cloud-hypervisor/rate_limiter/src/group.rs
Thomas Barrett c71da496c0 rate_limiter: add RateLimiterGroup
Add a 'rate_limiter/group' module that defines the RateLimiterGroup
and a RateLimiterGroupHandle types.

The RateLimiterGroupHandle can be used in place of a RateLimiter to
limit the aggregate bandwidth and/or ops of multiple virtio-blk or
virtio-net queues.

Each RateLimiterGroup has an associated worker thread that broadcasts
an event to each RateLimiterGroupHandle when a RateLimiter is unblocked.

Signed-off-by: Thomas Barrett <tbarrett@crusoeenergy.com>
2024-01-03 10:21:06 -08:00

527 lines
19 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2023 Crusoe Energy Systems LLC
// SPDX-License-Identifier: Apache-2.0
use crate::{RateLimiter, TokenType};
use core::panic::AssertUnwindSafe;
use std::fs::File;
use std::io;
use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use std::result;
use std::sync::{Arc, Mutex};
use std::thread;
use thiserror::Error;
use vmm_sys_util::eventfd::EventFd;
/// Errors associated with rate-limiter group.
#[derive(Debug, Error)]
pub enum Error {
/// Cannot create thread
#[error("Error spawning rate-limiter thread {0}")]
ThreadSpawn(#[source] io::Error),
/// Cannot create epoll context.
#[error("Error creating epoll context: {0}")]
Epoll(#[source] io::Error),
/// Cannot create EventFd.
#[error("Error creating EventFd: {0}")]
EventFd(#[source] io::Error),
/// Cannot create RateLimiter.
#[error("Error creating RateLimiter: {0}")]
RateLimiter(#[source] io::Error),
/// Cannot read from EventFd.
#[error("Error reading from EventFd: {0}")]
EventFdRead(#[source] io::Error),
/// Cannot write to EventFd.
#[error("Error writing to EventFd: {0}")]
EventFdWrite(#[source] io::Error),
}
/// The RateLimiterGroupHandle is a handle to a RateLimiterGroup that may be
/// used in exactly the same way as the RateLimiter type. When the RateLimiter
/// within a RateLimiterGroup is unblocked, each RateLimiterGroupHandle will
/// be notified.
pub struct RateLimiterGroupHandle {
eventfd: Arc<EventFd>,
inner: Arc<RateLimiterGroupInner>,
}
impl RateLimiterGroupHandle {
fn new(inner: Arc<RateLimiterGroupInner>) -> result::Result<Self, Error> {
let eventfd = Arc::new(EventFd::new(0).map_err(Error::EventFd)?);
inner.handles.lock().unwrap().push(eventfd.clone());
Ok(Self { eventfd, inner })
}
/// Attempts to consume tokens and returns whether that is possible.
///
/// If rate limiting is disabled on provided `token_type`, this function will always succeed.
pub fn consume(&self, tokens: u64, token_type: TokenType) -> bool {
self.inner.rate_limiter.consume(tokens, token_type)
}
/// Adds tokens of `token_type` to their respective bucket.
///
/// Can be used to *manually* add tokens to a bucket. Useful for reverting a
/// `consume()` if needed.
pub fn manual_replenish(&self, tokens: u64, token_type: TokenType) {
self.inner.rate_limiter.manual_replenish(tokens, token_type)
}
/// This function needs to be called every time there is an event on the
/// FD provided by this object's `AsRawFd` trait implementation.
///
/// # Errors
///
/// If the rate limiter is disabled or is not blocked, an error is returned.
pub fn event_handler(&self) -> Result<(), Error> {
self.eventfd.read().map_err(Error::EventFdRead).map(|_| ())
}
/// Returns whether this rate limiter is blocked.
///
/// The limiter 'blocks' when a `consume()` operation fails because there was not enough
/// budget for it.
/// An event will be generated on the exported FD when the limiter 'unblocks'.
pub fn is_blocked(&self) -> bool {
self.inner.rate_limiter.is_blocked()
}
}
impl Clone for RateLimiterGroupHandle {
fn clone(&self) -> Self {
RateLimiterGroupHandle::new(self.inner.clone()).unwrap()
}
}
impl AsRawFd for RateLimiterGroupHandle {
fn as_raw_fd(&self) -> RawFd {
self.eventfd.as_raw_fd()
}
}
impl Drop for RateLimiterGroupHandle {
fn drop(&mut self) {
let mut handles = self.inner.handles.lock().unwrap();
let index = handles
.iter()
.position(|handle| handle.as_raw_fd() == self.eventfd.as_raw_fd())
.expect("RateLimiterGroupHandle must be subscribed to RateLimiterGroup");
handles.remove(index);
}
}
struct RateLimiterGroupInner {
id: String,
rate_limiter: RateLimiter,
handles: Mutex<Vec<Arc<EventFd>>>,
}
/// A RateLimiterGroup is an extension of RateLimiter that enables rate-limiting
/// the aggregate io consumption of multiple consumers.
pub struct RateLimiterGroup {
inner: Arc<RateLimiterGroupInner>,
epoll_file: File,
kill_evt: EventFd,
epoll_thread: Option<thread::JoinHandle<()>>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u64)]
enum EpollDispatch {
Kill = 1,
Unblocked = 2,
Unknown,
}
impl From<u64> for EpollDispatch {
fn from(v: u64) -> Self {
use EpollDispatch::*;
match v {
1 => Kill,
2 => Unblocked,
_ => Unknown,
}
}
}
impl RateLimiterGroup {
/// Create a new RateLimiterGroup.
pub fn new(
id: &str,
bytes_total_capacity: u64,
bytes_one_time_burst: u64,
bytes_complete_refill_time_ms: u64,
ops_total_capacity: u64,
ops_one_time_burst: u64,
ops_complete_refill_time_ms: u64,
) -> result::Result<Self, Error> {
let rate_limiter = RateLimiter::new(
bytes_total_capacity,
bytes_one_time_burst,
bytes_complete_refill_time_ms,
ops_total_capacity,
ops_one_time_burst,
ops_complete_refill_time_ms,
)
.map_err(Error::RateLimiter)?;
let epoll_fd = epoll::create(true).map_err(Error::Epoll)?;
let kill_evt = EventFd::new(0).map_err(Error::EventFd)?;
epoll::ctl(
epoll_fd,
epoll::ControlOptions::EPOLL_CTL_ADD,
kill_evt.as_raw_fd(),
epoll::Event::new(epoll::Events::EPOLLIN, EpollDispatch::Kill as u64),
)
.map_err(Error::Epoll)?;
epoll::ctl(
epoll_fd,
epoll::ControlOptions::EPOLL_CTL_ADD,
rate_limiter.as_raw_fd(),
epoll::Event::new(epoll::Events::EPOLLIN, EpollDispatch::Unblocked as u64),
)
.map_err(Error::Epoll)?;
// Use 'File' to enforce closing on 'epoll_fd'
// SAFETY: epoll_fd is valid
let epoll_file = unsafe { File::from_raw_fd(epoll_fd) };
Ok(Self {
inner: Arc::new(RateLimiterGroupInner {
id: id.to_string(),
rate_limiter,
handles: Mutex::new(Vec::new()),
}),
epoll_file,
kill_evt,
epoll_thread: None,
})
}
/// Create a new RateLimiterGroupHandle.
pub fn new_handle(&self) -> result::Result<RateLimiterGroupHandle, Error> {
RateLimiterGroupHandle::new(self.inner.clone())
}
/// Start a worker thread to broadcast an event to each RateLimiterGroupHandle
/// when the RateLimiter becomes unblocked.
pub fn start_thread(&mut self, exit_evt: EventFd) -> result::Result<(), Error> {
let inner = self.inner.clone();
let epoll_fd = self.epoll_file.as_raw_fd();
thread::Builder::new()
.name(format!("rate-limit-group-{}", inner.id))
.spawn(move || {
let res = std::panic::catch_unwind(AssertUnwindSafe(move || {
const EPOLL_EVENTS_LEN: usize = 2;
let mut events =
[epoll::Event::new(epoll::Events::empty(), 0); EPOLL_EVENTS_LEN];
loop {
let num_events = match epoll::wait(epoll_fd, -1, &mut events[..]) {
Ok(res) => res,
Err(e) => {
if e.kind() == io::ErrorKind::Interrupted {
continue;
} else {
return Err(Error::Epoll(e));
}
}
};
for event in events.iter().take(num_events) {
let dispatch_event: EpollDispatch = event.data.into();
match dispatch_event {
EpollDispatch::Unknown => {
let event = event.data;
warn!("Unknown rate-limiter loop event: {}", event);
}
EpollDispatch::Unblocked => {
inner.rate_limiter.event_handler().unwrap();
let handles = inner.handles.lock().unwrap();
for handle in handles.iter() {
handle.write(1).map_err(Error::EventFdWrite)?
}
}
EpollDispatch::Kill => {
info!(
"KILL_EVENT received, stopping rate-limit-group epoll loop"
);
return Ok(());
}
}
}
}
}));
match res {
Ok(res) => {
if let Err(e) = res {
error!("Error running rate-limit-group worker: {:?}", e);
exit_evt.write(1).unwrap();
}
}
Err(_) => {
error!("rate-limit-group worker panicked");
exit_evt.write(1).unwrap();
}
};
})
.map(|thread| self.epoll_thread.insert(thread))
.map_err(Error::ThreadSpawn)?;
Ok(())
}
}
impl Drop for RateLimiterGroup {
fn drop(&mut self) {
self.kill_evt.write(1).unwrap();
if let Some(t) = self.epoll_thread.take() {
if let Err(e) = t.join() {
error!("Error joining thread: {:?}", e);
}
}
}
}
#[cfg(test)]
pub(crate) mod tests {
use super::RateLimiterGroupHandle;
use crate::{group::RateLimiterGroup, TokenBucket, TokenType, REFILL_TIMER_INTERVAL_MS};
use std::{os::fd::AsRawFd, thread, time::Duration};
use vmm_sys_util::eventfd::EventFd;
impl RateLimiterGroupHandle {
pub fn bandwidth(&self) -> Option<TokenBucket> {
let guard = self.inner.rate_limiter.inner.lock().unwrap();
guard.bandwidth.clone()
}
pub fn ops(&self) -> Option<TokenBucket> {
let guard = self.inner.rate_limiter.inner.lock().unwrap();
guard.ops.clone()
}
}
#[test]
fn test_rate_limiter_group_new() {
let l = RateLimiterGroup::new("test", 1000, 1001, 1002, 1003, 1004, 1005).unwrap();
let h = l.new_handle().unwrap();
let bw = h.bandwidth().unwrap();
assert_eq!(bw.capacity(), 1000);
assert_eq!(bw.one_time_burst(), 1001);
assert_eq!(bw.refill_time_ms(), 1002);
assert_eq!(bw.budget(), 1000);
let ops = h.ops().unwrap();
assert_eq!(ops.capacity(), 1003);
assert_eq!(ops.one_time_burst(), 1004);
assert_eq!(ops.refill_time_ms(), 1005);
assert_eq!(ops.budget(), 1003);
}
#[test]
fn test_rate_limiter_group_manual_replenish() {
// rate limiter with limit of 1000 bytes/s and 1000 ops/s
let l = RateLimiterGroup::new("test", 1000, 0, 1000, 1000, 0, 1000).unwrap();
let h = l.new_handle().unwrap();
// consume 123 bytes
assert!(h.consume(123, TokenType::Bytes));
h.manual_replenish(23, TokenType::Bytes);
{
let bytes_tb = h.bandwidth().unwrap();
assert_eq!(bytes_tb.budget(), 900);
}
// consume 123 ops
assert!(h.consume(123, TokenType::Ops));
h.manual_replenish(23, TokenType::Ops);
{
let bytes_tb = h.ops().unwrap();
assert_eq!(bytes_tb.budget(), 900);
}
}
#[test]
fn test_rate_limiter_group_bandwidth() {
// rate limiter with limit of 1000 bytes/s
let mut l = RateLimiterGroup::new("test", 1000, 0, 1000, 0, 0, 0).unwrap();
l.start_thread(EventFd::new(0).unwrap()).unwrap();
let h = l.new_handle().unwrap();
// limiter should not be blocked
assert!(!h.is_blocked());
// raw FD for this disabled should be valid
assert!(h.as_raw_fd() > 0);
// ops/s limiter should be disabled so consume(whatever) should work
assert!(h.consume(u64::max_value(), TokenType::Ops));
// do full 1000 bytes
assert!(h.consume(1000, TokenType::Bytes));
// try and fail on another 100
assert!(!h.consume(100, TokenType::Bytes));
// since consume failed, limiter should be blocked now
assert!(h.is_blocked());
// wait half the timer period
thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2));
// limiter should still be blocked
assert!(h.is_blocked());
// wait the other half of the timer period
thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2));
// the timer_fd should have an event on it by now
assert!(h.event_handler().is_ok());
// limiter should now be unblocked
assert!(!h.is_blocked());
// try and succeed on another 100 bytes this time
assert!(h.consume(100, TokenType::Bytes));
}
#[test]
fn test_rate_limiter_group_ops() {
// rate limiter with limit of 1000 ops/s
let mut l = RateLimiterGroup::new("test", 0, 0, 0, 1000, 0, 1000).unwrap();
l.start_thread(EventFd::new(0).unwrap()).unwrap();
let h = l.new_handle().unwrap();
// limiter should not be blocked
assert!(!h.is_blocked());
// raw FD for this disabled should be valid
assert!(h.as_raw_fd() > 0);
// bytes/s limiter should be disabled so consume(whatever) should work
assert!(h.consume(u64::max_value(), TokenType::Bytes));
// do full 1000 ops
assert!(h.consume(1000, TokenType::Ops));
// try and fail on another 100
assert!(!h.consume(100, TokenType::Ops));
// since consume failed, limiter should be blocked now
assert!(h.is_blocked());
// wait half the timer period
thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2));
// limiter should still be blocked
assert!(h.is_blocked());
// wait the other half of the timer period
thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2));
// the timer_fd should have an event on it by now
assert!(h.event_handler().is_ok());
// limiter should now be unblocked
assert!(!h.is_blocked());
// try and succeed on another 100 ops this time
assert!(h.consume(100, TokenType::Ops));
}
#[test]
fn test_rate_limiter_group_full() {
// rate limiter with limit of 1000 bytes/s and 1000 ops/s
let mut l = RateLimiterGroup::new("test", 1000, 0, 1000, 1000, 0, 1000).unwrap();
l.start_thread(EventFd::new(0).unwrap()).unwrap();
let h = l.new_handle().unwrap();
// limiter should not be blocked
assert!(!h.is_blocked());
// raw FD for this disabled should be valid
assert!(h.as_raw_fd() > 0);
// do full 1000 bytes
assert!(h.consume(1000, TokenType::Ops));
// do full 1000 bytes
assert!(h.consume(1000, TokenType::Bytes));
// try and fail on another 100 ops
assert!(!h.consume(100, TokenType::Ops));
// try and fail on another 100 bytes
assert!(!h.consume(100, TokenType::Bytes));
// since consume failed, limiter should be blocked now
assert!(h.is_blocked());
// wait half the timer period
thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2));
// limiter should still be blocked
assert!(h.is_blocked());
// wait the other half of the timer period
thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2));
// the timer_fd should have an event on it by now
assert!(h.event_handler().is_ok());
// limiter should now be unblocked
assert!(!h.is_blocked());
// try and succeed on another 100 ops this time
assert!(h.consume(100, TokenType::Ops));
// try and succeed on another 100 bytes this time
assert!(h.consume(100, TokenType::Bytes));
}
#[test]
fn test_rate_limiter_group_overconsumption() {
// initialize the rate limiter
let mut l = RateLimiterGroup::new("test", 1000, 0, 1000, 1000, 0, 1000).unwrap();
l.start_thread(EventFd::new(0).unwrap()).unwrap();
let h = l.new_handle().unwrap();
// try to consume 2.5x the bucket size
// we are "borrowing" 1.5x the bucket size in tokens since
// the bucket is full
assert!(h.consume(2500, TokenType::Bytes));
// check that even after a whole second passes, the rate limiter
// is still blocked
thread::sleep(Duration::from_millis(1000));
assert!(h.is_blocked());
// after 1.5x the replenish time has passed, the rate limiter
// is available again
thread::sleep(Duration::from_millis(500));
assert!(h.event_handler().is_ok());
assert!(!h.is_blocked());
// reset the rate limiter
let mut l = RateLimiterGroup::new("test", 1000, 0, 1000, 1000, 0, 1000).unwrap();
l.start_thread(EventFd::new(0).unwrap()).unwrap();
let h = l.new_handle().unwrap();
// try to consume 1.5x the bucket size
// we are "borrowing" 1.5x the bucket size in tokens since
// the bucket is full, should arm the timer to 0.5x replenish
// time, which is 500 ms
assert!(h.consume(1500, TokenType::Bytes));
// check that after more than the minimum refill time,
// the rate limiter is still blocked
thread::sleep(Duration::from_millis(200));
assert!(h.is_blocked());
// try to consume some tokens, which should fail as the timer
// is still active
assert!(!h.consume(100, TokenType::Bytes));
assert!(h.is_blocked());
// check that after the minimum refill time, the timer was not
// overwritten and the rate limiter is still blocked from the
// borrowing we performed earlier
thread::sleep(Duration::from_millis(100));
assert!(h.is_blocked());
assert!(!h.consume(100, TokenType::Bytes));
// after waiting out the full duration, rate limiter should be
// available again
thread::sleep(Duration::from_millis(200));
assert!(h.event_handler().is_ok());
assert!(!h.is_blocked());
assert!(h.consume(100, TokenType::Bytes));
}
}