cloud-hypervisor/vm-device/src/bus.rs
Rob Bradford 2716bc3311 build: Fix beta clippy issue (derive_partial_eq_without_eq)
warning: you are deriving `PartialEq` and can implement `Eq`
  --> vmm/src/serial_manager.rs:59:30
   |
59 | #[derive(Debug, Clone, Copy, PartialEq)]
   |                              ^^^^^^^^^ help: consider deriving `Eq` as well: `PartialEq, Eq`
   |
   = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#derive_partial_eq_without_eq

Signed-off-by: Rob Bradford <robert.bradford@intel.com>
2022-06-30 20:50:45 +01:00

361 lines
11 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//! Handles routing to devices in an address space.
use std::cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd};
use std::collections::btree_map::BTreeMap;
use std::sync::{Arc, Barrier, Mutex, RwLock, Weak};
use std::{convert, error, fmt, io, result};
/// Trait for devices that respond to reads or writes in an arbitrary address space.
///
/// The device does not care where it exists in address space as each method is only given an offset
/// into its allocated portion of address space.
#[allow(unused_variables)]
pub trait BusDevice: Send {
/// Reads at `offset` from this device
fn read(&mut self, base: u64, offset: u64, data: &mut [u8]) {}
/// Writes at `offset` into this device
fn write(&mut self, base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
None
}
}
#[derive(Debug)]
pub enum Error {
/// The insertion failed because the new device overlapped with an old device.
Overlap,
/// Failed to operate on zero sized range.
ZeroSizedRange,
/// Failed to find address range.
MissingAddressRange,
}
pub type Result<T> = result::Result<T, Error>;
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "bus_error: {:?}", self)
}
}
impl error::Error for Error {}
impl convert::From<Error> for io::Error {
fn from(e: Error) -> Self {
io::Error::new(io::ErrorKind::Other, e)
}
}
/// Holds a base and length representing the address space occupied by a `BusDevice`.
///
/// * base - The address at which the range start.
/// * len - The length of the range in bytes.
#[derive(Debug, Copy, Clone)]
pub struct BusRange {
pub base: u64,
pub len: u64,
}
impl BusRange {
/// Returns true if there is overlap with the given range.
pub fn overlaps(&self, base: u64, len: u64) -> bool {
self.base < (base + len) && base < self.base + self.len
}
}
impl Eq for BusRange {}
impl PartialEq for BusRange {
fn eq(&self, other: &BusRange) -> bool {
self.base == other.base
}
}
impl Ord for BusRange {
fn cmp(&self, other: &BusRange) -> Ordering {
self.base.cmp(&other.base)
}
}
impl PartialOrd for BusRange {
fn partial_cmp(&self, other: &BusRange) -> Option<Ordering> {
self.base.partial_cmp(&other.base)
}
}
/// A device container for routing reads and writes over some address space.
///
/// This doesn't have any restrictions on what kind of device or address space this applies to. The
/// only restriction is that no two devices can overlap in this address space.
#[derive(Default)]
pub struct Bus {
devices: RwLock<BTreeMap<BusRange, Weak<Mutex<dyn BusDevice>>>>,
}
impl Bus {
/// Constructs an a bus with an empty address space.
pub fn new() -> Bus {
Bus {
devices: RwLock::new(BTreeMap::new()),
}
}
fn first_before(&self, addr: u64) -> Option<(BusRange, Arc<Mutex<dyn BusDevice>>)> {
let devices = self.devices.read().unwrap();
let (range, dev) = devices
.range(..=BusRange { base: addr, len: 1 })
.rev()
.next()?;
dev.upgrade().map(|d| (*range, d.clone()))
}
#[allow(clippy::type_complexity)]
pub fn resolve(&self, addr: u64) -> Option<(u64, u64, Arc<Mutex<dyn BusDevice>>)> {
if let Some((range, dev)) = self.first_before(addr) {
let offset = addr - range.base;
if offset < range.len {
return Some((range.base, offset, dev));
}
}
None
}
/// Puts the given device at the given address space.
pub fn insert(&self, device: Arc<Mutex<dyn BusDevice>>, base: u64, len: u64) -> Result<()> {
if len == 0 {
return Err(Error::ZeroSizedRange);
}
// Reject all cases where the new device's range overlaps with an existing device.
if self
.devices
.read()
.unwrap()
.iter()
.any(|(range, _dev)| range.overlaps(base, len))
{
return Err(Error::Overlap);
}
if self
.devices
.write()
.unwrap()
.insert(BusRange { base, len }, Arc::downgrade(&device))
.is_some()
{
return Err(Error::Overlap);
}
Ok(())
}
/// Removes the device at the given address space range.
pub fn remove(&self, base: u64, len: u64) -> Result<()> {
if len == 0 {
return Err(Error::ZeroSizedRange);
}
let bus_range = BusRange { base, len };
if self.devices.write().unwrap().remove(&bus_range).is_none() {
return Err(Error::MissingAddressRange);
}
Ok(())
}
/// Removes all entries referencing the given device.
pub fn remove_by_device(&self, device: &Arc<Mutex<dyn BusDevice>>) -> Result<()> {
let mut device_list = self.devices.write().unwrap();
let mut remove_key_list = Vec::new();
for (key, value) in device_list.iter() {
if Arc::ptr_eq(&value.upgrade().unwrap(), device) {
remove_key_list.push(*key);
}
}
for key in remove_key_list.iter() {
device_list.remove(key);
}
Ok(())
}
/// Updates the address range for an existing device.
pub fn update_range(
&self,
old_base: u64,
old_len: u64,
new_base: u64,
new_len: u64,
) -> Result<()> {
// Retrieve the device corresponding to the range
let device = if let Some((_, _, dev)) = self.resolve(old_base) {
dev.clone()
} else {
return Err(Error::MissingAddressRange);
};
// Remove the old address range
self.remove(old_base, old_len)?;
// Insert the new address range
self.insert(device, new_base, new_len)
}
/// Reads data from the device that owns the range containing `addr` and puts it into `data`.
///
/// Returns true on success, otherwise `data` is untouched.
pub fn read(&self, addr: u64, data: &mut [u8]) -> Result<()> {
if let Some((base, offset, dev)) = self.resolve(addr) {
// OK to unwrap as lock() failing is a serious error condition and should panic.
dev.lock()
.expect("Failed to acquire device lock")
.read(base, offset, data);
Ok(())
} else {
Err(Error::MissingAddressRange)
}
}
/// Writes `data` to the device that owns the range containing `addr`.
///
/// Returns true on success, otherwise `data` is untouched.
pub fn write(&self, addr: u64, data: &[u8]) -> Result<Option<Arc<Barrier>>> {
if let Some((base, offset, dev)) = self.resolve(addr) {
// OK to unwrap as lock() failing is a serious error condition and should panic.
Ok(dev
.lock()
.expect("Failed to acquire device lock")
.write(base, offset, data))
} else {
Err(Error::MissingAddressRange)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
struct DummyDevice;
impl BusDevice for DummyDevice {}
struct ConstantDevice;
impl BusDevice for ConstantDevice {
fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) {
for (i, v) in data.iter_mut().enumerate() {
*v = (offset as u8) + (i as u8);
}
}
fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
for (i, v) in data.iter().enumerate() {
assert_eq!(*v, (offset as u8) + (i as u8))
}
None
}
}
#[test]
fn bus_insert() {
let bus = Bus::new();
let dummy = Arc::new(Mutex::new(DummyDevice));
assert!(bus.insert(dummy.clone(), 0x10, 0).is_err());
assert!(bus.insert(dummy.clone(), 0x10, 0x10).is_ok());
let result = bus.insert(dummy.clone(), 0x0f, 0x10);
assert!(result.is_err());
assert_eq!(format!("{:?}", result), "Err(Overlap)");
assert!(bus.insert(dummy.clone(), 0x10, 0x10).is_err());
assert!(bus.insert(dummy.clone(), 0x10, 0x15).is_err());
assert!(bus.insert(dummy.clone(), 0x12, 0x15).is_err());
assert!(bus.insert(dummy.clone(), 0x12, 0x01).is_err());
assert!(bus.insert(dummy.clone(), 0x0, 0x20).is_err());
assert!(bus.insert(dummy.clone(), 0x20, 0x05).is_ok());
assert!(bus.insert(dummy.clone(), 0x25, 0x05).is_ok());
assert!(bus.insert(dummy, 0x0, 0x10).is_ok());
}
#[test]
#[allow(clippy::redundant_clone)]
fn bus_read_write() {
let bus = Bus::new();
let dummy = Arc::new(Mutex::new(DummyDevice));
assert!(bus.insert(dummy.clone(), 0x10, 0x10).is_ok());
assert!(bus.read(0x10, &mut [0, 0, 0, 0]).is_ok());
assert!(bus.write(0x10, &[0, 0, 0, 0]).is_ok());
assert!(bus.read(0x11, &mut [0, 0, 0, 0]).is_ok());
assert!(bus.write(0x11, &[0, 0, 0, 0]).is_ok());
assert!(bus.read(0x16, &mut [0, 0, 0, 0]).is_ok());
assert!(bus.write(0x16, &[0, 0, 0, 0]).is_ok());
assert!(bus.read(0x20, &mut [0, 0, 0, 0]).is_err());
assert!(bus.write(0x20, &[0, 0, 0, 0]).is_err());
assert!(bus.read(0x06, &mut [0, 0, 0, 0]).is_err());
assert!(bus.write(0x06, &[0, 0, 0, 0]).is_err());
}
#[test]
#[allow(clippy::redundant_clone)]
fn bus_read_write_values() {
let bus = Bus::new();
let dummy = Arc::new(Mutex::new(ConstantDevice));
assert!(bus.insert(dummy.clone(), 0x10, 0x10).is_ok());
let mut values = [0, 1, 2, 3];
assert!(bus.read(0x10, &mut values).is_ok());
assert_eq!(values, [0, 1, 2, 3]);
assert!(bus.write(0x10, &values).is_ok());
assert!(bus.read(0x15, &mut values).is_ok());
assert_eq!(values, [5, 6, 7, 8]);
assert!(bus.write(0x15, &values).is_ok());
}
#[test]
#[allow(clippy::redundant_clone)]
fn busrange_cmp() {
let range = BusRange { base: 0x10, len: 2 };
assert_eq!(range, BusRange { base: 0x10, len: 3 });
assert_eq!(range, BusRange { base: 0x10, len: 2 });
assert!(range < BusRange { base: 0x12, len: 1 });
assert!(range < BusRange { base: 0x12, len: 3 });
assert_eq!(range, range.clone());
let bus = Bus::new();
let mut data = [1, 2, 3, 4];
let device = Arc::new(Mutex::new(DummyDevice));
assert!(bus.insert(device.clone(), 0x10, 0x10).is_ok());
assert!(bus.write(0x10, &data).is_ok());
assert!(bus.read(0x10, &mut data).is_ok());
assert_eq!(data, [1, 2, 3, 4]);
}
#[test]
fn bus_range_overlap() {
let a = BusRange {
base: 0x1000,
len: 0x400,
};
assert!(a.overlaps(0x1000, 0x400));
assert!(a.overlaps(0xf00, 0x400));
assert!(a.overlaps(0x1000, 0x01));
assert!(a.overlaps(0xfff, 0x02));
assert!(a.overlaps(0x1100, 0x100));
assert!(a.overlaps(0x13ff, 0x100));
assert!(!a.overlaps(0x1400, 0x100));
assert!(!a.overlaps(0xf00, 0x100));
}
}