cloud-hypervisor/net_util/src/tap.rs
Bo Chen 5825ab2dd4 clippy: Address the issue 'needless-borrow'
Issue from beta verion of clippy:

Error:    --> vm-virtio/src/queue.rs:700:59
    |
700 |             if let Some(used_event) = self.get_used_event(&mem) {
    |                                                           ^^^^ help: change this to: `mem`
    |
    = note: `-D clippy::needless-borrow` implied by `-D warnings`
    = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_borrow

Signed-off-by: Bo Chen <chen.bo@intel.com>
2021-06-24 08:55:43 +02:00

742 lines
26 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the THIRD-PARTY file.
use super::{create_sockaddr, create_socket, vnet_hdr_len, Error as NetUtilError, MacAddr};
use crate::mac::MAC_ADDR_LEN;
use std::fs::File;
use std::io::{Error as IoError, Read, Result as IoResult, Write};
use std::net;
use std::os::raw::*;
use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use vmm_sys_util::ioctl::{ioctl_with_mut_ref, ioctl_with_ref, ioctl_with_val};
#[derive(Debug)]
pub enum Error {
/// Couldn't open /dev/net/tun.
OpenTun(IoError),
/// Unable to configure tap interface.
ConfigureTap(IoError),
/// Unable to retrieve features.
GetFeatures(IoError),
/// Missing multiqueue support in the kernel.
MultiQueueKernelSupport,
/// ioctl failed.
IoctlError(IoError),
/// Failed to create a socket.
NetUtil(NetUtilError),
InvalidIfname,
/// Error parsing MAC data
MacParsing(IoError),
}
pub type Result<T> = ::std::result::Result<T, Error>;
/// Handle for a network tap interface.
///
/// For now, this simply wraps the file descriptor for the tap device so methods
/// can run ioctls on the interface. The tap interface fd will be closed when
/// Tap goes out of scope, and the kernel will clean up the interface
/// automatically.
#[derive(Debug)]
pub struct Tap {
tap_file: File,
if_name: Vec<u8>,
}
impl PartialEq for Tap {
fn eq(&self, other: &Tap) -> bool {
self.if_name == other.if_name
}
}
impl std::clone::Clone for Tap {
fn clone(&self) -> Self {
Tap {
tap_file: self.tap_file.try_clone().unwrap(),
if_name: self.if_name.clone(),
}
}
}
// Returns a byte vector representing the contents of a null terminated C string which
// contains if_name.
fn build_terminated_if_name(if_name: &str) -> Result<Vec<u8>> {
// Convert the string slice to bytes, and shadow the variable,
// since we no longer need the &str version.
let if_name = if_name.as_bytes();
// TODO: the 16usize limit of the if_name member from struct Tap is pretty arbitrary.
// We leave it as is for now, but this should be refactored at some point.
if if_name.len() > 15 {
return Err(Error::InvalidIfname);
}
let mut terminated_if_name = vec![b'\0'; if_name.len() + 1];
terminated_if_name[..if_name.len()].copy_from_slice(if_name);
Ok(terminated_if_name)
}
impl Tap {
pub fn open_named(if_name: &str, num_queue_pairs: usize, flags: Option<i32>) -> Result<Tap> {
let terminated_if_name = build_terminated_if_name(if_name)?;
let fd = unsafe {
// Open calls are safe because we give a constant null-terminated
// string and verify the result.
libc::open(
b"/dev/net/tun\0".as_ptr() as *const c_char,
flags.unwrap_or(libc::O_RDWR | libc::O_NONBLOCK | libc::O_CLOEXEC),
)
};
if fd < 0 {
return Err(Error::OpenTun(IoError::last_os_error()));
}
// We just checked that the fd is valid.
let tuntap = unsafe { File::from_raw_fd(fd) };
// Let's validate some features before going any further.
// ioctl is safe since we call it with a valid tap fd and check the return
// value.
let mut features = 0;
let ret = unsafe { ioctl_with_mut_ref(&tuntap, net_gen::TUNGETFEATURES(), &mut features) };
if ret < 0 {
return Err(Error::GetFeatures(IoError::last_os_error()));
}
// Check if the user parameters match the kernel support for MQ
if (features & net_gen::IFF_MULTI_QUEUE == 0) && num_queue_pairs > 1 {
return Err(Error::MultiQueueKernelSupport);
}
// This is pretty messy because of the unions used by ifreq. Since we
// don't call as_mut on the same union field more than once, this block
// is safe.
let mut ifreq: net_gen::ifreq = Default::default();
unsafe {
let ifrn_name = ifreq.ifr_ifrn.ifrn_name.as_mut();
let name_slice = &mut ifrn_name[..terminated_if_name.len()];
name_slice.copy_from_slice(terminated_if_name.as_slice());
ifreq.ifr_ifru.ifru_flags =
(net_gen::IFF_TAP | net_gen::IFF_NO_PI | net_gen::IFF_VNET_HDR) as c_short;
if num_queue_pairs > 1 {
ifreq.ifr_ifru.ifru_flags |= net_gen::IFF_MULTI_QUEUE as c_short;
}
}
// ioctl is safe since we call it with a valid tap fd and check the return
// value.
let ret = unsafe { ioctl_with_mut_ref(&tuntap, net_gen::TUNSETIFF(), &mut ifreq) };
if ret < 0 {
return Err(Error::ConfigureTap(IoError::last_os_error()));
}
let mut if_name = unsafe { ifreq.ifr_ifrn.ifrn_name }.to_vec();
if_name.truncate(terminated_if_name.len() - 1);
// Safe since only the name is accessed, and it's cloned out.
Ok(Tap {
tap_file: tuntap,
if_name,
})
}
/// Create a new tap interface.
pub fn new(num_queue_pairs: usize) -> Result<Tap> {
Self::open_named("vmtap%d", num_queue_pairs, None)
}
pub fn from_tap_fd(fd: RawFd, num_queue_pairs: usize) -> Result<Tap> {
// Ensure that the file is opened non-blocking, this is particularly
// needed when opened via the shell for macvtap.
let ret = unsafe {
let mut flags = libc::fcntl(fd, libc::F_GETFL);
flags |= libc::O_NONBLOCK;
libc::fcntl(fd, libc::F_SETFL, flags)
};
if ret < 0 {
return Err(Error::ConfigureTap(IoError::last_os_error()));
}
let tap_file = unsafe { File::from_raw_fd(fd) };
let mut ifreq: net_gen::ifreq = Default::default();
// Get current config including name
let ret = unsafe { ioctl_with_mut_ref(&tap_file, net_gen::TUNGETIFF(), &mut ifreq) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
// We only access one field of the ifru union, hence this is safe.
let if_name = unsafe { ifreq.ifr_ifrn.ifrn_name }.to_vec();
// Try and update flags. Depending on how the tap was created (macvtap
// or via open_named()) this might return -EEXIST so we just ignore that.
unsafe {
ifreq.ifr_ifru.ifru_flags =
(net_gen::IFF_TAP | net_gen::IFF_NO_PI | net_gen::IFF_VNET_HDR) as c_short;
if num_queue_pairs > 1 {
ifreq.ifr_ifru.ifru_flags |= net_gen::IFF_MULTI_QUEUE as c_short;
}
}
let ret = unsafe { ioctl_with_mut_ref(&tap_file, net_gen::TUNSETIFF(), &mut ifreq) };
if ret < 0 && IoError::last_os_error().raw_os_error().unwrap() != libc::EEXIST {
return Err(Error::ConfigureTap(IoError::last_os_error()));
}
let tap = Tap { tap_file, if_name };
let vnet_hdr_size = vnet_hdr_len() as i32;
tap.set_vnet_hdr_size(vnet_hdr_size)?;
Ok(tap)
}
/// Set the host-side IP address for the tap interface.
pub fn set_ip_addr(&self, ip_addr: net::Ipv4Addr) -> Result<()> {
let sock = create_socket().map_err(Error::NetUtil)?;
let addr = create_sockaddr(ip_addr);
let mut ifreq = self.get_ifreq();
ifreq.ifr_ifru.ifru_addr = addr;
// ioctl is safe. Called with a valid sock fd, and we check the return.
#[allow(clippy::cast_lossless)]
let ret =
unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFADDR as c_ulong, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
Ok(())
}
/// Set mac addr for tap interface.
pub fn set_mac_addr(&self, addr: MacAddr) -> Result<()> {
// Checking if the mac address already matches the desired one
// is useful to avoid making the "set ioctl" in the case where
// the VMM is running without the privilege to do that.
// In practice this comes from a reboot after the configuration
// has been update with the kernel generated address.
if self.get_mac_addr()? == addr {
return Ok(());
}
let sock = create_socket().map_err(Error::NetUtil)?;
let mut ifreq = self.get_ifreq();
// ioctl is safe. Called with a valid sock fd, and we check the return.
#[allow(clippy::cast_lossless)]
let ret =
unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCGIFHWADDR as c_ulong, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
// We only access one field of the ifru union, hence this is safe.
unsafe {
let ifru_hwaddr = &mut ifreq.ifr_ifru.ifru_hwaddr;
for (i, v) in addr.get_bytes().iter().enumerate() {
ifru_hwaddr.sa_data[i] = *v as c_uchar;
}
}
// ioctl is safe. Called with a valid sock fd, and we check the return.
#[allow(clippy::cast_lossless)]
let ret =
unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFHWADDR as c_ulong, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
Ok(())
}
/// Get mac addr for tap interface.
pub fn get_mac_addr(&self) -> Result<MacAddr> {
let sock = create_socket().map_err(Error::NetUtil)?;
let ifreq = self.get_ifreq();
// ioctl is safe. Called with a valid sock fd, and we check the return.
#[allow(clippy::cast_lossless)]
let ret =
unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCGIFHWADDR as c_ulong, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
// We only access one field of the ifru union, hence this is safe.
let addr = unsafe {
MacAddr::from_bytes(&ifreq.ifr_ifru.ifru_hwaddr.sa_data[0..MAC_ADDR_LEN])
.map_err(Error::MacParsing)?
};
Ok(addr)
}
/// Set the netmask for the subnet that the tap interface will exist on.
pub fn set_netmask(&self, netmask: net::Ipv4Addr) -> Result<()> {
let sock = create_socket().map_err(Error::NetUtil)?;
let addr = create_sockaddr(netmask);
let mut ifreq = self.get_ifreq();
ifreq.ifr_ifru.ifru_addr = addr;
// ioctl is safe. Called with a valid sock fd, and we check the return.
#[allow(clippy::cast_lossless)]
let ret =
unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFNETMASK as c_ulong, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
Ok(())
}
/// Set the offload flags for the tap interface.
pub fn set_offload(&self, flags: c_uint) -> Result<()> {
// ioctl is safe. Called with a valid tap fd, and we check the return.
#[allow(clippy::cast_lossless)]
let ret =
unsafe { ioctl_with_val(&self.tap_file, net_gen::TUNSETOFFLOAD(), flags as c_ulong) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
Ok(())
}
/// Enable the tap interface.
pub fn enable(&self) -> Result<()> {
let sock = create_socket().map_err(Error::NetUtil)?;
let mut ifreq = self.get_ifreq();
#[allow(clippy::cast_lossless)]
let ret =
unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCGIFFLAGS as c_ulong, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
// If TAP device is already up don't try and enable it
let ifru_flags = unsafe { ifreq.ifr_ifru.ifru_flags };
if ifru_flags
& (net_gen::net_device_flags_IFF_UP | net_gen::net_device_flags_IFF_RUNNING) as i16
== (net_gen::net_device_flags_IFF_UP | net_gen::net_device_flags_IFF_RUNNING) as i16
{
return Ok(());
}
ifreq.ifr_ifru.ifru_flags =
(net_gen::net_device_flags_IFF_UP | net_gen::net_device_flags_IFF_RUNNING) as i16;
// ioctl is safe. Called with a valid sock fd, and we check the return.
#[allow(clippy::cast_lossless)]
let ret =
unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFFLAGS as c_ulong, &ifreq) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
Ok(())
}
/// Set the size of the vnet hdr.
pub fn set_vnet_hdr_size(&self, size: c_int) -> Result<()> {
// ioctl is safe. Called with a valid tap fd, and we check the return.
let ret = unsafe { ioctl_with_ref(&self.tap_file, net_gen::TUNSETVNETHDRSZ(), &size) };
if ret < 0 {
return Err(Error::IoctlError(IoError::last_os_error()));
}
Ok(())
}
fn get_ifreq(&self) -> net_gen::ifreq {
let mut ifreq: net_gen::ifreq = Default::default();
// This sets the name of the interface, which is the only entry
// in a single-field union.
unsafe {
let ifrn_name = ifreq.ifr_ifrn.ifrn_name.as_mut();
let name_slice = &mut ifrn_name[..self.if_name.len()];
name_slice.copy_from_slice(&self.if_name);
}
ifreq
}
pub fn get_if_name(&self) -> Vec<u8> {
self.if_name.clone()
}
}
impl Read for Tap {
fn read(&mut self, buf: &mut [u8]) -> IoResult<usize> {
self.tap_file.read(buf)
}
}
impl Write for Tap {
fn write(&mut self, buf: &[u8]) -> IoResult<usize> {
self.tap_file.write(buf)
}
fn flush(&mut self) -> IoResult<()> {
Ok(())
}
}
impl AsRawFd for Tap {
fn as_raw_fd(&self) -> RawFd {
self.tap_file.as_raw_fd()
}
}
#[cfg(test)]
mod tests {
extern crate pnet;
use std::net::Ipv4Addr;
use std::str;
use std::sync::{mpsc, Mutex};
use std::thread;
use std::time::Duration;
use self::pnet::datalink::Channel::Ethernet;
use self::pnet::datalink::{self, DataLinkReceiver, DataLinkSender, NetworkInterface};
use self::pnet::packet::ethernet::{EtherTypes, EthernetPacket, MutableEthernetPacket};
use self::pnet::packet::ip::IpNextHeaderProtocols;
use self::pnet::packet::ipv4::{Ipv4Packet, MutableIpv4Packet};
use self::pnet::packet::udp::{MutableUdpPacket, UdpPacket};
use self::pnet::packet::{MutablePacket, Packet};
use self::pnet::util::MacAddr;
use super::*;
static DATA_STRING: &str = "test for tap";
static SUBNET_MASK: &str = "255.255.255.0";
// We needed to have a mutex as a global variable, so we used the crate that provides the
// lazy_static! macro for testing. The main potential problem, caused by tests being run in
// parallel by cargo, is creating different TAPs and trying to associate the same address,
// so we hide the IP address &str behind this mutex, more as a convention to remember to lock
// it at the very beginning of each function susceptible to this issue. Another variant is
// to use a different IP address per function, but we must remember to pick an unique one
// each time.
lazy_static! {
static ref TAP_IP_LOCK: Mutex<&'static str> = Mutex::new("192.168.241.1");
}
// Describes the outcomes we are currently interested in when parsing a packet (we use
// an UDP packet for testing).
struct ParsedPkt<'a> {
eth: EthernetPacket<'a>,
ipv4: Option<Ipv4Packet<'a>>,
udp: Option<UdpPacket<'a>>,
}
impl<'a> ParsedPkt<'a> {
fn new(buf: &'a [u8]) -> Self {
let eth = EthernetPacket::new(buf).unwrap();
let mut ipv4 = None;
let mut udp = None;
if eth.get_ethertype() == EtherTypes::Ipv4 {
let ipv4_start = 14;
ipv4 = Some(Ipv4Packet::new(&buf[ipv4_start..]).unwrap());
// Hiding the old ipv4 variable for the rest of this block.
let ipv4 = Ipv4Packet::new(eth.payload()).unwrap();
if ipv4.get_next_level_protocol() == IpNextHeaderProtocols::Udp {
// The value in header_length indicates the number of 32 bit words
// that make up the header, not the actual length in bytes.
let udp_start = ipv4_start + ipv4.get_header_length() as usize * 4;
udp = Some(UdpPacket::new(&buf[udp_start..]).unwrap());
}
}
ParsedPkt { eth, ipv4, udp }
}
fn print(&self) {
print!(
"{} {} {} ",
self.eth.get_source(),
self.eth.get_destination(),
self.eth.get_ethertype()
);
if let Some(ref ipv4) = self.ipv4 {
print!(
"{} {} {} ",
ipv4.get_source(),
ipv4.get_destination(),
ipv4.get_next_level_protocol()
);
}
if let Some(ref udp) = self.udp {
print!(
"{} {} {}",
udp.get_source(),
udp.get_destination(),
str::from_utf8(udp.payload()).unwrap()
);
}
println!();
}
}
fn tap_name_to_string(tap: &Tap) -> String {
let null_pos = tap.if_name.iter().position(|x| *x == 0).unwrap();
str::from_utf8(&tap.if_name[..null_pos])
.unwrap()
.to_string()
}
// Given a buffer of appropriate size, this fills in the relevant fields based on the
// provided information. Payload refers to the UDP payload.
fn pnet_build_packet(buf: &mut [u8], dst_mac: MacAddr, payload: &[u8]) {
let mut eth = MutableEthernetPacket::new(buf).unwrap();
eth.set_source(MacAddr::new(0x06, 0, 0, 0, 0, 0));
eth.set_destination(dst_mac);
eth.set_ethertype(EtherTypes::Ipv4);
let mut ipv4 = MutableIpv4Packet::new(eth.payload_mut()).unwrap();
ipv4.set_version(4);
ipv4.set_header_length(5);
ipv4.set_total_length(20 + 8 + payload.len() as u16);
ipv4.set_ttl(200);
ipv4.set_next_level_protocol(IpNextHeaderProtocols::Udp);
ipv4.set_source(Ipv4Addr::new(192, 168, 241, 1));
ipv4.set_destination(Ipv4Addr::new(192, 168, 241, 2));
let mut udp = MutableUdpPacket::new(ipv4.payload_mut()).unwrap();
udp.set_source(1000);
udp.set_destination(1001);
udp.set_length(8 + payload.len() as u16);
udp.set_payload(payload);
}
// Sends a test packet on the interface named "ifname".
fn pnet_send_packet(ifname: String) {
let payload = DATA_STRING.as_bytes();
// eth hdr + ip hdr + udp hdr + payload len
let buf_size = 14 + 20 + 8 + payload.len();
let (mac, mut tx, _) = pnet_get_mac_tx_rx(ifname);
let res = tx.build_and_send(1, buf_size, &mut |buf| {
pnet_build_packet(buf, mac, payload);
});
// Make sure build_and_send() -> Option<io::Result<()>> succeeds.
res.unwrap().unwrap();
}
// For a given interface name, this returns a tuple that contains the MAC address of the
// interface, an object that can be used to send Ethernet frames, and a receiver of
// Ethernet frames arriving at the specified interface.
fn pnet_get_mac_tx_rx(
ifname: String,
) -> (MacAddr, Box<dyn DataLinkSender>, Box<dyn DataLinkReceiver>) {
let interface_name_matches = |iface: &NetworkInterface| iface.name == ifname;
// Find the network interface with the provided name.
let interfaces = datalink::interfaces();
let interface = interfaces.into_iter().find(interface_name_matches).unwrap();
if let Ok(Ethernet(tx, rx)) = datalink::channel(&interface, Default::default()) {
(interface.mac.unwrap(), tx, rx)
} else {
panic!("datalink channel error or unhandled channel type");
}
}
#[test]
fn test_tap_create() {
let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
let t = Tap::new(1).unwrap();
println!("created tap: {:?}", t);
}
#[test]
fn test_tap_from_fd() {
let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
let orig_tap = Tap::new(1).unwrap();
let fd = orig_tap.as_raw_fd();
let _new_tap = Tap::from_tap_fd(fd, 1).unwrap();
}
#[test]
fn test_tap_configure() {
// This should be the first thing to be called inside the function, so everything else
// is torn down by the time the mutex is automatically released. Also, we should
// explicitly bind the MutexGuard to a variable via let, the make sure it lives until
// the end of the function.
let tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
let tap = Tap::new(1).unwrap();
let ip_addr: net::Ipv4Addr = (*tap_ip_guard).parse().unwrap();
let netmask: net::Ipv4Addr = SUBNET_MASK.parse().unwrap();
let ret = tap.set_ip_addr(ip_addr);
assert!(ret.is_ok());
let ret = tap.set_netmask(netmask);
assert!(ret.is_ok());
}
#[test]
fn test_set_options() {
let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
// This line will fail to provide an initialized FD if the test is not run as root.
let tap = Tap::new(1).unwrap();
tap.set_vnet_hdr_size(16).unwrap();
tap.set_offload(0).unwrap();
}
#[test]
fn test_tap_enable() {
let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
let tap = Tap::new(1).unwrap();
let ret = tap.enable();
assert!(ret.is_ok());
}
#[test]
fn test_raw_fd() {
let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
let tap = Tap::new(1).unwrap();
assert_eq!(tap.as_raw_fd(), tap.tap_file.as_raw_fd());
}
#[test]
fn test_read() {
let tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
let mut tap = Tap::new(1).unwrap();
tap.set_ip_addr((*tap_ip_guard).parse().unwrap()).unwrap();
tap.set_netmask(SUBNET_MASK.parse().unwrap()).unwrap();
tap.enable().unwrap();
// Send a packet to the interface. We expect to be able to receive it on the associated fd.
pnet_send_packet(tap_name_to_string(&tap));
let mut buf = [0u8; 4096];
let mut found_packet_sz = None;
// In theory, this could actually loop forever if something keeps sending data through the
// tap interface, but it's highly unlikely.
while found_packet_sz.is_none() {
let result = tap.read(&mut buf);
assert!(result.is_ok());
let size = result.unwrap();
// We skip the first 10 bytes because the IFF_VNET_HDR flag is set when the interface
// is created, and the legacy header is 10 bytes long without a certain flag which
// is not set in Tap::new().
let eth_bytes = &buf[10..size];
let packet = EthernetPacket::new(eth_bytes).unwrap();
if packet.get_ethertype() != EtherTypes::Ipv4 {
// not an IPv4 packet
continue;
}
let ipv4_bytes = &eth_bytes[14..];
let packet = Ipv4Packet::new(ipv4_bytes).unwrap();
// Our packet should carry an UDP payload, and not contain IP options.
if packet.get_next_level_protocol() != IpNextHeaderProtocols::Udp
&& packet.get_header_length() != 5
{
continue;
}
let udp_bytes = &ipv4_bytes[20..];
let udp_len = UdpPacket::new(udp_bytes).unwrap().get_length() as usize;
// Skip the header bytes.
let inner_string = str::from_utf8(&udp_bytes[8..udp_len]).unwrap();
if inner_string.eq(DATA_STRING) {
found_packet_sz = Some(size);
break;
}
}
assert!(found_packet_sz.is_some());
}
#[test]
fn test_write() {
let tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
let mut tap = Tap::new(1).unwrap();
tap.set_ip_addr((*tap_ip_guard).parse().unwrap()).unwrap();
tap.set_netmask(SUBNET_MASK.parse().unwrap()).unwrap();
tap.enable().unwrap();
let (mac, _, mut rx) = pnet_get_mac_tx_rx(tap_name_to_string(&tap));
let payload = DATA_STRING.as_bytes();
// vnet hdr + eth hdr + ip hdr + udp hdr + payload len
let buf_size = 10 + 14 + 20 + 8 + payload.len();
let mut buf = vec![0u8; buf_size];
// leave the vnet hdr as is
pnet_build_packet(&mut buf[10..], mac, payload);
assert!(tap.write(&buf[..]).is_ok());
assert!(tap.flush().is_ok());
let (channel_tx, channel_rx) = mpsc::channel();
// We use a separate thread to wait for the test packet because the API exposed by pnet is
// blocking. This thread will be killed when the main thread exits.
let _handle = thread::spawn(move || loop {
let buf = rx.next().unwrap();
let p = ParsedPkt::new(buf);
p.print();
if let Some(ref udp) = p.udp {
if payload == udp.payload() {
channel_tx.send(true).unwrap();
break;
}
}
});
// We wait for at most SLEEP_MILLIS * SLEEP_ITERS milliseconds for the reception of the
// test packet to be detected.
static SLEEP_MILLIS: u64 = 500;
static SLEEP_ITERS: u32 = 6;
let mut found_test_packet = false;
for _ in 0..SLEEP_ITERS {
thread::sleep(Duration::from_millis(SLEEP_MILLIS));
if let Ok(true) = channel_rx.try_recv() {
found_test_packet = true;
break;
}
}
assert!(found_test_packet);
}
}