cloud-hypervisor/virtio-queue/src/queue.rs
Sebastien Boeuf 0162d73ed8 virtio-queue: Update crate based on latest rust-vmm/vm-virtio
This crate contains up to date definition of the Queue, AvailIter,
DescriptorChain and Descriptor structures forked from the upstream
crate rust-vmm/vm-virtio 27b18af01ee2d9564626e084a758a2b496d2c618.

The following patches have been applied on top of this base in order to
make it work correctly with Cloud Hypervisor requirements:

- Add MSI vector field to the Queue

  In order to help with MSI/MSI-X support, it is convenient to store the
  value of the interrupt vector inside the Queue directly.

- Handle address translations

  For devices with access to data in memory being translated, we add to
  the Queue the ability to translate the address stored in the
  descriptor.
  It is very helpful as it performs the translation right after the
  untranslated address is read from memory, avoiding any errors from
  happening from the consumer's crate perspective. It also allows the
  consumer to reduce greatly the amount of duplicated code for applying
  the translation in many different places.

- Add helpers for Queue structure

  They are meant to help crate's consumers getting/setting information
  about the Queue.

These patches can be found on the 'ch' branch from the Cloud Hypervisor
fork: https://github.com/cloud-hypervisor/vm-virtio.git

This patch takes care of updating the Cloud Hypervisor code in
virtio-devices and vm-virtio to build correctly with the latest version
of virtio-queue.

Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
2022-01-06 10:02:40 +00:00

684 lines
26 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 Intel Corporation
//
// Copyright (C) 2020-2021 Alibaba Cloud. All rights reserved.
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
use std::num::Wrapping;
use std::ops::Deref;
use std::sync::atomic::Ordering;
use vm_memory::GuestAddressSpace;
use crate::{AvailIter, Error, QueueGuard, QueueState, QueueStateGuard, QueueStateT};
/// A convenient wrapper struct for a virtio queue, with associated `GuestMemory` object.
///
/// # Example
///
/// ```rust
/// use virtio_queue::{Queue, QueueState};
/// use vm_memory::{Bytes, GuestAddress, GuestAddressSpace, GuestMemoryMmap};
///
/// let m = GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
/// let mut queue = Queue::<&GuestMemoryMmap, QueueState>::new(&m, 1024);
///
/// // First, the driver sets up the queue; this set up is done via writes on the bus (PCI, MMIO).
/// queue.set_size(8);
/// queue.set_desc_table_address(Some(0x1000), None);
/// queue.set_avail_ring_address(Some(0x2000), None);
/// queue.set_used_ring_address(Some(0x3000), None);
/// queue.set_event_idx(true);
/// queue.set_ready(true);
/// // The user should check if the queue is valid before starting to use it.
/// assert!(queue.is_valid());
///
/// // Here the driver would add entries in the available ring and then update the `idx` field of
/// // the available ring (address = 0x2000 + 2).
/// m.write_obj(3, GuestAddress(0x2002));
///
/// loop {
/// queue.disable_notification().unwrap();
///
/// // Consume entries from the available ring.
/// while let Some(chain) = queue.iter().unwrap().next() {
/// // Process the descriptor chain, and then add an entry in the used ring and optionally
/// // notify the driver.
/// queue.add_used(chain.head_index(), 0x100).unwrap();
///
/// if queue.needs_notification().unwrap() {
/// // Here we would notify the driver it has new entries in the used ring to consume.
/// }
/// }
/// if !queue.enable_notification().unwrap() {
/// break;
/// }
/// }
///
/// // We can reset the queue at some point.
/// queue.reset();
/// // The queue should not be ready after reset.
/// assert!(!queue.ready());
/// ```
#[derive(Clone, Debug)]
pub struct Queue<M: GuestAddressSpace, S: QueueStateT = QueueState> {
/// Guest memory object associated with the queue.
pub mem: M,
/// Virtio queue state.
pub state: S,
}
impl<M: GuestAddressSpace, S: QueueStateT> Queue<M, S> {
/// Construct an empty virtio queue with the given `max_size`.
///
/// # Arguments
/// * `mem` - the guest memory object that can be used to access the queue buffers.
/// * `max_size` - the maximum size (and the default one) of the queue.
pub fn new(mem: M, max_size: u16) -> Self {
Queue {
mem,
state: S::new(max_size),
}
}
/// Check whether the queue configuration is valid.
pub fn is_valid(&self) -> bool {
self.state.is_valid(self.mem.memory().deref())
}
/// Reset the queue to the initial state.
pub fn reset(&mut self) {
self.state.reset()
}
/// Get an exclusive reference to the underlying `QueueState` object.
///
/// Logically this method will acquire the underlying lock protecting the `QueueState` Object.
/// The lock will be released when the returned object gets dropped.
pub fn lock(&mut self) -> <S as QueueStateGuard>::G {
self.state.lock()
}
/// Get an exclusive reference to the underlying `QueueState` object with an associated
/// `GuestMemory` object.
///
/// Logically this method will acquire the underlying lock protecting the `QueueState` Object.
/// The lock will be released when the returned object gets dropped.
pub fn lock_with_memory(
&mut self,
) -> QueueGuard<<M as GuestAddressSpace>::T, <S as QueueStateGuard>::G> {
QueueGuard::new(self.state.lock(), self.mem.memory())
}
/// Get the maximum size of the virtio queue.
pub fn max_size(&self) -> u16 {
self.state.max_size()
}
/// Configure the queue size for the virtio queue.
///
/// # Arguments
/// * `size` - the queue size; it should be a power of two, different than 0 and less than or
/// equal to the value reported by `max_size()`, otherwise the queue size remains the
/// default one (which is the maximum one).
pub fn set_size(&mut self, size: u16) {
self.state.set_size(size);
}
/// Check whether the queue is ready to be processed.
pub fn ready(&self) -> bool {
self.state.ready()
}
/// Configure the queue to the `ready for processing` state.
///
/// # Arguments
/// * `ready` - a boolean to indicate whether the queue is ready to be used or not.
pub fn set_ready(&mut self, ready: bool) {
self.state.set_ready(ready)
}
/// Set the descriptor table address for the queue.
///
/// The descriptor table address is 64-bit, the corresponding part will be updated if 'low'
/// and/or `high` is `Some` and valid.
///
/// # Arguments
/// * `low` - an optional value for the lowest 32 bits of the address.
/// * `high` - an optional value for the highest 32 bits of the address.
pub fn set_desc_table_address(&mut self, low: Option<u32>, high: Option<u32>) {
self.state.set_desc_table_address(low, high);
}
/// Set the available ring address for the queue.
///
/// The available ring address is 64-bit, the corresponding part will be updated if 'low'
/// and/or `high` is `Some` and valid.
///
/// # Arguments
/// * `low` - an optional value for the lowest 32 bits of the address.
/// * `high` - an optional value for the highest 32 bits of the address.
pub fn set_avail_ring_address(&mut self, low: Option<u32>, high: Option<u32>) {
self.state.set_avail_ring_address(low, high);
}
/// Set the used ring address for the queue.
///
/// The used ring address is 64-bit, the corresponding part will be updated if 'low'
/// and/or `high` is `Some` and valid.
///
/// # Arguments
/// * `low` - an optional value for the lowest 32 bits of the address.
/// * `high` - an optional value for the highest 32 bits of the address.
pub fn set_used_ring_address(&mut self, low: Option<u32>, high: Option<u32>) {
self.state.set_used_ring_address(low, high);
}
/// Enable/disable the VIRTIO_F_RING_EVENT_IDX feature for interrupt coalescing.
///
/// # Arguments
/// * `enabled` - a boolean to indicate whether the VIRTIO_F_RING_EVENT_IDX feature was
/// successfully negotiated or not.
pub fn set_event_idx(&mut self, enabled: bool) {
self.state.set_event_idx(enabled)
}
/// Read the `idx` field from the available ring.
///
/// # Arguments
/// * `order` - the memory ordering used to access the `idx` field from memory.
pub fn avail_idx(&self, order: Ordering) -> Result<Wrapping<u16>, Error> {
self.state.avail_idx(self.mem.memory().deref(), order)
}
/// Reads the `idx` field from the used ring.
///
/// # Arguments
/// * `order` - the memory ordering used to access the `idx` field from memory.
pub fn used_idx(&self, order: Ordering) -> Result<Wrapping<u16>, Error> {
self.state.used_idx(self.mem.memory().deref(), order)
}
/// Put a used descriptor head into the used ring.
///
/// # Arguments
/// * `head_index` - the index of the used descriptor chain.
/// * `len` - the total length of the descriptor chain which was used (written to).
pub fn add_used(&mut self, head_index: u16, len: u32) -> Result<(), Error> {
self.state
.add_used(self.mem.memory().deref(), head_index, len)
}
/// Enable notification events from the guest driver.
///
/// Return true if one or more descriptors can be consumed from the available ring after
/// notifications were enabled (and thus it's possible there will be no corresponding
/// notification).
pub fn enable_notification(&mut self) -> Result<bool, Error> {
self.state.enable_notification(self.mem.memory().deref())
}
/// Disable notification events from the guest driver.
pub fn disable_notification(&mut self) -> Result<(), Error> {
self.state.disable_notification(self.mem.memory().deref())
}
/// Check whether a notification to the guest is needed.
///
/// Please note this method has side effects: once it returns `true`, it considers the
/// driver will actually be notified, remember the associated index in the used ring, and
/// won't return `true` again until the driver updates `used_event` and/or the notification
/// conditions hold once more.
pub fn needs_notification(&mut self) -> Result<bool, Error> {
self.state.needs_notification(self.mem.memory().deref())
}
/// Return the index of the next entry in the available ring.
pub fn next_avail(&self) -> u16 {
self.state.next_avail()
}
/// Returns the index for the next descriptor in the used ring.
pub fn next_used(&self) -> u16 {
self.state.next_used()
}
/// Set the index of the next entry in the available ring.
///
/// # Arguments
/// * `next_avail` - the index of the next available ring entry.
pub fn set_next_avail(&mut self, next_avail: u16) {
self.state.set_next_avail(next_avail);
}
/// Sets the index for the next descriptor in the used ring.
///
/// # Arguments
/// * `next_used` - the index of the next used ring entry.
pub fn set_next_used(&mut self, next_used: u16) {
self.state.set_next_used(next_used);
}
}
impl<M: GuestAddressSpace> Queue<M, QueueState> {
/// A consuming iterator over all available descriptor chain heads offered by the driver.
pub fn iter(&mut self) -> Result<AvailIter<'_, M::T>, Error> {
self.state.iter(self.mem.memory())
}
/// Set the queue to "ready", and update desc_table, avail_ring and
/// used_ring addresses based on the AccessPlatform handler.
pub fn enable(&mut self, set: bool) {
self.state.enable(set)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::defs::{
DEFAULT_AVAIL_RING_ADDR, DEFAULT_DESC_TABLE_ADDR, DEFAULT_USED_RING_ADDR,
VIRTQ_DESC_F_NEXT, VIRTQ_USED_F_NO_NOTIFY,
};
use crate::mock::MockSplitQueue;
use crate::Descriptor;
use vm_memory::{Address, Bytes, GuestAddress, GuestMemoryMmap};
#[test]
fn test_queue_is_valid() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
// q is currently valid
assert!(q.is_valid());
// shouldn't be valid when not marked as ready
q.set_ready(false);
assert!(!q.ready());
assert!(!q.is_valid());
q.set_ready(true);
// shouldn't be allowed to set a size > max_size
q.set_size(q.max_size() << 1);
assert_eq!(q.state.size, q.max_size());
// or set the size to 0
q.set_size(0);
assert_eq!(q.state.size, q.max_size());
// or set a size which is not a power of 2
q.set_size(11);
assert_eq!(q.state.size, q.max_size());
// but should be allowed to set a size if 0 < size <= max_size and size is a power of two
q.set_size(4);
assert_eq!(q.state.size, 4);
q.state.size = q.max_size();
// shouldn't be allowed to set an address that breaks the alignment constraint
q.set_desc_table_address(Some(0xf), None);
assert_eq!(q.state.desc_table.0, vq.desc_table_addr().0);
// should be allowed to set an aligned out of bounds address
q.set_desc_table_address(Some(0xffff_fff0), None);
assert_eq!(q.state.desc_table.0, 0xffff_fff0);
// but shouldn't be valid
assert!(!q.is_valid());
// but should be allowed to set a valid description table address
q.set_desc_table_address(Some(0x10), None);
assert_eq!(q.state.desc_table.0, 0x10);
assert!(q.is_valid());
let addr = vq.desc_table_addr().0;
q.set_desc_table_address(Some(addr as u32), Some((addr >> 32) as u32));
// shouldn't be allowed to set an address that breaks the alignment constraint
q.set_avail_ring_address(Some(0x1), None);
assert_eq!(q.state.avail_ring.0, vq.avail_addr().0);
// should be allowed to set an aligned out of bounds address
q.set_avail_ring_address(Some(0xffff_fffe), None);
assert_eq!(q.state.avail_ring.0, 0xffff_fffe);
// but shouldn't be valid
assert!(!q.is_valid());
// but should be allowed to set a valid available ring address
q.set_avail_ring_address(Some(0x2), None);
assert_eq!(q.state.avail_ring.0, 0x2);
assert!(q.is_valid());
let addr = vq.avail_addr().0;
q.set_avail_ring_address(Some(addr as u32), Some((addr >> 32) as u32));
// shouldn't be allowed to set an address that breaks the alignment constraint
q.set_used_ring_address(Some(0x3), None);
assert_eq!(q.state.used_ring.0, vq.used_addr().0);
// should be allowed to set an aligned out of bounds address
q.set_used_ring_address(Some(0xffff_fffc), None);
assert_eq!(q.state.used_ring.0, 0xffff_fffc);
// but shouldn't be valid
assert!(!q.is_valid());
// but should be allowed to set a valid used ring address
q.set_used_ring_address(Some(0x4), None);
assert_eq!(q.state.used_ring.0, 0x4);
let addr = vq.used_addr().0;
q.set_used_ring_address(Some(addr as u32), Some((addr >> 32) as u32));
assert!(q.is_valid());
}
#[test]
fn test_add_used() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
assert_eq!(u16::from_le(vq.used().idx().load()), 0);
// index too large
assert!(q.add_used(16, 0x1000).is_err());
assert_eq!(u16::from_le(vq.used().idx().load()), 0);
// should be ok
q.add_used(1, 0x1000).unwrap();
assert_eq!(q.state.next_used, Wrapping(1));
assert_eq!(u16::from_le(vq.used().idx().load()), 1);
let x = vq.used().ring().ref_at(0).load();
assert_eq!(x.id(), 1);
assert_eq!(x.len(), 0x1000);
}
#[test]
fn test_reset_queue() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
q.set_size(8);
// The address set by `MockSplitQueue` for the descriptor table is DEFAULT_DESC_TABLE_ADDR,
// so let's change it for testing the reset.
q.set_desc_table_address(Some(0x5000), None);
// Same for `event_idx_enabled`, `next_avail` `next_used` and `signalled_used`.
q.set_event_idx(true);
q.set_next_avail(2);
q.add_used(1, 200).unwrap();
q.state.signalled_used = Some(Wrapping(15));
assert_eq!(q.state.size, 8);
// `create_queue` also marks the queue as ready.
assert!(q.state.ready);
assert_ne!(q.state.desc_table, GuestAddress(DEFAULT_DESC_TABLE_ADDR));
assert_ne!(q.state.avail_ring, GuestAddress(DEFAULT_AVAIL_RING_ADDR));
assert_ne!(q.state.used_ring, GuestAddress(DEFAULT_USED_RING_ADDR));
assert_ne!(q.state.next_avail, Wrapping(0));
assert_ne!(q.state.next_used, Wrapping(0));
assert_ne!(q.state.signalled_used, None);
assert!(q.state.event_idx_enabled);
q.reset();
assert_eq!(q.state.size, 16);
assert!(!q.state.ready);
assert_eq!(q.state.desc_table, GuestAddress(DEFAULT_DESC_TABLE_ADDR));
assert_eq!(q.state.avail_ring, GuestAddress(DEFAULT_AVAIL_RING_ADDR));
assert_eq!(q.state.used_ring, GuestAddress(DEFAULT_USED_RING_ADDR));
assert_eq!(q.state.next_avail, Wrapping(0));
assert_eq!(q.state.next_used, Wrapping(0));
assert_eq!(q.state.signalled_used, None);
assert!(!q.state.event_idx_enabled);
}
#[test]
fn test_needs_notification() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let qsize = 16;
let vq = MockSplitQueue::new(m, qsize);
let mut q = vq.create_queue(m);
let avail_addr = vq.avail_addr();
// It should always return true when EVENT_IDX isn't enabled.
for i in 0..qsize {
q.state.next_used = Wrapping(i);
assert!(q.needs_notification().unwrap());
}
m.write_obj::<u16>(
u16::to_le(4),
avail_addr.unchecked_add(4 + qsize as u64 * 2),
)
.unwrap();
q.state.set_event_idx(true);
// Incrementing up to this value causes an `u16` to wrap back to 0.
let wrap = u32::from(u16::MAX) + 1;
for i in 0..wrap + 12 {
q.state.next_used = Wrapping(i as u16);
// Let's test wrapping around the maximum index value as well.
let expected = i == 5 || i == (5 + wrap) || q.state.signalled_used.is_none();
assert_eq!(q.needs_notification().unwrap(), expected);
}
m.write_obj::<u16>(8, avail_addr.unchecked_add(4 + qsize as u64 * 2))
.unwrap();
// Returns `false` because `signalled_used` already passed this value.
assert!(!q.needs_notification().unwrap());
m.write_obj::<u16>(15, avail_addr.unchecked_add(4 + qsize as u64 * 2))
.unwrap();
assert!(!q.needs_notification().unwrap());
q.state.next_used = Wrapping(15);
assert!(!q.needs_notification().unwrap());
q.state.next_used = Wrapping(0);
assert!(q.needs_notification().unwrap());
assert!(!q.needs_notification().unwrap());
m.write_obj::<u16>(u16::MAX - 3, avail_addr.unchecked_add(4 + qsize as u64 * 2))
.unwrap();
q.state.next_used = Wrapping(u16::MAX - 2);
// Returns `true` because the value we wrote in the `used_event` < the next used value and
// the last `signalled_used` is 0.
assert!(q.needs_notification().unwrap());
}
#[test]
fn test_enable_disable_notification() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
let used_addr = vq.used_addr();
assert!(!q.state.event_idx_enabled);
q.enable_notification().unwrap();
let v = m.read_obj::<u16>(used_addr).map(u16::from_le).unwrap();
assert_eq!(v, 0);
q.disable_notification().unwrap();
let v = m.read_obj::<u16>(used_addr).map(u16::from_le).unwrap();
assert_eq!(v, VIRTQ_USED_F_NO_NOTIFY);
q.enable_notification().unwrap();
let v = m.read_obj::<u16>(used_addr).map(u16::from_le).unwrap();
assert_eq!(v, 0);
q.set_event_idx(true);
let avail_addr = vq.avail_addr();
m.write_obj::<u16>(u16::to_le(2), avail_addr.unchecked_add(2))
.unwrap();
assert!(q.enable_notification().unwrap());
q.state.next_avail = Wrapping(2);
assert!(!q.enable_notification().unwrap());
m.write_obj::<u16>(u16::to_le(8), avail_addr.unchecked_add(2))
.unwrap();
assert!(q.enable_notification().unwrap());
q.state.next_avail = Wrapping(8);
assert!(!q.enable_notification().unwrap());
}
#[test]
fn test_consume_chains_with_notif() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
// q is currently valid.
assert!(q.is_valid());
// The chains are (0, 1), (2, 3, 4), (5, 6), (7, 8), (9, 10, 11, 12).
for i in 0..13 {
let flags = match i {
1 | 4 | 6 | 8 | 12 => 0,
_ => VIRTQ_DESC_F_NEXT,
};
let desc = Descriptor::new((0x1000 * (i + 1)) as u64, 0x1000, flags, i + 1);
vq.desc_table().store(i, desc);
}
vq.avail().ring().ref_at(0).store(u16::to_le(0));
vq.avail().ring().ref_at(1).store(u16::to_le(2));
vq.avail().ring().ref_at(2).store(u16::to_le(5));
vq.avail().ring().ref_at(3).store(u16::to_le(7));
vq.avail().ring().ref_at(4).store(u16::to_le(9));
// Let the device know it can consume chains with the index < 2.
vq.avail().idx().store(u16::to_le(2));
// No descriptor chains are consumed at this point.
assert_eq!(q.next_avail(), 0);
let mut i = 0;
loop {
i += 1;
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// Here the device would consume entries from the available ring, add an entry in
// the used ring and optionally notify the driver. For the purpose of this test, we
// don't need to do anything with the chain, only consume it.
}
if !q.enable_notification().unwrap() {
break;
}
}
// The chains should be consumed in a single loop iteration because there's nothing updating
// the `idx` field of the available ring in the meantime.
assert_eq!(i, 1);
// The next chain that can be consumed should have index 2.
assert_eq!(q.next_avail(), 2);
// Let the device know it can consume one more chain.
vq.avail().idx().store(u16::to_le(3));
i = 0;
loop {
i += 1;
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// In a real use case, we would do something with the chain here.
}
// For the simplicity of the test we are updating here the `idx` value of the available
// ring. Ideally this should be done on a separate thread.
// Because of this update, the loop should be iterated again to consume the new
// available descriptor chains.
vq.avail().idx().store(u16::to_le(4));
if !q.enable_notification().unwrap() {
break;
}
}
assert_eq!(i, 2);
// The next chain that can be consumed should have index 4.
assert_eq!(q.next_avail(), 4);
// Set an `idx` that is bigger than the number of entries added in the ring.
// This is an allowed scenario, but the indexes of the chain will have unexpected values.
vq.avail().idx().store(u16::to_le(7));
loop {
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// In a real use case, we would do something with the chain here.
}
if !q.enable_notification().unwrap() {
break;
}
}
assert_eq!(q.next_avail(), 7);
}
#[test]
fn test_invalid_avail_idx() {
// This is a negative test for the following MUST from the spec: `A driver MUST NOT
// decrement the available idx on a virtqueue (ie. there is no way to “unexpose” buffers).`.
// We validate that for this misconfiguration, the device does not panic.
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
// q is currently valid.
assert!(q.is_valid());
// The chains are (0, 1), (2, 3, 4), (5, 6).
for i in 0..7 {
let flags = match i {
1 | 4 | 6 => 0,
_ => VIRTQ_DESC_F_NEXT,
};
let desc = Descriptor::new((0x1000 * (i + 1)) as u64, 0x1000, flags, i + 1);
vq.desc_table().store(i, desc);
}
vq.avail().ring().ref_at(0).store(u16::to_le(0));
vq.avail().ring().ref_at(1).store(u16::to_le(2));
vq.avail().ring().ref_at(2).store(u16::to_le(5));
// Let the device know it can consume chains with the index < 2.
vq.avail().idx().store(u16::to_le(3));
// No descriptor chains are consumed at this point.
assert_eq!(q.next_avail(), 0);
loop {
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// Here the device would consume entries from the available ring, add an entry in
// the used ring and optionally notify the driver. For the purpose of this test, we
// don't need to do anything with the chain, only consume it.
}
if !q.enable_notification().unwrap() {
break;
}
}
// The next chain that can be consumed should have index 3.
assert_eq!(q.next_avail(), 3);
assert_eq!(q.avail_idx(Ordering::Acquire).unwrap(), Wrapping(3));
assert!(q.lock().ready());
// Decrement `idx` which should be forbidden. We don't enforce this thing, but we should
// test that we don't panic in case the driver decrements it.
vq.avail().idx().store(u16::to_le(1));
loop {
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// In a real use case, we would do something with the chain here.
}
if !q.enable_notification().unwrap() {
break;
}
}
}
}