Wei Liu 32482f6634 block: make available VIRTIO_BLK_F_SEG_MAX
This allows the guest to put in more than one segment per request. It
can improve the throughput of the system.

Introduce a new check to make sure the queue size configured by the user
is large enough to hold at least one segment.

Signed-off-by: Wei Liu <liuwe@microsoft.com>
2025-01-01 18:50:39 +00:00

947 lines
35 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2020 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
use std::collections::{BTreeMap, HashMap, VecDeque};
use std::num::Wrapping;
use std::ops::Deref;
use std::os::unix::io::AsRawFd;
use std::path::PathBuf;
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
use std::sync::{Arc, Barrier};
use std::{io, result};
use anyhow::anyhow;
use block::async_io::{AsyncIo, AsyncIoError, DiskFile};
use block::{build_serial, Request, RequestType, VirtioBlockConfig};
use rate_limiter::group::{RateLimiterGroup, RateLimiterGroupHandle};
use rate_limiter::TokenType;
use seccompiler::SeccompAction;
use serde::{Deserialize, Serialize};
use thiserror::Error;
use virtio_bindings::virtio_blk::*;
use virtio_bindings::virtio_config::*;
use virtio_bindings::virtio_ring::{VIRTIO_RING_F_EVENT_IDX, VIRTIO_RING_F_INDIRECT_DESC};
use virtio_queue::{Queue, QueueOwnedT, QueueT};
use vm_memory::{ByteValued, Bytes, GuestAddressSpace, GuestMemoryAtomic, GuestMemoryError};
use vm_migration::{Migratable, MigratableError, Pausable, Snapshot, Snapshottable, Transportable};
use vm_virtio::AccessPlatform;
use vmm_sys_util::eventfd::EventFd;
use super::{
ActivateError, ActivateResult, EpollHelper, EpollHelperError, EpollHelperHandler,
Error as DeviceError, VirtioCommon, VirtioDevice, VirtioDeviceType, VirtioInterruptType,
EPOLL_HELPER_EVENT_LAST,
};
use crate::seccomp_filters::Thread;
use crate::thread_helper::spawn_virtio_thread;
use crate::{GuestMemoryMmap, VirtioInterrupt};
const SECTOR_SHIFT: u8 = 9;
pub const SECTOR_SIZE: u64 = 0x01 << SECTOR_SHIFT;
// New descriptors are pending on the virtio queue.
const QUEUE_AVAIL_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 1;
// New completed tasks are pending on the completion ring.
const COMPLETION_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 2;
// New 'wake up' event from the rate limiter
const RATE_LIMITER_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 3;
// latency scale, for reduce precision loss in calculate.
const LATENCY_SCALE: u64 = 10000;
pub const MINIMUM_BLOCK_QUEUE_SIZE: u16 = 2;
#[derive(Error, Debug)]
pub enum Error {
#[error("Failed to parse the request: {0}")]
RequestParsing(block::Error),
#[error("Failed to execute the request: {0}")]
RequestExecuting(block::ExecuteError),
#[error("Failed to complete the request: {0}")]
RequestCompleting(block::Error),
#[error("Missing the expected entry in the list of requests")]
MissingEntryRequestList,
#[error("The asynchronous request returned with failure")]
AsyncRequestFailure,
#[error("Failed synchronizing the file: {0}")]
Fsync(AsyncIoError),
#[error("Failed adding used index: {0}")]
QueueAddUsed(virtio_queue::Error),
#[error("Failed creating an iterator over the queue: {0}")]
QueueIterator(virtio_queue::Error),
#[error("Failed to update request status: {0}")]
RequestStatus(GuestMemoryError),
#[error("Failed to enable notification: {0}")]
QueueEnableNotification(virtio_queue::Error),
}
pub type Result<T> = result::Result<T, Error>;
// latency will be records as microseconds, average latency
// will be save as scaled value.
#[derive(Clone)]
pub struct BlockCounters {
read_bytes: Arc<AtomicU64>,
read_ops: Arc<AtomicU64>,
read_latency_min: Arc<AtomicU64>,
read_latency_max: Arc<AtomicU64>,
read_latency_avg: Arc<AtomicU64>,
write_bytes: Arc<AtomicU64>,
write_ops: Arc<AtomicU64>,
write_latency_min: Arc<AtomicU64>,
write_latency_max: Arc<AtomicU64>,
write_latency_avg: Arc<AtomicU64>,
}
impl Default for BlockCounters {
fn default() -> Self {
BlockCounters {
read_bytes: Arc::new(AtomicU64::new(0)),
read_ops: Arc::new(AtomicU64::new(0)),
read_latency_min: Arc::new(AtomicU64::new(u64::MAX)),
read_latency_max: Arc::new(AtomicU64::new(u64::MAX)),
read_latency_avg: Arc::new(AtomicU64::new(u64::MAX)),
write_bytes: Arc::new(AtomicU64::new(0)),
write_ops: Arc::new(AtomicU64::new(0)),
write_latency_min: Arc::new(AtomicU64::new(u64::MAX)),
write_latency_max: Arc::new(AtomicU64::new(u64::MAX)),
write_latency_avg: Arc::new(AtomicU64::new(u64::MAX)),
}
}
}
struct BlockEpollHandler {
queue_index: u16,
queue: Queue,
mem: GuestMemoryAtomic<GuestMemoryMmap>,
disk_image: Box<dyn AsyncIo>,
disk_nsectors: u64,
interrupt_cb: Arc<dyn VirtioInterrupt>,
serial: Vec<u8>,
kill_evt: EventFd,
pause_evt: EventFd,
writeback: Arc<AtomicBool>,
counters: BlockCounters,
queue_evt: EventFd,
inflight_requests: VecDeque<(u16, Request)>,
rate_limiter: Option<RateLimiterGroupHandle>,
access_platform: Option<Arc<dyn AccessPlatform>>,
read_only: bool,
host_cpus: Option<Vec<usize>>,
}
impl BlockEpollHandler {
fn process_queue_submit(&mut self) -> Result<()> {
let queue = &mut self.queue;
while let Some(mut desc_chain) = queue.pop_descriptor_chain(self.mem.memory()) {
let mut request = Request::parse(&mut desc_chain, self.access_platform.as_ref())
.map_err(Error::RequestParsing)?;
// For virtio spec compliance
// "A device MUST set the status byte to VIRTIO_BLK_S_IOERR for a write request
// if the VIRTIO_BLK_F_RO feature if offered, and MUST NOT write any data."
if self.read_only
&& (request.request_type == RequestType::Out
|| request.request_type == RequestType::Flush)
{
desc_chain
.memory()
.write_obj(VIRTIO_BLK_S_IOERR, request.status_addr)
.map_err(Error::RequestStatus)?;
// If no asynchronous operation has been submitted, we can
// simply return the used descriptor.
queue
.add_used(desc_chain.memory(), desc_chain.head_index(), 0)
.map_err(Error::QueueAddUsed)?;
queue
.enable_notification(self.mem.memory().deref())
.map_err(Error::QueueEnableNotification)?;
continue;
}
if let Some(rate_limiter) = &mut self.rate_limiter {
// If limiter.consume() fails it means there is no more TokenType::Ops
// budget and rate limiting is in effect.
if !rate_limiter.consume(1, TokenType::Ops) {
// Stop processing the queue and return this descriptor chain to the
// avail ring, for later processing.
queue.go_to_previous_position();
break;
}
// Exercise the rate limiter only if this request is of data transfer type.
if request.request_type == RequestType::In
|| request.request_type == RequestType::Out
{
let mut bytes = Wrapping(0);
for (_, data_len) in &request.data_descriptors {
bytes += Wrapping(*data_len as u64);
}
// If limiter.consume() fails it means there is no more TokenType::Bytes
// budget and rate limiting is in effect.
if !rate_limiter.consume(bytes.0, TokenType::Bytes) {
// Revert the OPS consume().
rate_limiter.manual_replenish(1, TokenType::Ops);
// Stop processing the queue and return this descriptor chain to the
// avail ring, for later processing.
queue.go_to_previous_position();
break;
}
};
}
request.set_writeback(self.writeback.load(Ordering::Acquire));
if request
.execute_async(
desc_chain.memory(),
self.disk_nsectors,
self.disk_image.as_mut(),
&self.serial,
desc_chain.head_index() as u64,
)
.map_err(Error::RequestExecuting)?
{
self.inflight_requests
.push_back((desc_chain.head_index(), request));
} else {
desc_chain
.memory()
.write_obj(VIRTIO_BLK_S_OK as u8, request.status_addr)
.map_err(Error::RequestStatus)?;
// If no asynchronous operation has been submitted, we can
// simply return the used descriptor.
queue
.add_used(desc_chain.memory(), desc_chain.head_index(), 0)
.map_err(Error::QueueAddUsed)?;
queue
.enable_notification(self.mem.memory().deref())
.map_err(Error::QueueEnableNotification)?;
}
}
Ok(())
}
fn try_signal_used_queue(&mut self) -> result::Result<(), EpollHelperError> {
if self
.queue
.needs_notification(self.mem.memory().deref())
.map_err(|e| {
EpollHelperError::HandleEvent(anyhow!(
"Failed to check needs_notification: {:?}",
e
))
})?
{
self.signal_used_queue().map_err(|e| {
EpollHelperError::HandleEvent(anyhow!("Failed to signal used queue: {:?}", e))
})?;
}
Ok(())
}
fn process_queue_submit_and_signal(&mut self) -> result::Result<(), EpollHelperError> {
self.process_queue_submit().map_err(|e| {
EpollHelperError::HandleEvent(anyhow!("Failed to process queue (submit): {:?}", e))
})?;
self.try_signal_used_queue()
}
#[inline]
fn find_inflight_request(&mut self, completed_head: u16) -> Result<Request> {
// This loop neatly handles the fast path where the completions are
// in order (it turns into just a pop_front()) and the 1% of the time
// (analysis during boot) where slight out of ordering has been
// observed e.g.
// Submissions: 1 2 3 4 5 6 7
// Completions: 2 1 3 5 4 7 6
// In this case find the corresponding item and swap it with the front
// This is a O(1) operation and is prepared for the future as it it likely
// the next completion would be for the one that was skipped which will
// now be the new front.
for (i, (head, _)) in self.inflight_requests.iter().enumerate() {
if head == &completed_head {
return Ok(self.inflight_requests.swap_remove_front(i).unwrap().1);
}
}
Err(Error::MissingEntryRequestList)
}
fn process_queue_complete(&mut self) -> Result<()> {
let mem = self.mem.memory();
let mut read_bytes = Wrapping(0);
let mut write_bytes = Wrapping(0);
let mut read_ops = Wrapping(0);
let mut write_ops = Wrapping(0);
while let Some((user_data, result)) = self.disk_image.next_completed_request() {
let desc_index = user_data as u16;
let mut request = self.find_inflight_request(desc_index)?;
request.complete_async().map_err(Error::RequestCompleting)?;
let latency = request.start.elapsed().as_micros() as u64;
let read_ops_last = self.counters.read_ops.load(Ordering::Relaxed);
let write_ops_last = self.counters.write_ops.load(Ordering::Relaxed);
let read_max = self.counters.read_latency_max.load(Ordering::Relaxed);
let write_max = self.counters.write_latency_max.load(Ordering::Relaxed);
let mut read_avg = self.counters.read_latency_avg.load(Ordering::Relaxed);
let mut write_avg = self.counters.write_latency_avg.load(Ordering::Relaxed);
let (status, len) = if result >= 0 {
match request.request_type {
RequestType::In => {
for (_, data_len) in &request.data_descriptors {
read_bytes += Wrapping(*data_len as u64);
}
read_ops += Wrapping(1);
if latency < self.counters.read_latency_min.load(Ordering::Relaxed) {
self.counters
.read_latency_min
.store(latency, Ordering::Relaxed);
}
if latency > read_max || read_max == u64::MAX {
self.counters
.read_latency_max
.store(latency, Ordering::Relaxed);
}
// Special case the first real latency report
read_avg = if read_avg == u64::MAX {
latency * LATENCY_SCALE
} else {
// Cumulative average is guaranteed to be
// positive if being calculated properly
(read_avg as i64
+ ((latency * LATENCY_SCALE) as i64 - read_avg as i64)
/ (read_ops_last + read_ops.0) as i64)
.try_into()
.unwrap()
};
}
RequestType::Out => {
if !request.writeback {
self.disk_image.fsync(None).map_err(Error::Fsync)?;
}
for (_, data_len) in &request.data_descriptors {
write_bytes += Wrapping(*data_len as u64);
}
write_ops += Wrapping(1);
if latency < self.counters.write_latency_min.load(Ordering::Relaxed) {
self.counters
.write_latency_min
.store(latency, Ordering::Relaxed);
}
if latency > write_max || write_max == u64::MAX {
self.counters
.write_latency_max
.store(latency, Ordering::Relaxed);
}
// Special case the first real latency report
write_avg = if write_avg == u64::MAX {
latency * LATENCY_SCALE
} else {
// Cumulative average is guaranteed to be
// positive if being calculated properly
(write_avg as i64
+ ((latency * LATENCY_SCALE) as i64 - write_avg as i64)
/ (write_ops_last + write_ops.0) as i64)
.try_into()
.unwrap()
}
}
_ => {}
}
self.counters
.read_latency_avg
.store(read_avg, Ordering::Relaxed);
self.counters
.write_latency_avg
.store(write_avg, Ordering::Relaxed);
(VIRTIO_BLK_S_OK as u8, result as u32)
} else {
error!(
"Request failed: {:x?} {:?}",
request,
io::Error::from_raw_os_error(-result)
);
return Err(Error::AsyncRequestFailure);
};
mem.write_obj(status, request.status_addr)
.map_err(Error::RequestStatus)?;
let queue = &mut self.queue;
queue
.add_used(mem.deref(), desc_index, len)
.map_err(Error::QueueAddUsed)?;
queue
.enable_notification(mem.deref())
.map_err(Error::QueueEnableNotification)?;
}
self.counters
.write_bytes
.fetch_add(write_bytes.0, Ordering::AcqRel);
self.counters
.write_ops
.fetch_add(write_ops.0, Ordering::AcqRel);
self.counters
.read_bytes
.fetch_add(read_bytes.0, Ordering::AcqRel);
self.counters
.read_ops
.fetch_add(read_ops.0, Ordering::AcqRel);
Ok(())
}
fn signal_used_queue(&self) -> result::Result<(), DeviceError> {
self.interrupt_cb
.trigger(VirtioInterruptType::Queue(self.queue_index))
.map_err(|e| {
error!("Failed to signal used queue: {:?}", e);
DeviceError::FailedSignalingUsedQueue(e)
})
}
fn set_queue_thread_affinity(&self) {
// Prepare the CPU set the current queue thread is expected to run onto.
let cpuset = self.host_cpus.as_ref().map(|host_cpus| {
// SAFETY: all zeros is a valid pattern
let mut cpuset: libc::cpu_set_t = unsafe { std::mem::zeroed() };
// SAFETY: FFI call, trivially safe
unsafe { libc::CPU_ZERO(&mut cpuset) };
for host_cpu in host_cpus {
// SAFETY: FFI call, trivially safe
unsafe { libc::CPU_SET(*host_cpu, &mut cpuset) };
}
cpuset
});
// Schedule the thread to run on the expected CPU set
if let Some(cpuset) = cpuset.as_ref() {
// SAFETY: FFI call with correct arguments
let ret = unsafe {
libc::sched_setaffinity(
0,
std::mem::size_of::<libc::cpu_set_t>(),
cpuset as *const libc::cpu_set_t,
)
};
if ret != 0 {
error!(
"Failed scheduling the virtqueue thread {} on the expected CPU set: {}",
self.queue_index,
io::Error::last_os_error()
)
}
}
}
fn run(
&mut self,
paused: Arc<AtomicBool>,
paused_sync: Arc<Barrier>,
) -> result::Result<(), EpollHelperError> {
let mut helper = EpollHelper::new(&self.kill_evt, &self.pause_evt)?;
helper.add_event(self.queue_evt.as_raw_fd(), QUEUE_AVAIL_EVENT)?;
helper.add_event(self.disk_image.notifier().as_raw_fd(), COMPLETION_EVENT)?;
if let Some(rate_limiter) = &self.rate_limiter {
helper.add_event(rate_limiter.as_raw_fd(), RATE_LIMITER_EVENT)?;
}
self.set_queue_thread_affinity();
helper.run(paused, paused_sync, self)?;
Ok(())
}
}
impl EpollHelperHandler for BlockEpollHandler {
fn handle_event(
&mut self,
_helper: &mut EpollHelper,
event: &epoll::Event,
) -> result::Result<(), EpollHelperError> {
let ev_type = event.data as u16;
match ev_type {
QUEUE_AVAIL_EVENT => {
self.queue_evt.read().map_err(|e| {
EpollHelperError::HandleEvent(anyhow!("Failed to get queue event: {:?}", e))
})?;
let rate_limit_reached = self.rate_limiter.as_ref().is_some_and(|r| r.is_blocked());
// Process the queue only when the rate limit is not reached
if !rate_limit_reached {
self.process_queue_submit_and_signal()?
}
}
COMPLETION_EVENT => {
self.disk_image.notifier().read().map_err(|e| {
EpollHelperError::HandleEvent(anyhow!("Failed to get queue event: {:?}", e))
})?;
self.process_queue_complete().map_err(|e| {
EpollHelperError::HandleEvent(anyhow!(
"Failed to process queue (complete): {:?}",
e
))
})?;
let rate_limit_reached = self.rate_limiter.as_ref().is_some_and(|r| r.is_blocked());
// Process the queue only when the rate limit is not reached
if !rate_limit_reached {
self.process_queue_submit().map_err(|e| {
EpollHelperError::HandleEvent(anyhow!(
"Failed to process queue (submit): {:?}",
e
))
})?;
}
self.try_signal_used_queue()?;
}
RATE_LIMITER_EVENT => {
if let Some(rate_limiter) = &mut self.rate_limiter {
// Upon rate limiter event, call the rate limiter handler
// and restart processing the queue.
rate_limiter.event_handler().map_err(|e| {
EpollHelperError::HandleEvent(anyhow!(
"Failed to process rate limiter event: {:?}",
e
))
})?;
self.process_queue_submit_and_signal()?
} else {
return Err(EpollHelperError::HandleEvent(anyhow!(
"Unexpected 'RATE_LIMITER_EVENT' when rate_limiter is not enabled."
)));
}
}
_ => {
return Err(EpollHelperError::HandleEvent(anyhow!(
"Unexpected event: {}",
ev_type
)));
}
}
Ok(())
}
}
/// Virtio device for exposing block level read/write operations on a host file.
pub struct Block {
common: VirtioCommon,
id: String,
disk_image: Box<dyn DiskFile>,
disk_path: PathBuf,
disk_nsectors: u64,
config: VirtioBlockConfig,
writeback: Arc<AtomicBool>,
counters: BlockCounters,
seccomp_action: SeccompAction,
rate_limiter: Option<Arc<RateLimiterGroup>>,
exit_evt: EventFd,
read_only: bool,
serial: Vec<u8>,
queue_affinity: BTreeMap<u16, Vec<usize>>,
}
#[derive(Serialize, Deserialize)]
pub struct BlockState {
pub disk_path: String,
pub disk_nsectors: u64,
pub avail_features: u64,
pub acked_features: u64,
pub config: VirtioBlockConfig,
}
impl Block {
/// Create a new virtio block device that operates on the given file.
#[allow(clippy::too_many_arguments)]
pub fn new(
id: String,
mut disk_image: Box<dyn DiskFile>,
disk_path: PathBuf,
read_only: bool,
iommu: bool,
num_queues: usize,
queue_size: u16,
serial: Option<String>,
seccomp_action: SeccompAction,
rate_limiter: Option<Arc<RateLimiterGroup>>,
exit_evt: EventFd,
state: Option<BlockState>,
queue_affinity: BTreeMap<u16, Vec<usize>>,
) -> io::Result<Self> {
let (disk_nsectors, avail_features, acked_features, config, paused) =
if let Some(state) = state {
info!("Restoring virtio-block {}", id);
(
state.disk_nsectors,
state.avail_features,
state.acked_features,
state.config,
true,
)
} else {
let disk_size = disk_image.size().map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("Failed getting disk size: {e}"),
)
})?;
if disk_size % SECTOR_SIZE != 0 {
warn!(
"Disk size {} is not a multiple of sector size {}; \
the remainder will not be visible to the guest.",
disk_size, SECTOR_SIZE
);
}
let mut avail_features = (1u64 << VIRTIO_F_VERSION_1)
| (1u64 << VIRTIO_BLK_F_FLUSH)
| (1u64 << VIRTIO_BLK_F_CONFIG_WCE)
| (1u64 << VIRTIO_BLK_F_BLK_SIZE)
| (1u64 << VIRTIO_BLK_F_TOPOLOGY)
| (1u64 << VIRTIO_BLK_F_SEG_MAX)
| (1u64 << VIRTIO_RING_F_EVENT_IDX)
| (1u64 << VIRTIO_RING_F_INDIRECT_DESC);
if iommu {
avail_features |= 1u64 << VIRTIO_F_IOMMU_PLATFORM;
}
if read_only {
avail_features |= 1u64 << VIRTIO_BLK_F_RO;
}
let topology = disk_image.topology();
info!("Disk topology: {:?}", topology);
let logical_block_size = if topology.logical_block_size > 512 {
topology.logical_block_size
} else {
512
};
// Calculate the exponent that maps physical block to logical block
let mut physical_block_exp = 0;
let mut size = logical_block_size;
while size < topology.physical_block_size {
physical_block_exp += 1;
size <<= 1;
}
let disk_nsectors = disk_size / SECTOR_SIZE;
let mut config = VirtioBlockConfig {
capacity: disk_nsectors,
writeback: 1,
blk_size: topology.logical_block_size as u32,
physical_block_exp,
min_io_size: (topology.minimum_io_size / logical_block_size) as u16,
opt_io_size: (topology.optimal_io_size / logical_block_size) as u32,
seg_max: (queue_size - MINIMUM_BLOCK_QUEUE_SIZE) as u32,
..Default::default()
};
if num_queues > 1 {
avail_features |= 1u64 << VIRTIO_BLK_F_MQ;
config.num_queues = num_queues as u16;
}
(disk_nsectors, avail_features, 0, config, false)
};
let serial = serial
.map(Vec::from)
.unwrap_or_else(|| build_serial(&disk_path));
Ok(Block {
common: VirtioCommon {
device_type: VirtioDeviceType::Block as u32,
avail_features,
acked_features,
paused_sync: Some(Arc::new(Barrier::new(num_queues + 1))),
queue_sizes: vec![queue_size; num_queues],
min_queues: 1,
paused: Arc::new(AtomicBool::new(paused)),
..Default::default()
},
id,
disk_image,
disk_path,
disk_nsectors,
config,
writeback: Arc::new(AtomicBool::new(true)),
counters: BlockCounters::default(),
seccomp_action,
rate_limiter,
exit_evt,
read_only,
serial,
queue_affinity,
})
}
fn state(&self) -> BlockState {
BlockState {
disk_path: self.disk_path.to_str().unwrap().to_owned(),
disk_nsectors: self.disk_nsectors,
avail_features: self.common.avail_features,
acked_features: self.common.acked_features,
config: self.config,
}
}
fn update_writeback(&mut self) {
// Use writeback from config if VIRTIO_BLK_F_CONFIG_WCE
let writeback = if self.common.feature_acked(VIRTIO_BLK_F_CONFIG_WCE.into()) {
self.config.writeback == 1
} else {
// Else check if VIRTIO_BLK_F_FLUSH negotiated
self.common.feature_acked(VIRTIO_BLK_F_FLUSH.into())
};
info!(
"Changing cache mode to {}",
if writeback {
"writeback"
} else {
"writethrough"
}
);
self.writeback.store(writeback, Ordering::Release);
}
#[cfg(fuzzing)]
pub fn wait_for_epoll_threads(&mut self) {
self.common.wait_for_epoll_threads();
}
}
impl Drop for Block {
fn drop(&mut self) {
if let Some(kill_evt) = self.common.kill_evt.take() {
// Ignore the result because there is nothing we can do about it.
let _ = kill_evt.write(1);
}
self.common.wait_for_epoll_threads();
}
}
impl VirtioDevice for Block {
fn device_type(&self) -> u32 {
self.common.device_type
}
fn queue_max_sizes(&self) -> &[u16] {
&self.common.queue_sizes
}
fn features(&self) -> u64 {
self.common.avail_features
}
fn ack_features(&mut self, value: u64) {
self.common.ack_features(value)
}
fn read_config(&self, offset: u64, data: &mut [u8]) {
self.read_config_from_slice(self.config.as_slice(), offset, data);
}
fn write_config(&mut self, offset: u64, data: &[u8]) {
// The "writeback" field is the only mutable field
let writeback_offset =
(&self.config.writeback as *const _ as u64) - (&self.config as *const _ as u64);
if offset != writeback_offset || data.len() != std::mem::size_of_val(&self.config.writeback)
{
error!(
"Attempt to write to read-only field: offset {:x} length {}",
offset,
data.len()
);
return;
}
self.config.writeback = data[0];
self.update_writeback();
}
fn activate(
&mut self,
mem: GuestMemoryAtomic<GuestMemoryMmap>,
interrupt_cb: Arc<dyn VirtioInterrupt>,
mut queues: Vec<(usize, Queue, EventFd)>,
) -> ActivateResult {
self.common.activate(&queues, &interrupt_cb)?;
self.update_writeback();
let mut epoll_threads = Vec::new();
let event_idx = self.common.feature_acked(VIRTIO_RING_F_EVENT_IDX.into());
for i in 0..queues.len() {
let (_, mut queue, queue_evt) = queues.remove(0);
queue.set_event_idx(event_idx);
let queue_size = queue.size();
let (kill_evt, pause_evt) = self.common.dup_eventfds();
let queue_idx = i as u16;
let mut handler = BlockEpollHandler {
queue_index: queue_idx,
queue,
mem: mem.clone(),
disk_image: self
.disk_image
.new_async_io(queue_size as u32)
.map_err(|e| {
error!("failed to create new AsyncIo: {}", e);
ActivateError::BadActivate
})?,
disk_nsectors: self.disk_nsectors,
interrupt_cb: interrupt_cb.clone(),
serial: self.serial.clone(),
kill_evt,
pause_evt,
writeback: self.writeback.clone(),
counters: self.counters.clone(),
queue_evt,
// Analysis during boot shows around ~40 maximum requests
// This gives head room for systems with slower I/O without
// compromising the cost of the reallocation or memory overhead
inflight_requests: VecDeque::with_capacity(64),
rate_limiter: self
.rate_limiter
.as_ref()
.map(|r| r.new_handle())
.transpose()
.unwrap(),
access_platform: self.common.access_platform.clone(),
read_only: self.read_only,
host_cpus: self.queue_affinity.get(&queue_idx).cloned(),
};
let paused = self.common.paused.clone();
let paused_sync = self.common.paused_sync.clone();
spawn_virtio_thread(
&format!("{}_q{}", self.id.clone(), i),
&self.seccomp_action,
Thread::VirtioBlock,
&mut epoll_threads,
&self.exit_evt,
move || handler.run(paused, paused_sync.unwrap()),
)?;
}
self.common.epoll_threads = Some(epoll_threads);
event!("virtio-device", "activated", "id", &self.id);
Ok(())
}
fn reset(&mut self) -> Option<Arc<dyn VirtioInterrupt>> {
let result = self.common.reset();
event!("virtio-device", "reset", "id", &self.id);
result
}
fn counters(&self) -> Option<HashMap<&'static str, Wrapping<u64>>> {
let mut counters = HashMap::new();
counters.insert(
"read_bytes",
Wrapping(self.counters.read_bytes.load(Ordering::Acquire)),
);
counters.insert(
"write_bytes",
Wrapping(self.counters.write_bytes.load(Ordering::Acquire)),
);
counters.insert(
"read_ops",
Wrapping(self.counters.read_ops.load(Ordering::Acquire)),
);
counters.insert(
"write_ops",
Wrapping(self.counters.write_ops.load(Ordering::Acquire)),
);
counters.insert(
"write_latency_min",
Wrapping(self.counters.write_latency_min.load(Ordering::Acquire)),
);
counters.insert(
"write_latency_max",
Wrapping(self.counters.write_latency_max.load(Ordering::Acquire)),
);
counters.insert(
"write_latency_avg",
Wrapping(self.counters.write_latency_avg.load(Ordering::Acquire) / LATENCY_SCALE),
);
counters.insert(
"read_latency_min",
Wrapping(self.counters.read_latency_min.load(Ordering::Acquire)),
);
counters.insert(
"read_latency_max",
Wrapping(self.counters.read_latency_max.load(Ordering::Acquire)),
);
counters.insert(
"read_latency_avg",
Wrapping(self.counters.read_latency_avg.load(Ordering::Acquire) / LATENCY_SCALE),
);
Some(counters)
}
fn set_access_platform(&mut self, access_platform: Arc<dyn AccessPlatform>) {
self.common.set_access_platform(access_platform)
}
}
impl Pausable for Block {
fn pause(&mut self) -> result::Result<(), MigratableError> {
self.common.pause()
}
fn resume(&mut self) -> result::Result<(), MigratableError> {
self.common.resume()
}
}
impl Snapshottable for Block {
fn id(&self) -> String {
self.id.clone()
}
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
Snapshot::new_from_state(&self.state())
}
}
impl Transportable for Block {}
impl Migratable for Block {}