)]
|
||
#[repr(packed)]
|
||
struct GicIts {
|
||
pub r#type: u8,
|
||
pub length: u8,
|
||
pub reserved0: u16,
|
||
pub translation_id: u32,
|
||
pub base_address: u64,
|
||
pub reserved1: u32,
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
#[allow(dead_code)]
|
||
#[repr(packed)]
|
||
struct ProcessorHierarchyNode {
|
||
pub r#type: u8,
|
||
pub length: u8,
|
||
pub reserved: u16,
|
||
pub flags: u32,
|
||
pub parent: u32,
|
||
pub acpi_processor_id: u32,
|
||
pub num_private_resources: u32,
|
||
}
|
||
|
||
#[allow(dead_code)]
|
||
#[repr(packed)]
|
||
#[derive(Default)]
|
||
struct InterruptSourceOverride {
|
||
pub r#type: u8,
|
||
pub length: u8,
|
||
pub bus: u8,
|
||
pub source: u8,
|
||
pub gsi: u32,
|
||
pub flags: u16,
|
||
}
|
||
|
||
/// A wrapper around creating and using a kvm-based VCPU.
|
||
pub struct Vcpu {
|
||
// The hypervisor abstracted CPU.
|
||
vcpu: Arc<dyn hypervisor::Vcpu>,
|
||
id: u8,
|
||
#[cfg(target_arch = "aarch64")]
|
||
mpidr: u64,
|
||
saved_state: Option<CpuState>,
|
||
}
|
||
|
||
impl Vcpu {
|
||
/// Constructs a new VCPU for `vm`.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `id` - Represents the CPU number between [0, max vcpus).
|
||
/// * `vm` - The virtual machine this vcpu will get attached to.
|
||
/// * `vmmops` - Optional object for exit handling.
|
||
pub fn new(
|
||
id: u8,
|
||
vm: &Arc<dyn hypervisor::Vm>,
|
||
vmmops: Option<Arc<dyn VmmOps>>,
|
||
) -> Result<Self> {
|
||
let vcpu = vm
|
||
.create_vcpu(id, vmmops)
|
||
.map_err(|e| Error::VcpuCreate(e.into()))?;
|
||
// Initially the cpuid per vCPU is the one supported by this VM.
|
||
Ok(Vcpu {
|
||
vcpu,
|
||
id,
|
||
#[cfg(target_arch = "aarch64")]
|
||
mpidr: 0,
|
||
saved_state: None,
|
||
})
|
||
}
|
||
|
||
/// Configures a vcpu and should be called once per vcpu when created.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `kernel_entry_point` - Kernel entry point address in guest memory and boot protocol used.
|
||
/// * `vm_memory` - Guest memory.
|
||
/// * `cpuid` - (x86_64) CpuId, wrapper over the `kvm_cpuid2` structure.
|
||
pub fn configure(
|
||
&mut self,
|
||
#[cfg(target_arch = "aarch64")] vm: &Arc<dyn hypervisor::Vm>,
|
||
kernel_entry_point: Option<EntryPoint>,
|
||
#[cfg(target_arch = "x86_64")] vm_memory: &GuestMemoryAtomic<GuestMemoryMmap>,
|
||
#[cfg(target_arch = "x86_64")] cpuid: CpuId,
|
||
#[cfg(target_arch = "x86_64")] kvm_hyperv: bool,
|
||
) -> Result<()> {
|
||
#[cfg(target_arch = "aarch64")]
|
||
{
|
||
self.init(vm)?;
|
||
self.mpidr = arch::configure_vcpu(&self.vcpu, self.id, kernel_entry_point)
|
||
.map_err(Error::VcpuConfiguration)?;
|
||
}
|
||
info!("Configuring vCPU: cpu_id = {}", self.id);
|
||
#[cfg(target_arch = "x86_64")]
|
||
arch::configure_vcpu(
|
||
&self.vcpu,
|
||
self.id,
|
||
kernel_entry_point,
|
||
vm_memory,
|
||
cpuid,
|
||
kvm_hyperv,
|
||
)
|
||
.map_err(Error::VcpuConfiguration)?;
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Gets the MPIDR register value.
|
||
#[cfg(target_arch = "aarch64")]
|
||
pub fn get_mpidr(&self) -> u64 {
|
||
self.mpidr
|
||
}
|
||
|
||
/// Gets the saved vCPU state.
|
||
#[cfg(target_arch = "aarch64")]
|
||
pub fn get_saved_state(&self) -> Option<CpuState> {
|
||
self.saved_state.clone()
|
||
}
|
||
|
||
/// Initializes an aarch64 specific vcpu for booting Linux.
|
||
#[cfg(target_arch = "aarch64")]
|
||
pub fn init(&self, vm: &Arc<dyn hypervisor::Vm>) -> Result<()> {
|
||
let mut kvi: kvm_bindings::kvm_vcpu_init = kvm_bindings::kvm_vcpu_init::default();
|
||
|
||
// This reads back the kernel's preferred target type.
|
||
vm.get_preferred_target(&mut kvi)
|
||
.map_err(Error::VcpuArmPreferredTarget)?;
|
||
// We already checked that the capability is supported.
|
||
kvi.features[0] |= 1 << kvm_bindings::KVM_ARM_VCPU_PSCI_0_2;
|
||
kvi.features[0] |= 1 << kvm_bindings::KVM_ARM_VCPU_PMU_V3;
|
||
// Non-boot cpus are powered off initially.
|
||
if self.id > 0 {
|
||
kvi.features[0] |= 1 << kvm_bindings::KVM_ARM_VCPU_POWER_OFF;
|
||
}
|
||
self.vcpu.vcpu_init(&kvi).map_err(Error::VcpuArmInit)
|
||
}
|
||
|
||
/// Runs the VCPU until it exits, returning the reason.
|
||
///
|
||
/// Note that the state of the VCPU and associated VM must be setup first for this to do
|
||
/// anything useful.
|
||
pub fn run(&self) -> std::result::Result<VmExit, HypervisorCpuError> {
|
||
self.vcpu.run()
|
||
}
|
||
}
|
||
|
||
const VCPU_SNAPSHOT_ID: &str = "vcpu";
|
||
impl Pausable for Vcpu {
|
||
fn pause(&mut self) -> std::result::Result<(), MigratableError> {
|
||
self.saved_state =
|
||
Some(self.vcpu.state().map_err(|e| {
|
||
MigratableError::Pause(anyhow!("Could not get vCPU state {:?}", e))
|
||
})?);
|
||
|
||
Ok(())
|
||
}
|
||
|
||
fn resume(&mut self) -> std::result::Result<(), MigratableError> {
|
||
if let Some(vcpu_state) = &self.saved_state {
|
||
self.vcpu.set_state(vcpu_state).map_err(|e| {
|
||
MigratableError::Pause(anyhow!("Could not set the vCPU state {:?}", e))
|
||
})?;
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
}
|
||
impl Snapshottable for Vcpu {
|
||
fn id(&self) -> String {
|
||
VCPU_SNAPSHOT_ID.to_string()
|
||
}
|
||
|
||
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
|
||
let mut vcpu_snapshot = Snapshot::new(&format!("{}", self.id));
|
||
vcpu_snapshot.add_data_section(SnapshotDataSection::new_from_state(
|
||
VCPU_SNAPSHOT_ID,
|
||
&self.saved_state,
|
||
)?);
|
||
|
||
Ok(vcpu_snapshot)
|
||
}
|
||
|
||
fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> {
|
||
self.saved_state = Some(snapshot.to_state(VCPU_SNAPSHOT_ID)?);
|
||
Ok(())
|
||
}
|
||
}
|
||
|
||
pub struct CpuManager {
|
||
config: CpusConfig,
|
||
#[cfg_attr(target_arch = "aarch64", allow(dead_code))]
|
||
interrupt_controller: Option<Arc<Mutex<dyn InterruptController>>>,
|
||
#[cfg_attr(target_arch = "aarch64", allow(dead_code))]
|
||
vm_memory: GuestMemoryAtomic<GuestMemoryMmap>,
|
||
#[cfg(target_arch = "x86_64")]
|
||
cpuid: CpuId,
|
||
#[cfg_attr(target_arch = "aarch64", allow(dead_code))]
|
||
vm: Arc<dyn hypervisor::Vm>,
|
||
vcpus_kill_signalled: Arc<AtomicBool>,
|
||
vcpus_pause_signalled: Arc<AtomicBool>,
|
||
exit_evt: EventFd,
|
||
#[cfg_attr(target_arch = "aarch64", allow(dead_code))]
|
||
reset_evt: EventFd,
|
||
#[cfg(feature = "gdb")]
|
||
vm_debug_evt: EventFd,
|
||
vcpu_states: Vec<VcpuState>,
|
||
selected_cpu: u8,
|
||
vcpus: Vec<Arc<Mutex<Vcpu>>>,
|
||
seccomp_action: SeccompAction,
|
||
vmmops: Arc<dyn VmmOps>,
|
||
#[cfg_attr(target_arch = "aarch64", allow(dead_code))]
|
||
acpi_address: Option<GuestAddress>,
|
||
proximity_domain_per_cpu: BTreeMap<u8, u32>,
|
||
affinity: BTreeMap<u8, Vec<u8>>,
|
||
dynamic: bool,
|
||
}
|
||
|
||
const CPU_ENABLE_FLAG: usize = 0;
|
||
const CPU_INSERTING_FLAG: usize = 1;
|
||
const CPU_REMOVING_FLAG: usize = 2;
|
||
const CPU_EJECT_FLAG: usize = 3;
|
||
|
||
const CPU_STATUS_OFFSET: u64 = 4;
|
||
const CPU_SELECTION_OFFSET: u64 = 0;
|
||
|
||
impl BusDevice for CpuManager {
|
||
fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) {
|
||
// The Linux kernel, quite reasonably, doesn't zero the memory it gives us.
|
||
data.fill(0);
|
||
|
||
match offset {
|
||
CPU_SELECTION_OFFSET => {
|
||
data[0] = self.selected_cpu;
|
||
}
|
||
CPU_STATUS_OFFSET => {
|
||
if self.selected_cpu < self.max_vcpus() {
|
||
let state = &self.vcpu_states[usize::from(self.selected_cpu)];
|
||
if state.active() {
|
||
data[0] |= 1 << CPU_ENABLE_FLAG;
|
||
}
|
||
if state.inserting {
|
||
data[0] |= 1 << CPU_INSERTING_FLAG;
|
||
}
|
||
if state.removing {
|
||
data[0] |= 1 << CPU_REMOVING_FLAG;
|
||
}
|
||
} else {
|
||
warn!("Out of range vCPU id: {}", self.selected_cpu);
|
||
}
|
||
}
|
||
_ => {
|
||
warn!(
|
||
"Unexpected offset for accessing CPU manager device: {:#}",
|
||
offset
|
||
);
|
||
}
|
||
}
|
||
}
|
||
|
||
fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
|
||
match offset {
|
||
CPU_SELECTION_OFFSET => {
|
||
self.selected_cpu = data[0];
|
||
}
|
||
CPU_STATUS_OFFSET => {
|
||
if self.selected_cpu < self.max_vcpus() {
|
||
let state = &mut self.vcpu_states[usize::from(self.selected_cpu)];
|
||
// The ACPI code writes back a 1 to acknowledge the insertion
|
||
if (data[0] & (1 << CPU_INSERTING_FLAG) == 1 << CPU_INSERTING_FLAG)
|
||
&& state.inserting
|
||
{
|
||
state.inserting = false;
|
||
}
|
||
// Ditto for removal
|
||
if (data[0] & (1 << CPU_REMOVING_FLAG) == 1 << CPU_REMOVING_FLAG)
|
||
&& state.removing
|
||
{
|
||
state.removing = false;
|
||
}
|
||
// Trigger removal of vCPU
|
||
if data[0] & (1 << CPU_EJECT_FLAG) == 1 << CPU_EJECT_FLAG {
|
||
if let Err(e) = self.remove_vcpu(self.selected_cpu) {
|
||
error!("Error removing vCPU: {:?}", e);
|
||
}
|
||
}
|
||
} else {
|
||
warn!("Out of range vCPU id: {}", self.selected_cpu);
|
||
}
|
||
}
|
||
_ => {
|
||
warn!(
|
||
"Unexpected offset for accessing CPU manager device: {:#}",
|
||
offset
|
||
);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
}
|
||
|
||
#[derive(Default)]
|
||
struct VcpuState {
|
||
inserting: bool,
|
||
removing: bool,
|
||
handle: Option<thread::JoinHandle<()>>,
|
||
kill: Arc<AtomicBool>,
|
||
vcpu_run_interrupted: Arc<AtomicBool>,
|
||
}
|
||
|
||
impl VcpuState {
|
||
fn active(&self) -> bool {
|
||
self.handle.is_some()
|
||
}
|
||
|
||
fn signal_thread(&self) {
|
||
if let Some(handle) = self.handle.as_ref() {
|
||
loop {
|
||
unsafe {
|
||
libc::pthread_kill(handle.as_pthread_t() as _, SIGRTMIN());
|
||
}
|
||
if self.vcpu_run_interrupted.load(Ordering::SeqCst) {
|
||
break;
|
||
} else {
|
||
// This is more effective than thread::yield_now() at
|
||
// avoiding a priority inversion with the vCPU thread
|
||
thread::sleep(std::time::Duration::from_millis(1));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
fn join_thread(&mut self) -> Result<()> {
|
||
if let Some(handle) = self.handle.take() {
|
||
handle.join().map_err(Error::ThreadCleanup)?
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
fn unpark_thread(&self) {
|
||
if let Some(handle) = self.handle.as_ref() {
|
||
handle.thread().unpark()
|
||
}
|
||
}
|
||
}
|
||
|
||
impl CpuManager {
|
||
#[allow(unused_variables)]
|
||
#[allow(clippy::too_many_arguments)]
|
||
pub fn new(
|
||
config: &CpusConfig,
|
||
device_manager: &Arc<Mutex<DeviceManager>>,
|
||
memory_manager: &Arc<Mutex<MemoryManager>>,
|
||
vm: Arc<dyn hypervisor::Vm>,
|
||
exit_evt: EventFd,
|
||
reset_evt: EventFd,
|
||
#[cfg(feature = "gdb")] vm_debug_evt: EventFd,
|
||
hypervisor: Arc<dyn hypervisor::Hypervisor>,
|
||
seccomp_action: SeccompAction,
|
||
vmmops: Arc<dyn VmmOps>,
|
||
#[cfg(feature = "tdx")] tdx_enabled: bool,
|
||
numa_nodes: &NumaNodes,
|
||
) -> Result<Arc<Mutex<CpuManager>>> {
|
||
let guest_memory = memory_manager.lock().unwrap().guest_memory();
|
||
let mut vcpu_states = Vec::with_capacity(usize::from(config.max_vcpus));
|
||
vcpu_states.resize_with(usize::from(config.max_vcpus), VcpuState::default);
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
let sgx_epc_sections = memory_manager
|
||
.lock()
|
||
.unwrap()
|
||
.sgx_epc_region()
|
||
.as_ref()
|
||
.map(|sgx_epc_region| sgx_epc_region.epc_sections().values().cloned().collect());
|
||
#[cfg(target_arch = "x86_64")]
|
||
let cpuid = {
|
||
let phys_bits = physical_bits(config.max_phys_bits);
|
||
arch::generate_common_cpuid(
|
||
hypervisor,
|
||
config
|
||
.topology
|
||
.clone()
|
||
.map(|t| (t.threads_per_core, t.cores_per_die, t.dies_per_package)),
|
||
sgx_epc_sections,
|
||
phys_bits,
|
||
config.kvm_hyperv,
|
||
#[cfg(feature = "tdx")]
|
||
tdx_enabled,
|
||
)
|
||
.map_err(Error::CommonCpuId)?
|
||
};
|
||
#[cfg(all(feature = "amx", target_arch = "x86_64"))]
|
||
if config.features.amx {
|
||
const ARCH_GET_XCOMP_GUEST_PERM: usize = 0x1024;
|
||
const ARCH_REQ_XCOMP_GUEST_PERM: usize = 0x1025;
|
||
const XFEATURE_XTILEDATA: usize = 18;
|
||
const XFEATURE_XTILEDATA_MASK: usize = 1 << XFEATURE_XTILEDATA;
|
||
|
||
// This is safe as the syscall is only modifing kernel internal
|
||
// data structures that the kernel is itself expected to safeguard.
|
||
let amx_tile = unsafe {
|
||
libc::syscall(
|
||
libc::SYS_arch_prctl,
|
||
ARCH_REQ_XCOMP_GUEST_PERM,
|
||
XFEATURE_XTILEDATA,
|
||
)
|
||
};
|
||
|
||
if amx_tile != 0 {
|
||
return Err(Error::AmxEnable(anyhow!("Guest AMX usage not supported")));
|
||
} else {
|
||
// This is safe as the mask being modified (not marked mutable as it is
|
||
// modified in unsafe only which is permitted) isn't in use elsewhere.
|
||
let mask: usize = 0;
|
||
let result = unsafe {
|
||
libc::syscall(libc::SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &mask)
|
||
};
|
||
if result != 0 || (mask & XFEATURE_XTILEDATA_MASK) != XFEATURE_XTILEDATA_MASK {
|
||
return Err(Error::AmxEnable(anyhow!("Guest AMX usage not supported")));
|
||
}
|
||
}
|
||
}
|
||
|
||
let device_manager = device_manager.lock().unwrap();
|
||
|
||
let proximity_domain_per_cpu: BTreeMap<u8, u32> = {
|
||
let mut cpu_list = Vec::new();
|
||
for (proximity_domain, numa_node) in numa_nodes.iter() {
|
||
for cpu in numa_node.cpus.iter() {
|
||
cpu_list.push((*cpu, *proximity_domain))
|
||
}
|
||
}
|
||
cpu_list
|
||
}
|
||
.into_iter()
|
||
.collect();
|
||
|
||
let affinity = if let Some(cpu_affinity) = config.affinity.as_ref() {
|
||
cpu_affinity
|
||
.iter()
|
||
.map(|a| (a.vcpu, a.host_cpus.clone()))
|
||
.collect()
|
||
} else {
|
||
BTreeMap::new()
|
||
};
|
||
|
||
#[cfg(feature = "tdx")]
|
||
let dynamic = !tdx_enabled;
|
||
#[cfg(not(feature = "tdx"))]
|
||
let dynamic = true;
|
||
|
||
let acpi_address = if dynamic {
|
||
Some(
|
||
device_manager
|
||
.allocator()
|
||
.lock()
|
||
.unwrap()
|
||
.allocate_platform_mmio_addresses(None, CPU_MANAGER_ACPI_SIZE as u64, None)
|
||
.ok_or(Error::AllocateMmmioAddress)?,
|
||
)
|
||
} else {
|
||
None
|
||
};
|
||
|
||
let cpu_manager = Arc::new(Mutex::new(CpuManager {
|
||
config: config.clone(),
|
||
interrupt_controller: device_manager.interrupt_controller().clone(),
|
||
vm_memory: guest_memory,
|
||
#[cfg(target_arch = "x86_64")]
|
||
cpuid,
|
||
vm,
|
||
vcpus_kill_signalled: Arc::new(AtomicBool::new(false)),
|
||
vcpus_pause_signalled: Arc::new(AtomicBool::new(false)),
|
||
vcpu_states,
|
||
exit_evt,
|
||
reset_evt,
|
||
#[cfg(feature = "gdb")]
|
||
vm_debug_evt,
|
||
selected_cpu: 0,
|
||
vcpus: Vec::with_capacity(usize::from(config.max_vcpus)),
|
||
seccomp_action,
|
||
vmmops,
|
||
acpi_address,
|
||
proximity_domain_per_cpu,
|
||
affinity,
|
||
dynamic,
|
||
}));
|
||
|
||
if let Some(acpi_address) = acpi_address {
|
||
device_manager
|
||
.mmio_bus()
|
||
.insert(
|
||
cpu_manager.clone(),
|
||
acpi_address.0,
|
||
CPU_MANAGER_ACPI_SIZE as u64,
|
||
)
|
||
.map_err(Error::BusError)?;
|
||
}
|
||
|
||
Ok(cpu_manager)
|
||
}
|
||
|
||
fn create_vcpu(
|
||
&mut self,
|
||
cpu_id: u8,
|
||
entry_point: Option<EntryPoint>,
|
||
snapshot: Option<Snapshot>,
|
||
) -> Result<()> {
|
||
info!("Creating vCPU: cpu_id = {}", cpu_id);
|
||
|
||
let mut vcpu = Vcpu::new(cpu_id, &self.vm, Some(self.vmmops.clone()))?;
|
||
|
||
if let Some(snapshot) = snapshot {
|
||
// AArch64 vCPUs should be initialized after created.
|
||
#[cfg(target_arch = "aarch64")]
|
||
vcpu.init(&self.vm)?;
|
||
|
||
vcpu.restore(snapshot).expect("Failed to restore vCPU");
|
||
} else {
|
||
#[cfg(target_arch = "x86_64")]
|
||
vcpu.configure(
|
||
entry_point,
|
||
&self.vm_memory,
|
||
self.cpuid.clone(),
|
||
self.config.kvm_hyperv,
|
||
)
|
||
.expect("Failed to configure vCPU");
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
vcpu.configure(&self.vm, entry_point)
|
||
.expect("Failed to configure vCPU");
|
||
}
|
||
|
||
// Adding vCPU to the CpuManager's vCPU list.
|
||
let vcpu = Arc::new(Mutex::new(vcpu));
|
||
self.vcpus.push(vcpu);
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Only create new vCPUs if there aren't any inactive ones to reuse
|
||
fn create_vcpus(&mut self, desired_vcpus: u8, entry_point: Option<EntryPoint>) -> Result<()> {
|
||
info!(
|
||
"Request to create new vCPUs: desired = {}, max = {}, allocated = {}, present = {}",
|
||
desired_vcpus,
|
||
self.config.max_vcpus,
|
||
self.vcpus.len(),
|
||
self.present_vcpus()
|
||
);
|
||
|
||
if desired_vcpus > self.config.max_vcpus {
|
||
return Err(Error::DesiredVCpuCountExceedsMax);
|
||
}
|
||
|
||
// Only create vCPUs in excess of all the allocated vCPUs.
|
||
for cpu_id in self.vcpus.len() as u8..desired_vcpus {
|
||
self.create_vcpu(cpu_id, entry_point, None)?;
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
pub fn init_pmu(&self, irq: u32) -> Result<bool> {
|
||
let cpu_attr = kvm_bindings::kvm_device_attr {
|
||
group: kvm_bindings::KVM_ARM_VCPU_PMU_V3_CTRL,
|
||
attr: u64::from(kvm_bindings::KVM_ARM_VCPU_PMU_V3_INIT),
|
||
addr: 0x0,
|
||
flags: 0,
|
||
};
|
||
|
||
for cpu in self.vcpus.iter() {
|
||
let tmp = irq;
|
||
let cpu_attr_irq = kvm_bindings::kvm_device_attr {
|
||
group: kvm_bindings::KVM_ARM_VCPU_PMU_V3_CTRL,
|
||
attr: u64::from(kvm_bindings::KVM_ARM_VCPU_PMU_V3_IRQ),
|
||
addr: &tmp as *const u32 as u64,
|
||
flags: 0,
|
||
};
|
||
|
||
// Check if PMU attr is available, if not, log the information.
|
||
if cpu.lock().unwrap().vcpu.has_vcpu_attr(&cpu_attr).is_ok() {
|
||
// Set irq for PMU
|
||
cpu.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.set_vcpu_attr(&cpu_attr_irq)
|
||
.map_err(Error::InitPmu)?;
|
||
|
||
// Init PMU
|
||
cpu.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.set_vcpu_attr(&cpu_attr)
|
||
.map_err(Error::InitPmu)?;
|
||
} else {
|
||
debug!(
|
||
"PMU attribute is not supported in vCPU{}, skip PMU init!",
|
||
cpu.lock().unwrap().id
|
||
);
|
||
return Ok(false);
|
||
}
|
||
}
|
||
|
||
Ok(true)
|
||
}
|
||
|
||
fn start_vcpu(
|
||
&mut self,
|
||
vcpu: Arc<Mutex<Vcpu>>,
|
||
vcpu_id: u8,
|
||
vcpu_thread_barrier: Arc<Barrier>,
|
||
inserting: bool,
|
||
) -> Result<()> {
|
||
let reset_evt = self.reset_evt.try_clone().unwrap();
|
||
let exit_evt = self.exit_evt.try_clone().unwrap();
|
||
#[cfg(feature = "gdb")]
|
||
let vm_debug_evt = self.vm_debug_evt.try_clone().unwrap();
|
||
let panic_exit_evt = self.exit_evt.try_clone().unwrap();
|
||
let vcpu_kill_signalled = self.vcpus_kill_signalled.clone();
|
||
let vcpu_pause_signalled = self.vcpus_pause_signalled.clone();
|
||
|
||
let vcpu_kill = self.vcpu_states[usize::from(vcpu_id)].kill.clone();
|
||
let vcpu_run_interrupted = self.vcpu_states[usize::from(vcpu_id)]
|
||
.vcpu_run_interrupted
|
||
.clone();
|
||
let panic_vcpu_run_interrupted = vcpu_run_interrupted.clone();
|
||
|
||
// Prepare the CPU set the current vCPU is expected to run onto.
|
||
let cpuset = self.affinity.get(&vcpu_id).map(|host_cpus| {
|
||
let mut cpuset: libc::cpu_set_t = unsafe { std::mem::zeroed() };
|
||
unsafe { libc::CPU_ZERO(&mut cpuset) };
|
||
for host_cpu in host_cpus {
|
||
unsafe { libc::CPU_SET(*host_cpu as usize, &mut cpuset) };
|
||
}
|
||
cpuset
|
||
});
|
||
|
||
// Retrieve seccomp filter for vcpu thread
|
||
let vcpu_seccomp_filter = get_seccomp_filter(&self.seccomp_action, Thread::Vcpu)
|
||
.map_err(Error::CreateSeccompFilter)?;
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
let interrupt_controller_clone = self.interrupt_controller.as_ref().cloned();
|
||
|
||
info!("Starting vCPU: cpu_id = {}", vcpu_id);
|
||
|
||
let handle = Some(
|
||
thread::Builder::new()
|
||
.name(format!("vcpu{}", vcpu_id))
|
||
.spawn(move || {
|
||
// Schedule the thread to run on the expected CPU set
|
||
if let Some(cpuset) = cpuset.as_ref() {
|
||
let ret = unsafe {
|
||
libc::sched_setaffinity(
|
||
0,
|
||
std::mem::size_of::<libc::cpu_set_t>(),
|
||
cpuset as *const libc::cpu_set_t,
|
||
)
|
||
};
|
||
|
||
if ret != 0 {
|
||
error!(
|
||
"Failed scheduling the vCPU {} on the expected CPU set: {}",
|
||
vcpu_id,
|
||
io::Error::last_os_error()
|
||
);
|
||
return;
|
||
}
|
||
}
|
||
|
||
// Apply seccomp filter for vcpu thread.
|
||
if !vcpu_seccomp_filter.is_empty() {
|
||
if let Err(e) =
|
||
apply_filter(&vcpu_seccomp_filter).map_err(Error::ApplySeccompFilter)
|
||
{
|
||
error!("Error applying seccomp filter: {:?}", e);
|
||
return;
|
||
}
|
||
}
|
||
extern "C" fn handle_signal(_: i32, _: *mut siginfo_t, _: *mut c_void) {}
|
||
// This uses an async signal safe handler to kill the vcpu handles.
|
||
register_signal_handler(SIGRTMIN(), handle_signal)
|
||
.expect("Failed to register vcpu signal handler");
|
||
// Block until all CPUs are ready.
|
||
vcpu_thread_barrier.wait();
|
||
|
||
std::panic::catch_unwind(move || {
|
||
loop {
|
||
// If we are being told to pause, we park the thread
|
||
// until the pause boolean is toggled.
|
||
// The resume operation is responsible for toggling
|
||
// the boolean and unpark the thread.
|
||
// We enter a loop because park() could spuriously
|
||
// return. We will then park() again unless the
|
||
// pause boolean has been toggled.
|
||
|
||
// Need to use Ordering::SeqCst as we have multiple
|
||
// loads and stores to different atomics and we need
|
||
// to see them in a consistent order in all threads
|
||
|
||
if vcpu_pause_signalled.load(Ordering::SeqCst) {
|
||
// As a pause can be caused by PIO & MMIO exits then we need to ensure they are
|
||
// completed by returning to KVM_RUN. From the kernel docs:
|
||
//
|
||
// For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR, KVM_EXIT_XEN,
|
||
// KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding
|
||
// operations are complete (and guest state is consistent) only after userspace
|
||
// has re-entered the kernel with KVM_RUN. The kernel side will first finish
|
||
// incomplete operations and then check for pending signals.
|
||
// The pending state of the operation is not preserved in state which is
|
||
// visible to userspace, thus userspace should ensure that the operation is
|
||
// completed before performing a live migration. Userspace can re-enter the
|
||
// guest with an unmasked signal pending or with the immediate_exit field set
|
||
// to complete pending operations without allowing any further instructions
|
||
// to be executed.
|
||
|
||
#[cfg(feature = "kvm")]
|
||
{
|
||
vcpu.lock().as_ref().unwrap().vcpu.set_immediate_exit(true);
|
||
if !matches!(vcpu.lock().unwrap().run(), Ok(VmExit::Ignore)) {
|
||
error!("Unexpected VM exit on \"immediate_exit\" run");
|
||
break;
|
||
}
|
||
vcpu.lock().as_ref().unwrap().vcpu.set_immediate_exit(false);
|
||
}
|
||
|
||
vcpu_run_interrupted.store(true, Ordering::SeqCst);
|
||
while vcpu_pause_signalled.load(Ordering::SeqCst) {
|
||
thread::park();
|
||
}
|
||
vcpu_run_interrupted.store(false, Ordering::SeqCst);
|
||
}
|
||
|
||
// We've been told to terminate
|
||
if vcpu_kill_signalled.load(Ordering::SeqCst)
|
||
|| vcpu_kill.load(Ordering::SeqCst)
|
||
{
|
||
vcpu_run_interrupted.store(true, Ordering::SeqCst);
|
||
break;
|
||
}
|
||
|
||
#[cfg(feature = "tdx")]
|
||
let mut vcpu = vcpu.lock().unwrap();
|
||
#[cfg(not(feature = "tdx"))]
|
||
let vcpu = vcpu.lock().unwrap();
|
||
// vcpu.run() returns false on a triple-fault so trigger a reset
|
||
match vcpu.run() {
|
||
Ok(run) => match run {
|
||
#[cfg(all(target_arch = "x86_64", feature = "kvm"))]
|
||
VmExit::Debug => {
|
||
info!("VmExit::Debug");
|
||
#[cfg(feature = "gdb")]
|
||
{
|
||
vcpu_pause_signalled.store(true, Ordering::SeqCst);
|
||
let raw_tid = get_raw_tid(vcpu_id as usize);
|
||
vm_debug_evt.write(raw_tid as u64).unwrap();
|
||
}
|
||
}
|
||
#[cfg(target_arch = "x86_64")]
|
||
VmExit::IoapicEoi(vector) => {
|
||
if let Some(interrupt_controller) =
|
||
&interrupt_controller_clone
|
||
{
|
||
interrupt_controller
|
||
.lock()
|
||
.unwrap()
|
||
.end_of_interrupt(vector);
|
||
}
|
||
}
|
||
VmExit::Ignore => {}
|
||
VmExit::Hyperv => {}
|
||
VmExit::Reset => {
|
||
info!("VmExit::Reset");
|
||
vcpu_run_interrupted.store(true, Ordering::SeqCst);
|
||
reset_evt.write(1).unwrap();
|
||
break;
|
||
}
|
||
VmExit::Shutdown => {
|
||
info!("VmExit::Shutdown");
|
||
vcpu_run_interrupted.store(true, Ordering::SeqCst);
|
||
exit_evt.write(1).unwrap();
|
||
break;
|
||
}
|
||
#[cfg(feature = "tdx")]
|
||
VmExit::Tdx => {
|
||
if let Some(vcpu_fd) = Arc::get_mut(&mut vcpu.vcpu) {
|
||
match vcpu_fd.get_tdx_exit_details() {
|
||
Ok(details) => match details {
|
||
TdxExitDetails::GetQuote => warn!("TDG_VP_VMCALL_GET_QUOTE not supported"),
|
||
TdxExitDetails::SetupEventNotifyInterrupt => {
|
||
warn!("TDG_VP_VMCALL_SETUP_EVENT_NOTIFY_INTERRUPT not supported")
|
||
}
|
||
},
|
||
Err(e) => error!("Unexpected TDX VMCALL: {}", e),
|
||
}
|
||
vcpu_fd.set_tdx_status(TdxExitStatus::InvalidOperand);
|
||
} else {
|
||
// We should never reach this code as
|
||
// this means the design from the code
|
||
// is wrong.
|
||
unreachable!("Couldn't get a mutable reference from Arc<dyn Vcpu> as there are multiple instances");
|
||
}
|
||
}
|
||
_ => {
|
||
error!(
|
||
"VCPU generated error: {:?}",
|
||
Error::UnexpectedVmExit
|
||
);
|
||
break;
|
||
}
|
||
},
|
||
|
||
Err(e) => {
|
||
error!("VCPU generated error: {:?}", Error::VcpuRun(e.into()));
|
||
break;
|
||
}
|
||
}
|
||
|
||
// We've been told to terminate
|
||
if vcpu_kill_signalled.load(Ordering::SeqCst)
|
||
|| vcpu_kill.load(Ordering::SeqCst)
|
||
{
|
||
vcpu_run_interrupted.store(true, Ordering::SeqCst);
|
||
break;
|
||
}
|
||
}
|
||
})
|
||
.or_else(|_| {
|
||
panic_vcpu_run_interrupted.store(true, Ordering::SeqCst);
|
||
error!("vCPU thread panicked");
|
||
panic_exit_evt.write(1)
|
||
})
|
||
.ok();
|
||
})
|
||
.map_err(Error::VcpuSpawn)?,
|
||
);
|
||
|
||
// On hot plug calls into this function entry_point is None. It is for
|
||
// those hotplug CPU additions that we need to set the inserting flag.
|
||
self.vcpu_states[usize::from(vcpu_id)].handle = handle;
|
||
self.vcpu_states[usize::from(vcpu_id)].inserting = inserting;
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// Start up as many vCPUs threads as needed to reach `desired_vcpus`
|
||
fn activate_vcpus(&mut self, desired_vcpus: u8, inserting: bool) -> Result<()> {
|
||
if desired_vcpus > self.config.max_vcpus {
|
||
return Err(Error::DesiredVCpuCountExceedsMax);
|
||
}
|
||
|
||
let vcpu_thread_barrier = Arc::new(Barrier::new(
|
||
(desired_vcpus - self.present_vcpus() + 1) as usize,
|
||
));
|
||
|
||
info!(
|
||
"Starting vCPUs: desired = {}, allocated = {}, present = {}",
|
||
desired_vcpus,
|
||
self.vcpus.len(),
|
||
self.present_vcpus()
|
||
);
|
||
|
||
// This reuses any inactive vCPUs as well as any that were newly created
|
||
for vcpu_id in self.present_vcpus()..desired_vcpus {
|
||
let vcpu = Arc::clone(&self.vcpus[vcpu_id as usize]);
|
||
self.start_vcpu(vcpu, vcpu_id, vcpu_thread_barrier.clone(), inserting)?;
|
||
}
|
||
|
||
// Unblock all CPU threads.
|
||
vcpu_thread_barrier.wait();
|
||
Ok(())
|
||
}
|
||
|
||
fn mark_vcpus_for_removal(&mut self, desired_vcpus: u8) {
|
||
// Mark vCPUs for removal, actual removal happens on ejection
|
||
for cpu_id in desired_vcpus..self.present_vcpus() {
|
||
self.vcpu_states[usize::from(cpu_id)].removing = true;
|
||
}
|
||
}
|
||
|
||
fn remove_vcpu(&mut self, cpu_id: u8) -> Result<()> {
|
||
info!("Removing vCPU: cpu_id = {}", cpu_id);
|
||
let mut state = &mut self.vcpu_states[usize::from(cpu_id)];
|
||
state.kill.store(true, Ordering::SeqCst);
|
||
state.signal_thread();
|
||
state.join_thread()?;
|
||
state.handle = None;
|
||
|
||
// Once the thread has exited, clear the "kill" so that it can reused
|
||
state.kill.store(false, Ordering::SeqCst);
|
||
|
||
Ok(())
|
||
}
|
||
|
||
pub fn create_boot_vcpus(&mut self, entry_point: Option<EntryPoint>) -> Result<()> {
|
||
self.create_vcpus(self.boot_vcpus(), entry_point)
|
||
}
|
||
|
||
// Starts all the vCPUs that the VM is booting with. Blocks until all vCPUs are running.
|
||
pub fn start_boot_vcpus(&mut self) -> Result<()> {
|
||
self.activate_vcpus(self.boot_vcpus(), false)
|
||
}
|
||
|
||
pub fn start_restored_vcpus(&mut self) -> Result<()> {
|
||
let vcpu_numbers = self.vcpus.len() as u8;
|
||
let vcpu_thread_barrier = Arc::new(Barrier::new((vcpu_numbers + 1) as usize));
|
||
// Restore the vCPUs in "paused" state.
|
||
self.vcpus_pause_signalled.store(true, Ordering::SeqCst);
|
||
|
||
for vcpu_id in 0..vcpu_numbers {
|
||
let vcpu = Arc::clone(&self.vcpus[vcpu_id as usize]);
|
||
|
||
self.start_vcpu(vcpu, vcpu_id, vcpu_thread_barrier.clone(), false)
|
||
.map_err(|e| {
|
||
Error::StartRestoreVcpu(anyhow!("Failed to start restored vCPUs: {:#?}", e))
|
||
})?;
|
||
}
|
||
// Unblock all restored CPU threads.
|
||
vcpu_thread_barrier.wait();
|
||
Ok(())
|
||
}
|
||
|
||
pub fn resize(&mut self, desired_vcpus: u8) -> Result<bool> {
|
||
if desired_vcpus.cmp(&self.present_vcpus()) == cmp::Ordering::Equal {
|
||
return Ok(false);
|
||
}
|
||
|
||
if !self.dynamic {
|
||
return Err(Error::ResizingNotSupported);
|
||
}
|
||
|
||
match desired_vcpus.cmp(&self.present_vcpus()) {
|
||
cmp::Ordering::Greater => {
|
||
self.create_vcpus(desired_vcpus, None)?;
|
||
self.activate_vcpus(desired_vcpus, true)?;
|
||
Ok(true)
|
||
}
|
||
cmp::Ordering::Less => {
|
||
self.mark_vcpus_for_removal(desired_vcpus);
|
||
Ok(true)
|
||
}
|
||
_ => Ok(false),
|
||
}
|
||
}
|
||
|
||
pub fn shutdown(&mut self) -> Result<()> {
|
||
// Tell the vCPUs to stop themselves next time they go through the loop
|
||
self.vcpus_kill_signalled.store(true, Ordering::SeqCst);
|
||
|
||
// Toggle the vCPUs pause boolean
|
||
self.vcpus_pause_signalled.store(false, Ordering::SeqCst);
|
||
|
||
// Unpark all the VCPU threads.
|
||
for state in self.vcpu_states.iter() {
|
||
state.unpark_thread();
|
||
}
|
||
|
||
// Signal to the spawned threads (vCPUs and console signal handler). For the vCPU threads
|
||
// this will interrupt the KVM_RUN ioctl() allowing the loop to check the boolean set
|
||
// above.
|
||
for state in self.vcpu_states.iter() {
|
||
state.signal_thread();
|
||
}
|
||
|
||
// Wait for all the threads to finish. This removes the state from the vector.
|
||
for mut state in self.vcpu_states.drain(..) {
|
||
state.join_thread()?;
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[cfg(feature = "tdx")]
|
||
pub fn initialize_tdx(&self, hob_address: u64) -> Result<()> {
|
||
for vcpu in &self.vcpus {
|
||
vcpu.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.tdx_init(hob_address)
|
||
.map_err(Error::InitializeTdx)?;
|
||
}
|
||
Ok(())
|
||
}
|
||
|
||
pub fn boot_vcpus(&self) -> u8 {
|
||
self.config.boot_vcpus
|
||
}
|
||
|
||
pub fn max_vcpus(&self) -> u8 {
|
||
self.config.max_vcpus
|
||
}
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
pub fn common_cpuid(&self) -> CpuId {
|
||
self.cpuid.clone()
|
||
}
|
||
|
||
fn present_vcpus(&self) -> u8 {
|
||
self.vcpu_states
|
||
.iter()
|
||
.fold(0, |acc, state| acc + state.active() as u8)
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
pub fn get_mpidrs(&self) -> Vec<u64> {
|
||
self.vcpus
|
||
.iter()
|
||
.map(|cpu| cpu.lock().unwrap().get_mpidr())
|
||
.collect()
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
pub fn get_saved_states(&self) -> Vec<CpuState> {
|
||
self.vcpus
|
||
.iter()
|
||
.map(|cpu| cpu.lock().unwrap().get_saved_state().unwrap())
|
||
.collect()
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
pub fn get_vcpu_topology(&self) -> Option<(u8, u8, u8)> {
|
||
self.config
|
||
.topology
|
||
.clone()
|
||
.map(|t| (t.threads_per_core, t.cores_per_die, t.packages))
|
||
}
|
||
|
||
pub fn create_madt(&self) -> Sdt {
|
||
use crate::acpi;
|
||
// This is also checked in the commandline parsing.
|
||
assert!(self.config.boot_vcpus <= self.config.max_vcpus);
|
||
|
||
let mut madt = Sdt::new(*b"APIC", 44, 5, *b"CLOUDH", *b"CHMADT ", 1);
|
||
#[cfg(target_arch = "x86_64")]
|
||
{
|
||
madt.write(36, arch::layout::APIC_START);
|
||
|
||
for cpu in 0..self.config.max_vcpus {
|
||
let lapic = LocalApic {
|
||
r#type: acpi::ACPI_APIC_PROCESSOR,
|
||
length: 8,
|
||
processor_id: cpu,
|
||
apic_id: cpu,
|
||
flags: if cpu < self.config.boot_vcpus {
|
||
1 << MADT_CPU_ENABLE_FLAG
|
||
} else {
|
||
0
|
||
},
|
||
};
|
||
madt.append(lapic);
|
||
}
|
||
|
||
madt.append(Ioapic {
|
||
r#type: acpi::ACPI_APIC_IO,
|
||
length: 12,
|
||
ioapic_id: 0,
|
||
apic_address: arch::layout::IOAPIC_START.0 as u32,
|
||
gsi_base: 0,
|
||
..Default::default()
|
||
});
|
||
|
||
madt.append(InterruptSourceOverride {
|
||
r#type: acpi::ACPI_APIC_XRUPT_OVERRIDE,
|
||
length: 10,
|
||
bus: 0,
|
||
source: 4,
|
||
gsi: 4,
|
||
flags: 0,
|
||
});
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
{
|
||
/* Notes:
|
||
* Ignore Local Interrupt Controller Address at byte offset 36 of MADT table.
|
||
*/
|
||
|
||
// See section 5.2.12.14 GIC CPU Interface (GICC) Structure in ACPI spec.
|
||
for cpu in 0..self.config.boot_vcpus {
|
||
let vcpu = &self.vcpus[cpu as usize];
|
||
let mpidr = vcpu.lock().unwrap().get_mpidr();
|
||
/* ARMv8 MPIDR format:
|
||
Bits [63:40] Must be zero
|
||
Bits [39:32] Aff3 : Match Aff3 of target processor MPIDR
|
||
Bits [31:24] Must be zero
|
||
Bits [23:16] Aff2 : Match Aff2 of target processor MPIDR
|
||
Bits [15:8] Aff1 : Match Aff1 of target processor MPIDR
|
||
Bits [7:0] Aff0 : Match Aff0 of target processor MPIDR
|
||
*/
|
||
let mpidr_mask = 0xff_00ff_ffff;
|
||
let gicc = GicC {
|
||
r#type: acpi::ACPI_APIC_GENERIC_CPU_INTERFACE,
|
||
length: 80,
|
||
reserved0: 0,
|
||
cpu_interface_number: cpu as u32,
|
||
uid: cpu as u32,
|
||
flags: 1,
|
||
parking_version: 0,
|
||
performance_interrupt: 0,
|
||
parked_address: 0,
|
||
base_address: 0,
|
||
gicv_base_address: 0,
|
||
gich_base_address: 0,
|
||
vgic_interrupt: 0,
|
||
gicr_base_address: 0,
|
||
mpidr: mpidr & mpidr_mask,
|
||
proc_power_effi_class: 0,
|
||
reserved1: 0,
|
||
spe_overflow_interrupt: 0,
|
||
};
|
||
|
||
madt.append(gicc);
|
||
}
|
||
|
||
// GIC Distributor structure. See section 5.2.12.15 in ACPI spec.
|
||
let gicd = GicD {
|
||
r#type: acpi::ACPI_APIC_GENERIC_DISTRIBUTOR,
|
||
length: 24,
|
||
reserved0: 0,
|
||
gic_id: 0,
|
||
base_address: arch::layout::MAPPED_IO_START - 0x0001_0000,
|
||
global_irq_base: 0,
|
||
version: 3,
|
||
reserved1: [0; 3],
|
||
};
|
||
madt.append(gicd);
|
||
|
||
// See 5.2.12.17 GIC Redistributor (GICR) Structure in ACPI spec.
|
||
let gicr_size: u32 = 0x0001_0000 * 2 * (self.config.boot_vcpus as u32);
|
||
let gicr_base: u64 = arch::layout::MAPPED_IO_START - 0x0001_0000 - gicr_size as u64;
|
||
let gicr = GicR {
|
||
r#type: acpi::ACPI_APIC_GENERIC_REDISTRIBUTOR,
|
||
length: 16,
|
||
reserved: 0,
|
||
base_address: gicr_base,
|
||
range_length: gicr_size,
|
||
};
|
||
madt.append(gicr);
|
||
|
||
// See 5.2.12.18 GIC Interrupt Translation Service (ITS) Structure in ACPI spec.
|
||
let gicits = GicIts {
|
||
r#type: acpi::ACPI_APIC_GENERIC_TRANSLATOR,
|
||
length: 20,
|
||
reserved0: 0,
|
||
translation_id: 0,
|
||
base_address: gicr_base - 2 * 0x0001_0000,
|
||
reserved1: 0,
|
||
};
|
||
madt.append(gicits);
|
||
|
||
madt.update_checksum();
|
||
}
|
||
|
||
madt
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
pub fn create_pptt(&self) -> Sdt {
|
||
let pptt_start = 0;
|
||
let mut cpus = 0;
|
||
let mut uid = 0;
|
||
// If topology is not specified, the default setting is:
|
||
// 1 package, multiple cores, 1 thread per core
|
||
// This is also the behavior when PPTT is missing.
|
||
let (threads_per_core, cores_per_package, packages) =
|
||
self.get_vcpu_topology().unwrap_or((1, self.max_vcpus(), 1));
|
||
|
||
let mut pptt = Sdt::new(*b"PPTT", 36, 2, *b"CLOUDH", *b"CHPPTT ", 1);
|
||
|
||
for cluster_idx in 0..packages {
|
||
if cpus < self.config.boot_vcpus as usize {
|
||
let cluster_offset = pptt.len() - pptt_start;
|
||
let cluster_hierarchy_node = ProcessorHierarchyNode {
|
||
r#type: 0,
|
||
length: 20,
|
||
reserved: 0,
|
||
flags: 0x2,
|
||
parent: 0,
|
||
acpi_processor_id: cluster_idx as u32,
|
||
num_private_resources: 0,
|
||
};
|
||
pptt.append(cluster_hierarchy_node);
|
||
|
||
for core_idx in 0..cores_per_package {
|
||
let core_offset = pptt.len() - pptt_start;
|
||
|
||
if threads_per_core > 1 {
|
||
let core_hierarchy_node = ProcessorHierarchyNode {
|
||
r#type: 0,
|
||
length: 20,
|
||
reserved: 0,
|
||
flags: 0x2,
|
||
parent: cluster_offset as u32,
|
||
acpi_processor_id: core_idx as u32,
|
||
num_private_resources: 0,
|
||
};
|
||
pptt.append(core_hierarchy_node);
|
||
|
||
for _thread_idx in 0..threads_per_core {
|
||
let thread_hierarchy_node = ProcessorHierarchyNode {
|
||
r#type: 0,
|
||
length: 20,
|
||
reserved: 0,
|
||
flags: 0xE,
|
||
parent: core_offset as u32,
|
||
acpi_processor_id: uid as u32,
|
||
num_private_resources: 0,
|
||
};
|
||
pptt.append(thread_hierarchy_node);
|
||
uid += 1;
|
||
}
|
||
} else {
|
||
let thread_hierarchy_node = ProcessorHierarchyNode {
|
||
r#type: 0,
|
||
length: 20,
|
||
reserved: 0,
|
||
flags: 0xA,
|
||
parent: cluster_offset as u32,
|
||
acpi_processor_id: uid as u32,
|
||
num_private_resources: 0,
|
||
};
|
||
pptt.append(thread_hierarchy_node);
|
||
uid += 1;
|
||
}
|
||
}
|
||
cpus += (cores_per_package * threads_per_core) as usize;
|
||
}
|
||
}
|
||
|
||
pptt.update_checksum();
|
||
pptt
|
||
}
|
||
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
fn get_regs(&self, cpu_id: u8) -> Result<StandardRegisters> {
|
||
self.vcpus[usize::from(cpu_id)]
|
||
.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.get_regs()
|
||
.map_err(Error::CpuDebug)
|
||
}
|
||
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
fn set_regs(&self, cpu_id: u8, regs: &StandardRegisters) -> Result<()> {
|
||
self.vcpus[usize::from(cpu_id)]
|
||
.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.set_regs(regs)
|
||
.map_err(Error::CpuDebug)
|
||
}
|
||
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
fn get_sregs(&self, cpu_id: u8) -> Result<SpecialRegisters> {
|
||
self.vcpus[usize::from(cpu_id)]
|
||
.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.get_sregs()
|
||
.map_err(Error::CpuDebug)
|
||
}
|
||
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
fn set_sregs(&self, cpu_id: u8, sregs: &SpecialRegisters) -> Result<()> {
|
||
self.vcpus[usize::from(cpu_id)]
|
||
.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.set_sregs(sregs)
|
||
.map_err(Error::CpuDebug)
|
||
}
|
||
|
||
#[cfg(all(target_arch = "x86_64", feature = "gdb"))]
|
||
fn translate_gva(&self, cpu_id: u8, gva: u64) -> Result<u64> {
|
||
let (gpa, _) = self.vcpus[usize::from(cpu_id)]
|
||
.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.translate_gva(gva, /* flags: unused */ 0)
|
||
.map_err(Error::TranslateVirtualAddress)?;
|
||
Ok(gpa)
|
||
}
|
||
|
||
pub fn vcpus_paused(&self) -> bool {
|
||
self.vcpus_pause_signalled.load(Ordering::SeqCst)
|
||
}
|
||
}
|
||
|
||
struct Cpu {
|
||
cpu_id: u8,
|
||
proximity_domain: u32,
|
||
dynamic: bool,
|
||
}
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
const MADT_CPU_ENABLE_FLAG: usize = 0;
|
||
|
||
impl Cpu {
|
||
#[cfg(target_arch = "x86_64")]
|
||
fn generate_mat(&self) -> Vec<u8> {
|
||
let lapic = LocalApic {
|
||
r#type: 0,
|
||
length: 8,
|
||
processor_id: self.cpu_id,
|
||
apic_id: self.cpu_id,
|
||
flags: 1 << MADT_CPU_ENABLE_FLAG,
|
||
};
|
||
|
||
let mut mat_data: Vec<u8> = Vec::new();
|
||
mat_data.resize(std::mem::size_of_val(&lapic), 0);
|
||
unsafe { *(mat_data.as_mut_ptr() as *mut LocalApic) = lapic };
|
||
|
||
mat_data
|
||
}
|
||
}
|
||
|
||
impl Aml for Cpu {
|
||
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
|
||
#[cfg(target_arch = "x86_64")]
|
||
let mat_data: Vec<u8> = self.generate_mat();
|
||
#[allow(clippy::if_same_then_else)]
|
||
if self.dynamic {
|
||
aml::Device::new(
|
||
format!("C{:03}", self.cpu_id).as_str().into(),
|
||
vec![
|
||
&aml::Name::new("_HID".into(), &"ACPI0007"),
|
||
&aml::Name::new("_UID".into(), &self.cpu_id),
|
||
// Currently, AArch64 cannot support following fields.
|
||
/*
|
||
_STA return value:
|
||
Bit [0] – Set if the device is present.
|
||
Bit [1] – Set if the device is enabled and decoding its resources.
|
||
Bit [2] – Set if the device should be shown in the UI.
|
||
Bit [3] – Set if the device is functioning properly (cleared if device failed its diagnostics).
|
||
Bit [4] – Set if the battery is present.
|
||
Bits [31:5] – Reserved (must be cleared).
|
||
*/
|
||
#[cfg(target_arch = "x86_64")]
|
||
&aml::Method::new(
|
||
"_STA".into(),
|
||
0,
|
||
false,
|
||
// Call into CSTA method which will interrogate device
|
||
vec![&aml::Return::new(&aml::MethodCall::new(
|
||
"CSTA".into(),
|
||
vec![&self.cpu_id],
|
||
))],
|
||
),
|
||
&aml::Method::new(
|
||
"_PXM".into(),
|
||
0,
|
||
false,
|
||
vec![&aml::Return::new(&self.proximity_domain)],
|
||
),
|
||
// The Linux kernel expects every CPU device to have a _MAT entry
|
||
// containing the LAPIC for this processor with the enabled bit set
|
||
// even it if is disabled in the MADT (non-boot CPU)
|
||
#[cfg(target_arch = "x86_64")]
|
||
&aml::Name::new("_MAT".into(), &aml::Buffer::new(mat_data)),
|
||
// Trigger CPU ejection
|
||
#[cfg(target_arch = "x86_64")]
|
||
&aml::Method::new(
|
||
"_EJ0".into(),
|
||
1,
|
||
false,
|
||
// Call into CEJ0 method which will actually eject device
|
||
vec![&aml::MethodCall::new("CEJ0".into(), vec![&self.cpu_id])],
|
||
),
|
||
],
|
||
)
|
||
.append_aml_bytes(bytes);
|
||
} else {
|
||
aml::Device::new(
|
||
format!("C{:03}", self.cpu_id).as_str().into(),
|
||
vec![
|
||
&aml::Name::new("_HID".into(), &"ACPI0007"),
|
||
&aml::Name::new("_UID".into(), &self.cpu_id),
|
||
#[cfg(target_arch = "x86_64")]
|
||
&aml::Method::new(
|
||
"_STA".into(),
|
||
0,
|
||
false,
|
||
// Mark CPU present see CSTA implementation
|
||
vec![&aml::Return::new(&0xfu8)],
|
||
),
|
||
&aml::Method::new(
|
||
"_PXM".into(),
|
||
0,
|
||
false,
|
||
vec![&aml::Return::new(&self.proximity_domain)],
|
||
),
|
||
// The Linux kernel expects every CPU device to have a _MAT entry
|
||
// containing the LAPIC for this processor with the enabled bit set
|
||
// even it if is disabled in the MADT (non-boot CPU)
|
||
#[cfg(target_arch = "x86_64")]
|
||
&aml::Name::new("_MAT".into(), &aml::Buffer::new(mat_data)),
|
||
],
|
||
)
|
||
.append_aml_bytes(bytes);
|
||
}
|
||
}
|
||
}
|
||
|
||
struct CpuNotify {
|
||
cpu_id: u8,
|
||
}
|
||
|
||
impl Aml for CpuNotify {
|
||
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
|
||
let object = aml::Path::new(&format!("C{:03}", self.cpu_id));
|
||
aml::If::new(
|
||
&aml::Equal::new(&aml::Arg(0), &self.cpu_id),
|
||
vec![&aml::Notify::new(&object, &aml::Arg(1))],
|
||
)
|
||
.append_aml_bytes(bytes)
|
||
}
|
||
}
|
||
|
||
struct CpuMethods {
|
||
max_vcpus: u8,
|
||
dynamic: bool,
|
||
}
|
||
|
||
impl Aml for CpuMethods {
|
||
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
|
||
if self.dynamic {
|
||
// CPU status method
|
||
aml::Method::new(
|
||
"CSTA".into(),
|
||
1,
|
||
true,
|
||
vec![
|
||
// Take lock defined above
|
||
&aml::Acquire::new("\\_SB_.PRES.CPLK".into(), 0xffff),
|
||
// Write CPU number (in first argument) to I/O port via field
|
||
&aml::Store::new(&aml::Path::new("\\_SB_.PRES.CSEL"), &aml::Arg(0)),
|
||
&aml::Store::new(&aml::Local(0), &aml::ZERO),
|
||
// Check if CPEN bit is set, if so make the local variable 0xf (see _STA for details of meaning)
|
||
&aml::If::new(
|
||
&aml::Equal::new(&aml::Path::new("\\_SB_.PRES.CPEN"), &aml::ONE),
|
||
vec![&aml::Store::new(&aml::Local(0), &0xfu8)],
|
||
),
|
||
// Release lock
|
||
&aml::Release::new("\\_SB_.PRES.CPLK".into()),
|
||
// Return 0 or 0xf
|
||
&aml::Return::new(&aml::Local(0)),
|
||
],
|
||
)
|
||
.append_aml_bytes(bytes);
|
||
|
||
let mut cpu_notifies = Vec::new();
|
||
for cpu_id in 0..self.max_vcpus {
|
||
cpu_notifies.push(CpuNotify { cpu_id });
|
||
}
|
||
|
||
let mut cpu_notifies_refs: Vec<&dyn aml::Aml> = Vec::new();
|
||
for cpu_id in 0..self.max_vcpus {
|
||
cpu_notifies_refs.push(&cpu_notifies[usize::from(cpu_id)]);
|
||
}
|
||
|
||
aml::Method::new("CTFY".into(), 2, true, cpu_notifies_refs).append_aml_bytes(bytes);
|
||
|
||
aml::Method::new(
|
||
"CEJ0".into(),
|
||
1,
|
||
true,
|
||
vec![
|
||
&aml::Acquire::new("\\_SB_.PRES.CPLK".into(), 0xffff),
|
||
// Write CPU number (in first argument) to I/O port via field
|
||
&aml::Store::new(&aml::Path::new("\\_SB_.PRES.CSEL"), &aml::Arg(0)),
|
||
// Set CEJ0 bit
|
||
&aml::Store::new(&aml::Path::new("\\_SB_.PRES.CEJ0"), &aml::ONE),
|
||
&aml::Release::new("\\_SB_.PRES.CPLK".into()),
|
||
],
|
||
)
|
||
.append_aml_bytes(bytes);
|
||
|
||
aml::Method::new(
|
||
"CSCN".into(),
|
||
0,
|
||
true,
|
||
vec![
|
||
// Take lock defined above
|
||
&aml::Acquire::new("\\_SB_.PRES.CPLK".into(), 0xffff),
|
||
&aml::Store::new(&aml::Local(0), &aml::ZERO),
|
||
&aml::While::new(
|
||
&aml::LessThan::new(&aml::Local(0), &self.max_vcpus),
|
||
vec![
|
||
// Write CPU number (in first argument) to I/O port via field
|
||
&aml::Store::new(&aml::Path::new("\\_SB_.PRES.CSEL"), &aml::Local(0)),
|
||
// Check if CINS bit is set
|
||
&aml::If::new(
|
||
&aml::Equal::new(&aml::Path::new("\\_SB_.PRES.CINS"), &aml::ONE),
|
||
// Notify device if it is
|
||
vec![
|
||
&aml::MethodCall::new(
|
||
"CTFY".into(),
|
||
vec![&aml::Local(0), &aml::ONE],
|
||
),
|
||
// Reset CINS bit
|
||
&aml::Store::new(
|
||
&aml::Path::new("\\_SB_.PRES.CINS"),
|
||
&aml::ONE,
|
||
),
|
||
],
|
||
),
|
||
// Check if CRMV bit is set
|
||
&aml::If::new(
|
||
&aml::Equal::new(&aml::Path::new("\\_SB_.PRES.CRMV"), &aml::ONE),
|
||
// Notify device if it is (with the eject constant 0x3)
|
||
vec![
|
||
&aml::MethodCall::new(
|
||
"CTFY".into(),
|
||
vec![&aml::Local(0), &3u8],
|
||
),
|
||
// Reset CRMV bit
|
||
&aml::Store::new(
|
||
&aml::Path::new("\\_SB_.PRES.CRMV"),
|
||
&aml::ONE,
|
||
),
|
||
],
|
||
),
|
||
&aml::Add::new(&aml::Local(0), &aml::Local(0), &aml::ONE),
|
||
],
|
||
),
|
||
// Release lock
|
||
&aml::Release::new("\\_SB_.PRES.CPLK".into()),
|
||
],
|
||
)
|
||
.append_aml_bytes(bytes)
|
||
} else {
|
||
aml::Method::new("CSCN".into(), 0, true, vec![]).append_aml_bytes(bytes)
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Aml for CpuManager {
|
||
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
|
||
#[cfg(target_arch = "x86_64")]
|
||
if let Some(acpi_address) = self.acpi_address {
|
||
// CPU hotplug controller
|
||
aml::Device::new(
|
||
"_SB_.PRES".into(),
|
||
vec![
|
||
&aml::Name::new("_HID".into(), &aml::EisaName::new("PNP0A06")),
|
||
&aml::Name::new("_UID".into(), &"CPU Hotplug Controller"),
|
||
// Mutex to protect concurrent access as we write to choose CPU and then read back status
|
||
&aml::Mutex::new("CPLK".into(), 0),
|
||
&aml::Name::new(
|
||
"_CRS".into(),
|
||
&aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory(
|
||
aml::AddressSpaceCachable::NotCacheable,
|
||
true,
|
||
acpi_address.0 as u64,
|
||
acpi_address.0 + CPU_MANAGER_ACPI_SIZE as u64 - 1,
|
||
)]),
|
||
),
|
||
// OpRegion and Fields map MMIO range into individual field values
|
||
&aml::OpRegion::new(
|
||
"PRST".into(),
|
||
aml::OpRegionSpace::SystemMemory,
|
||
acpi_address.0 as usize,
|
||
CPU_MANAGER_ACPI_SIZE,
|
||
),
|
||
&aml::Field::new(
|
||
"PRST".into(),
|
||
aml::FieldAccessType::Byte,
|
||
aml::FieldUpdateRule::WriteAsZeroes,
|
||
vec![
|
||
aml::FieldEntry::Reserved(32),
|
||
aml::FieldEntry::Named(*b"CPEN", 1),
|
||
aml::FieldEntry::Named(*b"CINS", 1),
|
||
aml::FieldEntry::Named(*b"CRMV", 1),
|
||
aml::FieldEntry::Named(*b"CEJ0", 1),
|
||
aml::FieldEntry::Reserved(4),
|
||
aml::FieldEntry::Named(*b"CCMD", 8),
|
||
],
|
||
),
|
||
&aml::Field::new(
|
||
"PRST".into(),
|
||
aml::FieldAccessType::DWord,
|
||
aml::FieldUpdateRule::Preserve,
|
||
vec![
|
||
aml::FieldEntry::Named(*b"CSEL", 32),
|
||
aml::FieldEntry::Reserved(32),
|
||
aml::FieldEntry::Named(*b"CDAT", 32),
|
||
],
|
||
),
|
||
],
|
||
)
|
||
.append_aml_bytes(bytes);
|
||
}
|
||
|
||
// CPU devices
|
||
let hid = aml::Name::new("_HID".into(), &"ACPI0010");
|
||
let uid = aml::Name::new("_CID".into(), &aml::EisaName::new("PNP0A05"));
|
||
// Bundle methods together under a common object
|
||
let methods = CpuMethods {
|
||
max_vcpus: self.config.max_vcpus,
|
||
dynamic: self.dynamic,
|
||
};
|
||
let mut cpu_data_inner: Vec<&dyn aml::Aml> = vec![&hid, &uid, &methods];
|
||
|
||
let mut cpu_devices = Vec::new();
|
||
for cpu_id in 0..self.config.max_vcpus {
|
||
let proximity_domain = *self.proximity_domain_per_cpu.get(&cpu_id).unwrap_or(&0);
|
||
let cpu_device = Cpu {
|
||
cpu_id,
|
||
proximity_domain,
|
||
dynamic: self.dynamic,
|
||
};
|
||
|
||
cpu_devices.push(cpu_device);
|
||
}
|
||
|
||
for cpu_device in cpu_devices.iter() {
|
||
cpu_data_inner.push(cpu_device);
|
||
}
|
||
|
||
aml::Device::new("_SB_.CPUS".into(), cpu_data_inner).append_aml_bytes(bytes)
|
||
}
|
||
}
|
||
|
||
impl Pausable for CpuManager {
|
||
fn pause(&mut self) -> std::result::Result<(), MigratableError> {
|
||
// Tell the vCPUs to pause themselves next time they exit
|
||
self.vcpus_pause_signalled.store(true, Ordering::SeqCst);
|
||
|
||
// Signal to the spawned threads (vCPUs and console signal handler). For the vCPU threads
|
||
// this will interrupt the KVM_RUN ioctl() allowing the loop to check the boolean set
|
||
// above.
|
||
for state in self.vcpu_states.iter() {
|
||
state.signal_thread();
|
||
}
|
||
|
||
for vcpu in self.vcpus.iter() {
|
||
let mut vcpu = vcpu.lock().unwrap();
|
||
vcpu.pause()?;
|
||
#[cfg(all(feature = "kvm", target_arch = "x86_64"))]
|
||
if !self.config.kvm_hyperv {
|
||
vcpu.vcpu.notify_guest_clock_paused().map_err(|e| {
|
||
MigratableError::Pause(anyhow!(
|
||
"Could not notify guest it has been paused {:?}",
|
||
e
|
||
))
|
||
})?;
|
||
}
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
fn resume(&mut self) -> std::result::Result<(), MigratableError> {
|
||
for vcpu in self.vcpus.iter() {
|
||
vcpu.lock().unwrap().resume()?;
|
||
}
|
||
|
||
// Toggle the vCPUs pause boolean
|
||
self.vcpus_pause_signalled.store(false, Ordering::SeqCst);
|
||
|
||
// Unpark all the VCPU threads.
|
||
// Once unparked, the next thing they will do is checking for the pause
|
||
// boolean. Since it'll be set to false, they will exit their pause loop
|
||
// and go back to vmx root.
|
||
for state in self.vcpu_states.iter() {
|
||
state.unpark_thread();
|
||
}
|
||
Ok(())
|
||
}
|
||
}
|
||
|
||
impl Snapshottable for CpuManager {
|
||
fn id(&self) -> String {
|
||
CPU_MANAGER_SNAPSHOT_ID.to_string()
|
||
}
|
||
|
||
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
|
||
let mut cpu_manager_snapshot = Snapshot::new(CPU_MANAGER_SNAPSHOT_ID);
|
||
|
||
// The CpuManager snapshot is a collection of all vCPUs snapshots.
|
||
for vcpu in &self.vcpus {
|
||
let cpu_snapshot = vcpu.lock().unwrap().snapshot()?;
|
||
cpu_manager_snapshot.add_snapshot(cpu_snapshot);
|
||
}
|
||
|
||
Ok(cpu_manager_snapshot)
|
||
}
|
||
|
||
fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> {
|
||
for (cpu_id, snapshot) in snapshot.snapshots.iter() {
|
||
info!("Restoring VCPU {}", cpu_id);
|
||
self.create_vcpu(cpu_id.parse::<u8>().unwrap(), None, Some(*snapshot.clone()))
|
||
.map_err(|e| MigratableError::Restore(anyhow!("Could not create vCPU {:?}", e)))?;
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
}
|
||
|
||
impl Transportable for CpuManager {}
|
||
impl Migratable for CpuManager {}
|
||
|
||
#[cfg(feature = "gdb")]
|
||
impl Debuggable for CpuManager {
|
||
#[cfg(feature = "kvm")]
|
||
fn set_guest_debug(
|
||
&self,
|
||
cpu_id: usize,
|
||
addrs: &[GuestAddress],
|
||
singlestep: bool,
|
||
) -> std::result::Result<(), DebuggableError> {
|
||
self.vcpus[cpu_id]
|
||
.lock()
|
||
.unwrap()
|
||
.vcpu
|
||
.set_guest_debug(addrs, singlestep)
|
||
.map_err(DebuggableError::SetDebug)
|
||
}
|
||
|
||
fn debug_pause(&mut self) -> std::result::Result<(), DebuggableError> {
|
||
Ok(())
|
||
}
|
||
|
||
fn debug_resume(&mut self) -> std::result::Result<(), DebuggableError> {
|
||
Ok(())
|
||
}
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
fn read_regs(&self, cpu_id: usize) -> std::result::Result<X86_64CoreRegs, DebuggableError> {
|
||
// General registers: RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, r8-r15
|
||
let gregs = self
|
||
.get_regs(cpu_id as u8)
|
||
.map_err(DebuggableError::ReadRegs)?;
|
||
let regs = [
|
||
gregs.rax, gregs.rbx, gregs.rcx, gregs.rdx, gregs.rsi, gregs.rdi, gregs.rbp, gregs.rsp,
|
||
gregs.r8, gregs.r9, gregs.r10, gregs.r11, gregs.r12, gregs.r13, gregs.r14, gregs.r15,
|
||
];
|
||
|
||
// GDB exposes 32-bit eflags instead of 64-bit rflags.
|
||
// https://github.com/bminor/binutils-gdb/blob/master/gdb/features/i386/64bit-core.xml
|
||
let eflags = gregs.rflags as u32;
|
||
let rip = gregs.rip;
|
||
|
||
// Segment registers: CS, SS, DS, ES, FS, GS
|
||
let sregs = self
|
||
.get_sregs(cpu_id as u8)
|
||
.map_err(DebuggableError::ReadRegs)?;
|
||
let segments = X86SegmentRegs {
|
||
cs: sregs.cs.selector as u32,
|
||
ss: sregs.ss.selector as u32,
|
||
ds: sregs.ds.selector as u32,
|
||
es: sregs.es.selector as u32,
|
||
fs: sregs.fs.selector as u32,
|
||
gs: sregs.gs.selector as u32,
|
||
};
|
||
|
||
// TODO: Add other registers
|
||
|
||
Ok(X86_64CoreRegs {
|
||
regs,
|
||
eflags,
|
||
rip,
|
||
segments,
|
||
..Default::default()
|
||
})
|
||
}
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
fn write_regs(
|
||
&self,
|
||
cpu_id: usize,
|
||
regs: &X86_64CoreRegs,
|
||
) -> std::result::Result<(), DebuggableError> {
|
||
let orig_gregs = self
|
||
.get_regs(cpu_id as u8)
|
||
.map_err(DebuggableError::ReadRegs)?;
|
||
let gregs = StandardRegisters {
|
||
rax: regs.regs[0],
|
||
rbx: regs.regs[1],
|
||
rcx: regs.regs[2],
|
||
rdx: regs.regs[3],
|
||
rsi: regs.regs[4],
|
||
rdi: regs.regs[5],
|
||
rbp: regs.regs[6],
|
||
rsp: regs.regs[7],
|
||
r8: regs.regs[8],
|
||
r9: regs.regs[9],
|
||
r10: regs.regs[10],
|
||
r11: regs.regs[11],
|
||
r12: regs.regs[12],
|
||
r13: regs.regs[13],
|
||
r14: regs.regs[14],
|
||
r15: regs.regs[15],
|
||
rip: regs.rip,
|
||
// Update the lower 32-bit of rflags.
|
||
rflags: (orig_gregs.rflags & !(u32::MAX as u64)) | (regs.eflags as u64),
|
||
};
|
||
|
||
self.set_regs(cpu_id as u8, &gregs)
|
||
.map_err(DebuggableError::WriteRegs)?;
|
||
|
||
// Segment registers: CS, SS, DS, ES, FS, GS
|
||
// Since GDB care only selectors, we call get_sregs() first.
|
||
let mut sregs = self
|
||
.get_sregs(cpu_id as u8)
|
||
.map_err(DebuggableError::ReadRegs)?;
|
||
sregs.cs.selector = regs.segments.cs as u16;
|
||
sregs.ss.selector = regs.segments.ss as u16;
|
||
sregs.ds.selector = regs.segments.ds as u16;
|
||
sregs.es.selector = regs.segments.es as u16;
|
||
sregs.fs.selector = regs.segments.fs as u16;
|
||
sregs.gs.selector = regs.segments.gs as u16;
|
||
|
||
self.set_sregs(cpu_id as u8, &sregs)
|
||
.map_err(DebuggableError::WriteRegs)?;
|
||
|
||
// TODO: Add other registers
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
fn read_mem(
|
||
&self,
|
||
cpu_id: usize,
|
||
vaddr: GuestAddress,
|
||
len: usize,
|
||
) -> std::result::Result<Vec<u8>, DebuggableError> {
|
||
let mut buf = vec![0; len];
|
||
let mut total_read = 0_u64;
|
||
|
||
while total_read < len as u64 {
|
||
let gaddr = vaddr.0 + total_read;
|
||
let paddr = match self.translate_gva(cpu_id as u8, gaddr) {
|
||
Ok(paddr) => paddr,
|
||
Err(_) if gaddr == u64::MIN => gaddr, // Silently return GVA as GPA if GVA == 0.
|
||
Err(e) => return Err(DebuggableError::TranslateGva(e)),
|
||
};
|
||
let psize = arch::PAGE_SIZE as u64;
|
||
let read_len = std::cmp::min(len as u64 - total_read, psize - (paddr & (psize - 1)));
|
||
self.vmmops
|
||
.guest_mem_read(
|
||
paddr,
|
||
&mut buf[total_read as usize..total_read as usize + read_len as usize],
|
||
)
|
||
.map_err(DebuggableError::ReadMem)?;
|
||
total_read += read_len;
|
||
}
|
||
Ok(buf)
|
||
}
|
||
|
||
#[cfg(target_arch = "x86_64")]
|
||
fn write_mem(
|
||
&self,
|
||
cpu_id: usize,
|
||
vaddr: &GuestAddress,
|
||
data: &[u8],
|
||
) -> std::result::Result<(), DebuggableError> {
|
||
let mut total_written = 0_u64;
|
||
|
||
while total_written < data.len() as u64 {
|
||
let gaddr = vaddr.0 + total_written;
|
||
let paddr = match self.translate_gva(cpu_id as u8, gaddr) {
|
||
Ok(paddr) => paddr,
|
||
Err(_) if gaddr == u64::MIN => gaddr, // Silently return GVA as GPA if GVA == 0.
|
||
Err(e) => return Err(DebuggableError::TranslateGva(e)),
|
||
};
|
||
let psize = arch::PAGE_SIZE as u64;
|
||
let write_len = std::cmp::min(
|
||
data.len() as u64 - total_written,
|
||
psize - (paddr & (psize - 1)),
|
||
);
|
||
self.vmmops
|
||
.guest_mem_write(
|
||
paddr,
|
||
&data[total_written as usize..total_written as usize + write_len as usize],
|
||
)
|
||
.map_err(DebuggableError::WriteMem)?;
|
||
total_written += write_len;
|
||
}
|
||
Ok(())
|
||
}
|
||
|
||
fn active_vcpus(&self) -> usize {
|
||
self.present_vcpus() as usize
|
||
}
|
||
}
|
||
|
||
#[cfg(all(feature = "kvm", target_arch = "x86_64"))]
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use arch::x86_64::interrupts::*;
|
||
use arch::x86_64::regs::*;
|
||
use hypervisor::x86_64::{FpuState, LapicState, StandardRegisters};
|
||
|
||
#[test]
|
||
fn test_setlint() {
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().expect("new VM fd creation failed");
|
||
assert!(hv.check_required_extensions().is_ok());
|
||
// Calling get_lapic will fail if there is no irqchip before hand.
|
||
assert!(vm.create_irq_chip().is_ok());
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
let klapic_before: LapicState = vcpu.get_lapic().unwrap();
|
||
|
||
// Compute the value that is expected to represent LVT0 and LVT1.
|
||
let lint0 = get_klapic_reg(&klapic_before, APIC_LVT0);
|
||
let lint1 = get_klapic_reg(&klapic_before, APIC_LVT1);
|
||
let lint0_mode_expected = set_apic_delivery_mode(lint0, APIC_MODE_EXTINT);
|
||
let lint1_mode_expected = set_apic_delivery_mode(lint1, APIC_MODE_NMI);
|
||
|
||
set_lint(&vcpu).unwrap();
|
||
|
||
// Compute the value that represents LVT0 and LVT1 after set_lint.
|
||
let klapic_actual: LapicState = vcpu.get_lapic().unwrap();
|
||
let lint0_mode_actual = get_klapic_reg(&klapic_actual, APIC_LVT0);
|
||
let lint1_mode_actual = get_klapic_reg(&klapic_actual, APIC_LVT1);
|
||
assert_eq!(lint0_mode_expected, lint0_mode_actual);
|
||
assert_eq!(lint1_mode_expected, lint1_mode_actual);
|
||
}
|
||
|
||
#[test]
|
||
fn test_setup_fpu() {
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().expect("new VM fd creation failed");
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
setup_fpu(&vcpu).unwrap();
|
||
|
||
let expected_fpu: FpuState = FpuState {
|
||
fcw: 0x37f,
|
||
mxcsr: 0x1f80,
|
||
..Default::default()
|
||
};
|
||
let actual_fpu: FpuState = vcpu.get_fpu().unwrap();
|
||
// TODO: auto-generate kvm related structures with PartialEq on.
|
||
assert_eq!(expected_fpu.fcw, actual_fpu.fcw);
|
||
// Setting the mxcsr register from FpuState inside setup_fpu does not influence anything.
|
||
// See 'kvm_arch_vcpu_ioctl_set_fpu' from arch/x86/kvm/x86.c.
|
||
// The mxcsr will stay 0 and the assert below fails. Decide whether or not we should
|
||
// remove it at all.
|
||
// assert!(expected_fpu.mxcsr == actual_fpu.mxcsr);
|
||
}
|
||
|
||
#[test]
|
||
fn test_setup_msrs() {
|
||
use hypervisor::arch::x86::msr_index;
|
||
use hypervisor::x86_64::{MsrEntries, MsrEntry};
|
||
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().expect("new VM fd creation failed");
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
setup_msrs(&vcpu).unwrap();
|
||
|
||
// This test will check against the last MSR entry configured (the tenth one).
|
||
// See create_msr_entries for details.
|
||
let mut msrs = MsrEntries::from_entries(&[MsrEntry {
|
||
index: msr_index::MSR_IA32_MISC_ENABLE,
|
||
..Default::default()
|
||
}])
|
||
.unwrap();
|
||
|
||
// get_msrs returns the number of msrs that it succeed in reading. We only want to read 1
|
||
// in this test case scenario.
|
||
let read_msrs = vcpu.get_msrs(&mut msrs).unwrap();
|
||
assert_eq!(read_msrs, 1);
|
||
|
||
// Official entries that were setup when we did setup_msrs. We need to assert that the
|
||
// tenth one (i.e the one with index msr_index::MSR_IA32_MISC_ENABLE has the data we
|
||
// expect.
|
||
let entry_vec = hypervisor::x86_64::boot_msr_entries();
|
||
assert_eq!(entry_vec.as_slice()[9], msrs.as_slice()[0]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_setup_regs() {
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().expect("new VM fd creation failed");
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
|
||
let expected_regs: StandardRegisters = StandardRegisters {
|
||
rflags: 0x0000000000000002u64,
|
||
rbx: arch::layout::PVH_INFO_START.0,
|
||
rip: 1,
|
||
..Default::default()
|
||
};
|
||
|
||
setup_regs(&vcpu, expected_regs.rip).unwrap();
|
||
|
||
let actual_regs: StandardRegisters = vcpu.get_regs().unwrap();
|
||
assert_eq!(actual_regs, expected_regs);
|
||
}
|
||
}
|
||
|
||
#[cfg(target_arch = "aarch64")]
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use arch::aarch64::regs::*;
|
||
use hypervisor::kvm::aarch64::{is_system_register, MPIDR_EL1};
|
||
use hypervisor::kvm::kvm_bindings::{
|
||
kvm_one_reg, kvm_regs, kvm_vcpu_init, user_pt_regs, KVM_REG_ARM64, KVM_REG_ARM64_SYSREG,
|
||
KVM_REG_ARM_CORE, KVM_REG_SIZE_U64,
|
||
};
|
||
use hypervisor::{arm64_core_reg_id, offset__of};
|
||
use std::mem;
|
||
|
||
#[test]
|
||
fn test_setup_regs() {
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().unwrap();
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
|
||
let res = setup_regs(&vcpu, 0, 0x0);
|
||
// Must fail when vcpu is not initialized yet.
|
||
assert!(res.is_err());
|
||
|
||
let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default();
|
||
vm.get_preferred_target(&mut kvi).unwrap();
|
||
vcpu.vcpu_init(&kvi).unwrap();
|
||
|
||
assert!(setup_regs(&vcpu, 0, 0x0).is_ok());
|
||
}
|
||
|
||
#[test]
|
||
fn test_read_mpidr() {
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().unwrap();
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default();
|
||
vm.get_preferred_target(&mut kvi).unwrap();
|
||
|
||
// Must fail when vcpu is not initialized yet.
|
||
assert!(vcpu.read_mpidr().is_err());
|
||
|
||
vcpu.vcpu_init(&kvi).unwrap();
|
||
assert_eq!(vcpu.read_mpidr().unwrap(), 0x80000000);
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_system_register() {
|
||
let offset = offset__of!(user_pt_regs, pc);
|
||
let regid = arm64_core_reg_id!(KVM_REG_SIZE_U64, offset);
|
||
assert!(!is_system_register(regid));
|
||
let regid = KVM_REG_ARM64 as u64 | KVM_REG_SIZE_U64 as u64 | KVM_REG_ARM64_SYSREG as u64;
|
||
assert!(is_system_register(regid));
|
||
}
|
||
|
||
#[test]
|
||
fn test_save_restore_core_regs() {
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().unwrap();
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default();
|
||
vm.get_preferred_target(&mut kvi).unwrap();
|
||
|
||
// Must fail when vcpu is not initialized yet.
|
||
let mut state = kvm_regs::default();
|
||
let res = vcpu.core_registers(&mut state);
|
||
assert!(res.is_err());
|
||
assert_eq!(
|
||
format!("{}", res.unwrap_err()),
|
||
"Failed to get core register: Exec format error (os error 8)"
|
||
);
|
||
|
||
let res = vcpu.set_core_registers(&state);
|
||
assert!(res.is_err());
|
||
assert_eq!(
|
||
format!("{}", res.unwrap_err()),
|
||
"Failed to set core register: Exec format error (os error 8)"
|
||
);
|
||
|
||
vcpu.vcpu_init(&kvi).unwrap();
|
||
assert!(vcpu.core_registers(&mut state).is_ok());
|
||
assert_eq!(state.regs.pstate, 0x3C5);
|
||
|
||
assert!(vcpu.set_core_registers(&state).is_ok());
|
||
let off = offset__of!(user_pt_regs, pstate);
|
||
let pstate = vcpu
|
||
.get_reg(arm64_core_reg_id!(KVM_REG_SIZE_U64, off))
|
||
.expect("Failed to call kvm get one reg");
|
||
assert_eq!(state.regs.pstate, pstate);
|
||
}
|
||
|
||
#[test]
|
||
fn test_save_restore_system_regs() {
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().unwrap();
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default();
|
||
vm.get_preferred_target(&mut kvi).unwrap();
|
||
|
||
// Must fail when vcpu is not initialized yet.
|
||
let mut state: Vec<kvm_one_reg> = Vec::new();
|
||
let res = vcpu.system_registers(&mut state);
|
||
assert!(res.is_err());
|
||
assert_eq!(
|
||
format!("{}", res.unwrap_err()),
|
||
"Failed to retrieve list of registers: Exec format error (os error 8)"
|
||
);
|
||
|
||
state.push(kvm_one_reg {
|
||
id: MPIDR_EL1,
|
||
addr: 0x00,
|
||
});
|
||
let res = vcpu.set_system_registers(&state);
|
||
assert!(res.is_err());
|
||
assert_eq!(
|
||
format!("{}", res.unwrap_err()),
|
||
"Failed to set system register: Exec format error (os error 8)"
|
||
);
|
||
|
||
vcpu.vcpu_init(&kvi).unwrap();
|
||
assert!(vcpu.system_registers(&mut state).is_ok());
|
||
let initial_mpidr: u64 = vcpu.read_mpidr().expect("Fail to read mpidr");
|
||
assert!(state.contains(&kvm_one_reg {
|
||
id: MPIDR_EL1,
|
||
addr: initial_mpidr
|
||
}));
|
||
|
||
assert!(vcpu.set_system_registers(&state).is_ok());
|
||
let mpidr: u64 = vcpu.read_mpidr().expect("Fail to read mpidr");
|
||
assert_eq!(initial_mpidr, mpidr);
|
||
}
|
||
|
||
#[test]
|
||
fn test_get_set_mpstate() {
|
||
let hv = hypervisor::new().unwrap();
|
||
let vm = hv.create_vm().unwrap();
|
||
let vcpu = vm.create_vcpu(0, None).unwrap();
|
||
let mut kvi: kvm_vcpu_init = kvm_vcpu_init::default();
|
||
vm.get_preferred_target(&mut kvi).unwrap();
|
||
|
||
let res = vcpu.get_mp_state();
|
||
assert!(res.is_ok());
|
||
assert!(vcpu.set_mp_state(res.unwrap()).is_ok());
|
||
}
|
||
}
|