cloud-hypervisor/vmm/src/pci_segment.rs
Rob Bradford f32487f8e8 misc: Automatic beta clippy fixes
e.g. cargo clippy --all --tests --all-targets --fix --features=..

Signed-off-by: Rob Bradford <robert.bradford@intel.com>
2022-09-20 10:59:48 +01:00

427 lines
15 KiB
Rust

// Portions Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 - 2021 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//
use crate::device_manager::{AddressManager, DeviceManagerError, DeviceManagerResult};
use acpi_tables::aml::{self, Aml};
use arch::layout;
use pci::{DeviceRelocation, PciBdf, PciBus, PciConfigMmio, PciRoot};
#[cfg(target_arch = "x86_64")]
use pci::{PciConfigIo, PCI_CONFIG_IO_PORT, PCI_CONFIG_IO_PORT_SIZE};
use std::sync::{Arc, Mutex};
use uuid::Uuid;
use vm_allocator::AddressAllocator;
use vm_device::BusDevice;
pub(crate) struct PciSegment {
pub(crate) id: u16,
pub(crate) pci_bus: Arc<Mutex<PciBus>>,
pub(crate) pci_config_mmio: Arc<Mutex<PciConfigMmio>>,
pub(crate) mmio_config_address: u64,
#[cfg(target_arch = "x86_64")]
pub(crate) pci_config_io: Option<Arc<Mutex<PciConfigIo>>>,
// Bitmap of PCI devices to hotplug.
pub(crate) pci_devices_up: u32,
// Bitmap of PCI devices to hotunplug.
pub(crate) pci_devices_down: u32,
// List of allocated IRQs for each PCI slot.
pub(crate) pci_irq_slots: [u8; 32],
// Device memory covered by this segment
pub(crate) start_of_device_area: u64,
pub(crate) end_of_device_area: u64,
pub(crate) allocator: Arc<Mutex<AddressAllocator>>,
}
impl PciSegment {
pub(crate) fn new(
id: u16,
address_manager: &Arc<AddressManager>,
allocator: Arc<Mutex<AddressAllocator>>,
pci_irq_slots: &[u8; 32],
) -> DeviceManagerResult<PciSegment> {
let pci_root = PciRoot::new(None);
let pci_bus = Arc::new(Mutex::new(PciBus::new(
pci_root,
Arc::clone(address_manager) as Arc<dyn DeviceRelocation>,
)));
let pci_config_mmio = Arc::new(Mutex::new(PciConfigMmio::new(Arc::clone(&pci_bus))));
let mmio_config_address =
layout::PCI_MMCONFIG_START.0 + layout::PCI_MMIO_CONFIG_SIZE_PER_SEGMENT * id as u64;
address_manager
.mmio_bus
.insert(
Arc::clone(&pci_config_mmio) as Arc<Mutex<dyn BusDevice>>,
mmio_config_address,
layout::PCI_MMIO_CONFIG_SIZE_PER_SEGMENT,
)
.map_err(DeviceManagerError::BusError)?;
let start_of_device_area = allocator.lock().unwrap().base().0;
let end_of_device_area = allocator.lock().unwrap().end().0;
let segment = PciSegment {
id,
pci_bus,
pci_config_mmio,
mmio_config_address,
pci_devices_up: 0,
pci_devices_down: 0,
#[cfg(target_arch = "x86_64")]
pci_config_io: None,
allocator,
start_of_device_area,
end_of_device_area,
pci_irq_slots: *pci_irq_slots,
};
info!(
"Adding PCI segment: id={}, PCI MMIO config address: 0x{:x}, device area [0x{:x}-0x{:x}",
segment.id, segment.mmio_config_address, segment.start_of_device_area, segment.end_of_device_area
);
Ok(segment)
}
#[cfg(target_arch = "x86_64")]
pub(crate) fn new_default_segment(
address_manager: &Arc<AddressManager>,
allocator: Arc<Mutex<AddressAllocator>>,
pci_irq_slots: &[u8; 32],
) -> DeviceManagerResult<PciSegment> {
let mut segment = Self::new(0, address_manager, allocator, pci_irq_slots)?;
let pci_config_io = Arc::new(Mutex::new(PciConfigIo::new(Arc::clone(&segment.pci_bus))));
address_manager
.io_bus
.insert(
pci_config_io.clone(),
PCI_CONFIG_IO_PORT,
PCI_CONFIG_IO_PORT_SIZE,
)
.map_err(DeviceManagerError::BusError)?;
segment.pci_config_io = Some(pci_config_io);
Ok(segment)
}
#[cfg(target_arch = "aarch64")]
pub(crate) fn new_default_segment(
address_manager: &Arc<AddressManager>,
allocator: Arc<Mutex<AddressAllocator>>,
pci_irq_slots: &[u8; 32],
) -> DeviceManagerResult<PciSegment> {
Self::new(0, address_manager, allocator, pci_irq_slots)
}
pub(crate) fn next_device_bdf(&self) -> DeviceManagerResult<PciBdf> {
Ok(PciBdf::new(
self.id,
0,
self.pci_bus
.lock()
.unwrap()
.next_device_id()
.map_err(DeviceManagerError::NextPciDeviceId)? as u8,
0,
))
}
pub fn reserve_legacy_interrupts_for_pci_devices(
address_manager: &Arc<AddressManager>,
pci_irq_slots: &mut [u8; 32],
) -> DeviceManagerResult<()> {
// Reserve 8 IRQs which will be shared across all PCI devices.
let num_irqs = 8;
let mut irqs: Vec<u8> = Vec::new();
for _ in 0..num_irqs {
irqs.push(
address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.ok_or(DeviceManagerError::AllocateIrq)? as u8,
);
}
// There are 32 devices on the PCI bus, let's assign them an IRQ.
for i in 0..32 {
pci_irq_slots[i] = irqs[(i % num_irqs) as usize];
}
Ok(())
}
}
struct PciDevSlot {
device_id: u8,
}
impl Aml for PciDevSlot {
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
let sun = self.device_id;
let adr: u32 = (self.device_id as u32) << 16;
aml::Device::new(
format!("S{:03}", self.device_id).as_str().into(),
vec![
&aml::Name::new("_SUN".into(), &sun),
&aml::Name::new("_ADR".into(), &adr),
&aml::Method::new(
"_EJ0".into(),
1,
true,
vec![&aml::MethodCall::new(
"\\_SB_.PHPR.PCEJ".into(),
vec![&aml::Path::new("_SUN"), &aml::Path::new("_SEG")],
)],
),
],
)
.append_aml_bytes(bytes)
}
}
struct PciDevSlotNotify {
device_id: u8,
}
impl Aml for PciDevSlotNotify {
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
let device_id_mask: u32 = 1 << self.device_id;
let object = aml::Path::new(&format!("S{:03}", self.device_id));
aml::And::new(&aml::Local(0), &aml::Arg(0), &device_id_mask).append_aml_bytes(bytes);
aml::If::new(
&aml::Equal::new(&aml::Local(0), &device_id_mask),
vec![&aml::Notify::new(&object, &aml::Arg(1))],
)
.append_aml_bytes(bytes);
}
}
struct PciDevSlotMethods {}
impl Aml for PciDevSlotMethods {
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
let mut device_notifies = Vec::new();
for device_id in 0..32 {
device_notifies.push(PciDevSlotNotify { device_id });
}
let mut device_notifies_refs: Vec<&dyn aml::Aml> = Vec::new();
for device_notify in device_notifies.iter() {
device_notifies_refs.push(device_notify);
}
aml::Method::new("DVNT".into(), 2, true, device_notifies_refs).append_aml_bytes(bytes);
aml::Method::new(
"PCNT".into(),
0,
true,
vec![
&aml::Acquire::new("\\_SB_.PHPR.BLCK".into(), 0xffff),
&aml::Store::new(&aml::Path::new("\\_SB_.PHPR.PSEG"), &aml::Path::new("_SEG")),
&aml::MethodCall::new(
"DVNT".into(),
vec![&aml::Path::new("\\_SB_.PHPR.PCIU"), &aml::ONE],
),
&aml::MethodCall::new(
"DVNT".into(),
vec![&aml::Path::new("\\_SB_.PHPR.PCID"), &3usize],
),
&aml::Release::new("\\_SB_.PHPR.BLCK".into()),
],
)
.append_aml_bytes(bytes)
}
}
struct PciDsmMethod {}
impl Aml for PciDsmMethod {
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
// Refer to ACPI spec v6.3 Ch 9.1.1 and PCI Firmware spec v3.3 Ch 4.6.1
// _DSM (Device Specific Method), the following is the implementation in ASL.
/*
Method (_DSM, 4, NotSerialized) // _DSM: Device-Specific Method
{
If ((Arg0 == ToUUID ("e5c937d0-3553-4d7a-9117-ea4d19c3434d") /* Device Labeling Interface */))
{
If ((Arg2 == Zero))
{
Return (Buffer (One) { 0x21 })
}
If ((Arg2 == 0x05))
{
Return (Zero)
}
}
Return (Buffer (One) { 0x00 })
}
*/
/*
* As per ACPI v6.3 Ch 19.6.142, the UUID is required to be in mixed endian:
* Among the fields of a UUID:
* {d1 (8 digits)} - {d2 (4 digits)} - {d3 (4 digits)} - {d4 (16 digits)}
* d1 ~ d3 need to be little endian, d4 be big endian.
* See https://en.wikipedia.org/wiki/Universally_unique_identifier#Encoding .
*/
let uuid = Uuid::parse_str("E5C937D0-3553-4D7A-9117-EA4D19C3434D").unwrap();
let (uuid_d1, uuid_d2, uuid_d3, uuid_d4) = uuid.as_fields();
let mut uuid_buf = vec![];
uuid_buf.extend(uuid_d1.to_le_bytes());
uuid_buf.extend(uuid_d2.to_le_bytes());
uuid_buf.extend(uuid_d3.to_le_bytes());
uuid_buf.extend(uuid_d4);
aml::Method::new(
"_DSM".into(),
4,
false,
vec![
&aml::If::new(
&aml::Equal::new(&aml::Arg(0), &aml::Buffer::new(uuid_buf)),
vec![
&aml::If::new(
&aml::Equal::new(&aml::Arg(2), &aml::ZERO),
vec![&aml::Return::new(&aml::Buffer::new(vec![0x21]))],
),
&aml::If::new(
&aml::Equal::new(&aml::Arg(2), &0x05u8),
vec![&aml::Return::new(&aml::ZERO)],
),
],
),
&aml::Return::new(&aml::Buffer::new(vec![0])),
],
)
.append_aml_bytes(bytes)
}
}
impl Aml for PciSegment {
fn append_aml_bytes(&self, bytes: &mut Vec<u8>) {
let mut pci_dsdt_inner_data: Vec<&dyn aml::Aml> = Vec::new();
let hid = aml::Name::new("_HID".into(), &aml::EisaName::new("PNP0A08"));
pci_dsdt_inner_data.push(&hid);
let cid = aml::Name::new("_CID".into(), &aml::EisaName::new("PNP0A03"));
pci_dsdt_inner_data.push(&cid);
let adr = aml::Name::new("_ADR".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&adr);
let seg = aml::Name::new("_SEG".into(), &self.id);
pci_dsdt_inner_data.push(&seg);
let uid = aml::Name::new("_UID".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&uid);
let cca = aml::Name::new("_CCA".into(), &aml::ONE);
pci_dsdt_inner_data.push(&cca);
let supp = aml::Name::new("SUPP".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&supp);
// Since Cloud Hypervisor supports only one PCI bus, it can be tied
// to the NUMA node 0. It's up to the user to organize the NUMA nodes
// so that the PCI bus relates to the expected vCPUs and guest RAM.
let proximity_domain = 0u32;
let pxm_return = aml::Return::new(&proximity_domain);
let pxm = aml::Method::new("_PXM".into(), 0, false, vec![&pxm_return]);
pci_dsdt_inner_data.push(&pxm);
let pci_dsm = PciDsmMethod {};
pci_dsdt_inner_data.push(&pci_dsm);
let crs = if self.id == 0 {
aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![
&aml::AddressSpace::new_bus_number(0x0u16, 0x0u16),
#[cfg(target_arch = "x86_64")]
&aml::Io::new(0xcf8, 0xcf8, 1, 0x8),
&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
layout::MEM_32BIT_DEVICES_START.0 as u32,
(layout::MEM_32BIT_DEVICES_START.0 + layout::MEM_32BIT_DEVICES_SIZE - 1)
as u32,
),
&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
self.start_of_device_area,
self.end_of_device_area,
),
#[cfg(target_arch = "x86_64")]
&aml::AddressSpace::new_io(0u16, 0x0cf7u16),
#[cfg(target_arch = "x86_64")]
&aml::AddressSpace::new_io(0x0d00u16, 0xffffu16),
]),
)
} else {
aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![
&aml::AddressSpace::new_bus_number(0x0u16, 0x0u16),
&aml::Memory32Fixed::new(
true,
self.mmio_config_address as u32,
layout::PCI_MMIO_CONFIG_SIZE_PER_SEGMENT as u32,
),
&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
self.start_of_device_area,
self.end_of_device_area,
),
]),
)
};
pci_dsdt_inner_data.push(&crs);
let mut pci_devices = Vec::new();
for device_id in 0..32 {
let pci_device = PciDevSlot { device_id };
pci_devices.push(pci_device);
}
for pci_device in pci_devices.iter() {
pci_dsdt_inner_data.push(pci_device);
}
let pci_device_methods = PciDevSlotMethods {};
pci_dsdt_inner_data.push(&pci_device_methods);
// Build PCI routing table, listing IRQs assigned to PCI devices.
let prt_package_list: Vec<(u32, u32)> = self
.pci_irq_slots
.iter()
.enumerate()
.map(|(i, irq)| (((((i as u32) & 0x1fu32) << 16) | 0xffffu32), *irq as u32))
.collect();
let prt_package_list: Vec<aml::Package> = prt_package_list
.iter()
.map(|(bdf, irq)| aml::Package::new(vec![bdf, &0u8, &0u8, irq]))
.collect();
let prt_package_list: Vec<&dyn Aml> = prt_package_list
.iter()
.map(|item| item as &dyn Aml)
.collect();
let prt = aml::Name::new("_PRT".into(), &aml::Package::new(prt_package_list));
pci_dsdt_inner_data.push(&prt);
aml::Device::new(
format!("_SB_.PCI{:X}", self.id).as_str().into(),
pci_dsdt_inner_data,
)
.append_aml_bytes(bytes)
}
}