cloud-hypervisor/virtio-devices/src/vsock/packet.rs
Sebastien Boeuf 059e787cb5 virtio-devices: Rename address translation function for more clarity
Renaming translate() to translate_gva() to clarify we want to translate
a GVA address into a GPA.

Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
2022-04-05 00:09:52 +02:00

703 lines
24 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
/// `VsockPacket` provides a thin wrapper over the buffers exchanged via virtio queues.
/// There are two components to a vsock packet, each using its own descriptor in a
/// virtio queue:
/// - the packet header; and
/// - the packet data/buffer.
/// There is a 1:1 relation between descriptor chains and packets: the first (chain head) holds
/// the header, and an optional second descriptor holds the data. The second descriptor is only
/// present for data packets (VSOCK_OP_RW).
///
/// `VsockPacket` wraps these two buffers and provides direct access to the data stored
/// in guest memory. This is done to avoid unnecessarily copying data from guest memory
/// to temporary buffers, before passing it on to the vsock backend.
///
use byteorder::{ByteOrder, LittleEndian};
use std::sync::Arc;
use super::defs;
use super::{Result, VsockError};
use crate::{get_host_address_range, GuestMemoryMmap};
use virtio_queue::DescriptorChain;
use vm_memory::GuestMemoryLoadGuard;
use vm_virtio::{AccessPlatform, Translatable};
// The vsock packet header is defined by the C struct:
//
// ```C
// struct virtio_vsock_hdr {
// le64 src_cid;
// le64 dst_cid;
// le32 src_port;
// le32 dst_port;
// le32 len;
// le16 type;
// le16 op;
// le32 flags;
// le32 buf_alloc;
// le32 fwd_cnt;
// };
// ```
//
// This structed will occupy the buffer pointed to by the head descriptor. We'll be accessing it
// as a byte slice. To that end, we define below the offsets for each field struct, as well as the
// packed struct size, as a bunch of `usize` consts.
// Note that these offsets are only used privately by the `VsockPacket` struct, the public interface
// consisting of getter and setter methods, for each struct field, that will also handle the correct
// endianess.
/// The vsock packet header struct size (when packed).
pub const VSOCK_PKT_HDR_SIZE: usize = 44;
// Source CID.
const HDROFF_SRC_CID: usize = 0;
// Destination CID.
const HDROFF_DST_CID: usize = 8;
// Source port.
const HDROFF_SRC_PORT: usize = 16;
// Destination port.
const HDROFF_DST_PORT: usize = 20;
// Data length (in bytes) - may be 0, if there is no data buffer.
const HDROFF_LEN: usize = 24;
// Socket type. Currently, only connection-oriented streams are defined by the vsock protocol.
const HDROFF_TYPE: usize = 28;
// Operation ID - one of the VSOCK_OP_* values; e.g.
// - VSOCK_OP_RW: a data packet;
// - VSOCK_OP_REQUEST: connection request;
// - VSOCK_OP_RST: forceful connection termination;
// etc (see `super::defs::uapi` for the full list).
const HDROFF_OP: usize = 30;
// Additional options (flags) associated with the current operation (`op`).
// Currently, only used with shutdown requests (VSOCK_OP_SHUTDOWN).
const HDROFF_FLAGS: usize = 32;
// Size (in bytes) of the packet sender receive buffer (for the connection to which this packet
// belongs).
const HDROFF_BUF_ALLOC: usize = 36;
// Number of bytes the sender has received and consumed (for the connection to which this packet
// belongs). For instance, for our Unix backend, this counter would be the total number of bytes
// we have successfully written to a backing Unix socket.
const HDROFF_FWD_CNT: usize = 40;
/// The vsock packet, implemented as a wrapper over a virtq descriptor chain:
/// - the chain head, holding the packet header; and
/// - (an optional) data/buffer descriptor, only present for data packets (VSOCK_OP_RW).
///
pub struct VsockPacket {
hdr: *mut u8,
buf: Option<*mut u8>,
buf_size: usize,
}
impl VsockPacket {
/// Create the packet wrapper from a TX virtq chain head.
///
/// The chain head is expected to hold valid packet header data. A following packet buffer
/// descriptor can optionally end the chain. Bounds and pointer checks are performed when
/// creating the wrapper.
///
pub fn from_tx_virtq_head(
desc_chain: &mut DescriptorChain<GuestMemoryLoadGuard<GuestMemoryMmap>>,
access_platform: Option<&Arc<dyn AccessPlatform>>,
) -> Result<Self> {
let head = desc_chain.next().ok_or(VsockError::HdrDescMissing)?;
// All buffers in the TX queue must be readable.
//
if head.is_write_only() {
return Err(VsockError::UnreadableDescriptor);
}
// The packet header should fit inside the head descriptor.
if head.len() < VSOCK_PKT_HDR_SIZE as u32 {
return Err(VsockError::HdrDescTooSmall(head.len()));
}
let mut pkt = Self {
hdr: get_host_address_range(
desc_chain.memory(),
head.addr()
.translate_gva(access_platform, head.len() as usize),
VSOCK_PKT_HDR_SIZE,
)
.ok_or(VsockError::GuestMemory)? as *mut u8,
buf: None,
buf_size: 0,
};
// No point looking for a data/buffer descriptor, if the packet is zero-lengthed.
if pkt.is_empty() {
return Ok(pkt);
}
// Reject weirdly-sized packets.
//
if pkt.len() > defs::MAX_PKT_BUF_SIZE as u32 {
return Err(VsockError::InvalidPktLen(pkt.len()));
}
// If the packet header showed a non-zero length, there should be a data descriptor here.
let buf_desc = desc_chain.next().ok_or(VsockError::BufDescMissing)?;
// TX data should be read-only.
if buf_desc.is_write_only() {
return Err(VsockError::UnreadableDescriptor);
}
// The data buffer should be large enough to fit the size of the data, as described by
// the header descriptor.
if buf_desc.len() < pkt.len() {
return Err(VsockError::BufDescTooSmall);
}
pkt.buf_size = buf_desc.len() as usize;
pkt.buf = Some(
get_host_address_range(
desc_chain.memory(),
buf_desc
.addr()
.translate_gva(access_platform, buf_desc.len() as usize),
pkt.buf_size,
)
.ok_or(VsockError::GuestMemory)? as *mut u8,
);
Ok(pkt)
}
/// Create the packet wrapper from an RX virtq chain head.
///
/// There must be two descriptors in the chain, both writable: a header descriptor and a data
/// descriptor. Bounds and pointer checks are performed when creating the wrapper.
///
pub fn from_rx_virtq_head(
desc_chain: &mut DescriptorChain<GuestMemoryLoadGuard<GuestMemoryMmap>>,
access_platform: Option<&Arc<dyn AccessPlatform>>,
) -> Result<Self> {
let head = desc_chain.next().ok_or(VsockError::HdrDescMissing)?;
// All RX buffers must be writable.
//
if !head.is_write_only() {
return Err(VsockError::UnwritableDescriptor);
}
// The packet header should fit inside the head descriptor.
if head.len() < VSOCK_PKT_HDR_SIZE as u32 {
return Err(VsockError::HdrDescTooSmall(head.len()));
}
// All RX descriptor chains should have a header and a data descriptor.
if !head.has_next() {
return Err(VsockError::BufDescMissing);
}
let buf_desc = desc_chain.next().ok_or(VsockError::BufDescMissing)?;
let buf_size = buf_desc.len() as usize;
Ok(Self {
hdr: get_host_address_range(
desc_chain.memory(),
head.addr()
.translate_gva(access_platform, head.len() as usize),
VSOCK_PKT_HDR_SIZE,
)
.ok_or(VsockError::GuestMemory)? as *mut u8,
buf: Some(
get_host_address_range(
desc_chain.memory(),
buf_desc
.addr()
.translate_gva(access_platform, buf_desc.len() as usize),
buf_size,
)
.ok_or(VsockError::GuestMemory)? as *mut u8,
),
buf_size,
})
}
/// Provides in-place, byte-slice, access to the vsock packet header.
///
pub fn hdr(&self) -> &[u8] {
// This is safe since bound checks have already been performed when creating the packet
// from the virtq descriptor.
unsafe { std::slice::from_raw_parts(self.hdr as *const u8, VSOCK_PKT_HDR_SIZE) }
}
/// Provides in-place, byte-slice, mutable access to the vsock packet header.
///
pub fn hdr_mut(&mut self) -> &mut [u8] {
// This is safe since bound checks have already been performed when creating the packet
// from the virtq descriptor.
unsafe { std::slice::from_raw_parts_mut(self.hdr, VSOCK_PKT_HDR_SIZE) }
}
/// Provides in-place, byte-slice access to the vsock packet data buffer.
///
/// Note: control packets (e.g. connection request or reset) have no data buffer associated.
/// For those packets, this method will return `None`.
/// Also note: calling `len()` on the returned slice will yield the buffer size, which may be
/// (and often is) larger than the length of the packet data. The packet data length
/// is stored in the packet header, and accessible via `VsockPacket::len()`.
pub fn buf(&self) -> Option<&[u8]> {
self.buf.map(|ptr| {
// This is safe since bound checks have already been performed when creating the packet
// from the virtq descriptor.
unsafe { std::slice::from_raw_parts(ptr as *const u8, self.buf_size) }
})
}
/// Provides in-place, byte-slice, mutable access to the vsock packet data buffer.
///
/// Note: control packets (e.g. connection request or reset) have no data buffer associated.
/// For those packets, this method will return `None`.
/// Also note: calling `len()` on the returned slice will yield the buffer size, which may be
/// (and often is) larger than the length of the packet data. The packet data length
/// is stored in the packet header, and accessible via `VsockPacket::len()`.
pub fn buf_mut(&mut self) -> Option<&mut [u8]> {
self.buf.map(|ptr| {
// This is safe since bound checks have already been performed when creating the packet
// from the virtq descriptor.
unsafe { std::slice::from_raw_parts_mut(ptr, self.buf_size) }
})
}
pub fn src_cid(&self) -> u64 {
LittleEndian::read_u64(&self.hdr()[HDROFF_SRC_CID..])
}
pub fn set_src_cid(&mut self, cid: u64) -> &mut Self {
LittleEndian::write_u64(&mut self.hdr_mut()[HDROFF_SRC_CID..], cid);
self
}
pub fn dst_cid(&self) -> u64 {
LittleEndian::read_u64(&self.hdr()[HDROFF_DST_CID..])
}
pub fn set_dst_cid(&mut self, cid: u64) -> &mut Self {
LittleEndian::write_u64(&mut self.hdr_mut()[HDROFF_DST_CID..], cid);
self
}
pub fn src_port(&self) -> u32 {
LittleEndian::read_u32(&self.hdr()[HDROFF_SRC_PORT..])
}
pub fn set_src_port(&mut self, port: u32) -> &mut Self {
LittleEndian::write_u32(&mut self.hdr_mut()[HDROFF_SRC_PORT..], port);
self
}
pub fn dst_port(&self) -> u32 {
LittleEndian::read_u32(&self.hdr()[HDROFF_DST_PORT..])
}
pub fn set_dst_port(&mut self, port: u32) -> &mut Self {
LittleEndian::write_u32(&mut self.hdr_mut()[HDROFF_DST_PORT..], port);
self
}
pub fn len(&self) -> u32 {
LittleEndian::read_u32(&self.hdr()[HDROFF_LEN..])
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn set_len(&mut self, len: u32) -> &mut Self {
LittleEndian::write_u32(&mut self.hdr_mut()[HDROFF_LEN..], len);
self
}
pub fn type_(&self) -> u16 {
LittleEndian::read_u16(&self.hdr()[HDROFF_TYPE..])
}
pub fn set_type(&mut self, type_: u16) -> &mut Self {
LittleEndian::write_u16(&mut self.hdr_mut()[HDROFF_TYPE..], type_);
self
}
pub fn op(&self) -> u16 {
LittleEndian::read_u16(&self.hdr()[HDROFF_OP..])
}
pub fn set_op(&mut self, op: u16) -> &mut Self {
LittleEndian::write_u16(&mut self.hdr_mut()[HDROFF_OP..], op);
self
}
pub fn flags(&self) -> u32 {
LittleEndian::read_u32(&self.hdr()[HDROFF_FLAGS..])
}
pub fn set_flags(&mut self, flags: u32) -> &mut Self {
LittleEndian::write_u32(&mut self.hdr_mut()[HDROFF_FLAGS..], flags);
self
}
pub fn set_flag(&mut self, flag: u32) -> &mut Self {
self.set_flags(self.flags() | flag);
self
}
pub fn buf_alloc(&self) -> u32 {
LittleEndian::read_u32(&self.hdr()[HDROFF_BUF_ALLOC..])
}
pub fn set_buf_alloc(&mut self, buf_alloc: u32) -> &mut Self {
LittleEndian::write_u32(&mut self.hdr_mut()[HDROFF_BUF_ALLOC..], buf_alloc);
self
}
pub fn fwd_cnt(&self) -> u32 {
LittleEndian::read_u32(&self.hdr()[HDROFF_FWD_CNT..])
}
pub fn set_fwd_cnt(&mut self, fwd_cnt: u32) -> &mut Self {
LittleEndian::write_u32(&mut self.hdr_mut()[HDROFF_FWD_CNT..], fwd_cnt);
self
}
}
#[cfg(test)]
mod tests {
use super::super::tests::TestContext;
use super::*;
use crate::vsock::defs::MAX_PKT_BUF_SIZE;
use crate::GuestMemoryMmap;
use virtio_queue::defs::VIRTQ_DESC_F_WRITE;
use vm_memory::GuestAddress;
use vm_virtio::queue::testing::VirtqDesc as GuestQDesc;
macro_rules! create_context {
($test_ctx:ident, $handler_ctx:ident) => {
let $test_ctx = TestContext::new();
let mut $handler_ctx = $test_ctx.create_epoll_handler_context();
// For TX packets, hdr.len should be set to a valid value.
set_pkt_len(1024, &$handler_ctx.guest_txvq.dtable[0], &$test_ctx.mem);
};
}
macro_rules! expect_asm_error {
(tx, $test_ctx:expr, $handler_ctx:expr, $err:pat) => {
expect_asm_error!($test_ctx, $handler_ctx, $err, from_tx_virtq_head, 1);
};
(rx, $test_ctx:expr, $handler_ctx:expr, $err:pat) => {
expect_asm_error!($test_ctx, $handler_ctx, $err, from_rx_virtq_head, 0);
};
($test_ctx:expr, $handler_ctx:expr, $err:pat, $ctor:ident, $vq:expr) => {
match VsockPacket::$ctor(
&mut $handler_ctx.handler.queues[$vq]
.iter()
.unwrap()
.next()
.unwrap(),
None,
) {
Err($err) => (),
Ok(_) => panic!("Packet assembly should've failed!"),
Err(other) => panic!("Packet assembly failed with: {:?}", other),
}
};
}
fn set_pkt_len(len: u32, guest_desc: &GuestQDesc, mem: &GuestMemoryMmap) {
let hdr_gpa = guest_desc.addr.get();
let hdr_ptr = get_host_address_range(mem, GuestAddress(hdr_gpa), VSOCK_PKT_HDR_SIZE)
.unwrap() as *mut u8;
let len_ptr = unsafe { hdr_ptr.add(HDROFF_LEN) };
LittleEndian::write_u32(unsafe { std::slice::from_raw_parts_mut(len_ptr, 4) }, len);
}
#[test]
#[allow(clippy::cognitive_complexity)]
fn test_tx_packet_assembly() {
// Test case: successful TX packet assembly.
{
create_context!(test_ctx, handler_ctx);
let pkt = VsockPacket::from_tx_virtq_head(
&mut handler_ctx.handler.queues[1]
.iter()
.unwrap()
.next()
.unwrap(),
None,
)
.unwrap();
assert_eq!(pkt.hdr().len(), VSOCK_PKT_HDR_SIZE);
assert_eq!(
pkt.buf().unwrap().len(),
handler_ctx.guest_txvq.dtable[1].len.get() as usize
);
}
// Test case: error on write-only hdr descriptor.
{
create_context!(test_ctx, handler_ctx);
handler_ctx.guest_txvq.dtable[0]
.flags
.set(VIRTQ_DESC_F_WRITE);
expect_asm_error!(tx, test_ctx, handler_ctx, VsockError::UnreadableDescriptor);
}
// Test case: header descriptor has insufficient space to hold the packet header.
{
create_context!(test_ctx, handler_ctx);
handler_ctx.guest_txvq.dtable[0]
.len
.set(VSOCK_PKT_HDR_SIZE as u32 - 1);
expect_asm_error!(tx, test_ctx, handler_ctx, VsockError::HdrDescTooSmall(_));
}
// Test case: zero-length TX packet.
{
create_context!(test_ctx, handler_ctx);
set_pkt_len(0, &handler_ctx.guest_txvq.dtable[0], &test_ctx.mem);
let mut pkt = VsockPacket::from_tx_virtq_head(
&mut handler_ctx.handler.queues[1]
.iter()
.unwrap()
.next()
.unwrap(),
None,
)
.unwrap();
assert!(pkt.buf().is_none());
assert!(pkt.buf_mut().is_none());
}
// Test case: TX packet has more data than we can handle.
{
create_context!(test_ctx, handler_ctx);
set_pkt_len(
MAX_PKT_BUF_SIZE as u32 + 1,
&handler_ctx.guest_txvq.dtable[0],
&test_ctx.mem,
);
expect_asm_error!(tx, test_ctx, handler_ctx, VsockError::InvalidPktLen(_));
}
// Test case:
// - packet header advertises some data length; and
// - the data descriptor is missing.
{
create_context!(test_ctx, handler_ctx);
set_pkt_len(1024, &handler_ctx.guest_txvq.dtable[0], &test_ctx.mem);
handler_ctx.guest_txvq.dtable[0].flags.set(0);
expect_asm_error!(tx, test_ctx, handler_ctx, VsockError::BufDescMissing);
}
// Test case: error on write-only buf descriptor.
{
create_context!(test_ctx, handler_ctx);
handler_ctx.guest_txvq.dtable[1]
.flags
.set(VIRTQ_DESC_F_WRITE);
expect_asm_error!(tx, test_ctx, handler_ctx, VsockError::UnreadableDescriptor);
}
// Test case: the buffer descriptor cannot fit all the data advertised by the
// packet header `len` field.
{
create_context!(test_ctx, handler_ctx);
set_pkt_len(8 * 1024, &handler_ctx.guest_txvq.dtable[0], &test_ctx.mem);
handler_ctx.guest_txvq.dtable[1].len.set(4 * 1024);
expect_asm_error!(tx, test_ctx, handler_ctx, VsockError::BufDescTooSmall);
}
}
#[test]
fn test_rx_packet_assembly() {
// Test case: successful RX packet assembly.
{
create_context!(test_ctx, handler_ctx);
let pkt = VsockPacket::from_rx_virtq_head(
&mut handler_ctx.handler.queues[0]
.iter()
.unwrap()
.next()
.unwrap(),
None,
)
.unwrap();
assert_eq!(pkt.hdr().len(), VSOCK_PKT_HDR_SIZE);
assert_eq!(
pkt.buf().unwrap().len(),
handler_ctx.guest_rxvq.dtable[1].len.get() as usize
);
}
// Test case: read-only RX packet header.
{
create_context!(test_ctx, handler_ctx);
handler_ctx.guest_rxvq.dtable[0].flags.set(0);
expect_asm_error!(rx, test_ctx, handler_ctx, VsockError::UnwritableDescriptor);
}
// Test case: RX descriptor head cannot fit the entire packet header.
{
create_context!(test_ctx, handler_ctx);
handler_ctx.guest_rxvq.dtable[0]
.len
.set(VSOCK_PKT_HDR_SIZE as u32 - 1);
expect_asm_error!(rx, test_ctx, handler_ctx, VsockError::HdrDescTooSmall(_));
}
// Test case: RX descriptor chain is missing the packet buffer descriptor.
{
create_context!(test_ctx, handler_ctx);
handler_ctx.guest_rxvq.dtable[0]
.flags
.set(VIRTQ_DESC_F_WRITE);
expect_asm_error!(rx, test_ctx, handler_ctx, VsockError::BufDescMissing);
}
}
#[test]
#[allow(clippy::cognitive_complexity)]
fn test_packet_hdr_accessors() {
const SRC_CID: u64 = 1;
const DST_CID: u64 = 2;
const SRC_PORT: u32 = 3;
const DST_PORT: u32 = 4;
const LEN: u32 = 5;
const TYPE: u16 = 6;
const OP: u16 = 7;
const FLAGS: u32 = 8;
const BUF_ALLOC: u32 = 9;
const FWD_CNT: u32 = 10;
create_context!(test_ctx, handler_ctx);
let mut pkt = VsockPacket::from_rx_virtq_head(
&mut handler_ctx.handler.queues[0]
.iter()
.unwrap()
.next()
.unwrap(),
None,
)
.unwrap();
// Test field accessors.
pkt.set_src_cid(SRC_CID)
.set_dst_cid(DST_CID)
.set_src_port(SRC_PORT)
.set_dst_port(DST_PORT)
.set_len(LEN)
.set_type(TYPE)
.set_op(OP)
.set_flags(FLAGS)
.set_buf_alloc(BUF_ALLOC)
.set_fwd_cnt(FWD_CNT);
assert_eq!(pkt.src_cid(), SRC_CID);
assert_eq!(pkt.dst_cid(), DST_CID);
assert_eq!(pkt.src_port(), SRC_PORT);
assert_eq!(pkt.dst_port(), DST_PORT);
assert_eq!(pkt.len(), LEN);
assert_eq!(pkt.type_(), TYPE);
assert_eq!(pkt.op(), OP);
assert_eq!(pkt.flags(), FLAGS);
assert_eq!(pkt.buf_alloc(), BUF_ALLOC);
assert_eq!(pkt.fwd_cnt(), FWD_CNT);
// Test individual flag setting.
let flags = pkt.flags() | 0b1000;
pkt.set_flag(0b1000);
assert_eq!(pkt.flags(), flags);
// Test packet header as-slice access.
//
assert_eq!(pkt.hdr().len(), VSOCK_PKT_HDR_SIZE);
assert_eq!(
SRC_CID,
LittleEndian::read_u64(&pkt.hdr()[HDROFF_SRC_CID..])
);
assert_eq!(
DST_CID,
LittleEndian::read_u64(&pkt.hdr()[HDROFF_DST_CID..])
);
assert_eq!(
SRC_PORT,
LittleEndian::read_u32(&pkt.hdr()[HDROFF_SRC_PORT..])
);
assert_eq!(
DST_PORT,
LittleEndian::read_u32(&pkt.hdr()[HDROFF_DST_PORT..])
);
assert_eq!(LEN, LittleEndian::read_u32(&pkt.hdr()[HDROFF_LEN..]));
assert_eq!(TYPE, LittleEndian::read_u16(&pkt.hdr()[HDROFF_TYPE..]));
assert_eq!(OP, LittleEndian::read_u16(&pkt.hdr()[HDROFF_OP..]));
assert_eq!(FLAGS, LittleEndian::read_u32(&pkt.hdr()[HDROFF_FLAGS..]));
assert_eq!(
BUF_ALLOC,
LittleEndian::read_u32(&pkt.hdr()[HDROFF_BUF_ALLOC..])
);
assert_eq!(
FWD_CNT,
LittleEndian::read_u32(&pkt.hdr()[HDROFF_FWD_CNT..])
);
assert_eq!(pkt.hdr_mut().len(), VSOCK_PKT_HDR_SIZE);
for b in pkt.hdr_mut() {
*b = 0;
}
assert_eq!(pkt.src_cid(), 0);
assert_eq!(pkt.dst_cid(), 0);
assert_eq!(pkt.src_port(), 0);
assert_eq!(pkt.dst_port(), 0);
assert_eq!(pkt.len(), 0);
assert_eq!(pkt.type_(), 0);
assert_eq!(pkt.op(), 0);
assert_eq!(pkt.flags(), 0);
assert_eq!(pkt.buf_alloc(), 0);
assert_eq!(pkt.fwd_cnt(), 0);
}
#[test]
fn test_packet_buf() {
create_context!(test_ctx, handler_ctx);
let mut pkt = VsockPacket::from_rx_virtq_head(
&mut handler_ctx.handler.queues[0]
.iter()
.unwrap()
.next()
.unwrap(),
None,
)
.unwrap();
assert_eq!(
pkt.buf().unwrap().len(),
handler_ctx.guest_rxvq.dtable[1].len.get() as usize
);
assert_eq!(
pkt.buf_mut().unwrap().len(),
handler_ctx.guest_rxvq.dtable[1].len.get() as usize
);
for i in 0..pkt.buf().unwrap().len() {
pkt.buf_mut().unwrap()[i] = (i % 0x100) as u8;
assert_eq!(pkt.buf().unwrap()[i], (i % 0x100) as u8);
}
}
}