mirror of
https://github.com/cloud-hypervisor/cloud-hypervisor.git
synced 2024-11-05 11:31:14 +00:00
6f5d4702d4
Simplify snapshot & restore code by using generics to specify helper functions that take / make a Serialize / Deserialize struct Signed-off-by: Rob Bradford <robert.bradford@intel.com>
864 lines
31 KiB
Rust
864 lines
31 KiB
Rust
// Copyright 2019 Intel Corporation. All Rights Reserved.
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Portions Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the THIRD-PARTY file.
|
|
|
|
use super::{VsockBackend, VsockPacket};
|
|
use crate::seccomp_filters::{get_seccomp_filter, Thread};
|
|
use crate::Error as DeviceError;
|
|
use crate::VirtioInterrupt;
|
|
use crate::{
|
|
ActivateError, ActivateResult, EpollHelper, EpollHelperError, EpollHelperHandler, Queue,
|
|
VirtioCommon, VirtioDevice, VirtioDeviceType, VirtioInterruptType, EPOLL_HELPER_EVENT_LAST,
|
|
VIRTIO_F_IN_ORDER, VIRTIO_F_IOMMU_PLATFORM, VIRTIO_F_VERSION_1,
|
|
};
|
|
/// This is the `VirtioDevice` implementation for our vsock device. It handles the virtio-level
|
|
/// device logic: feature negotiation, device configuration, and device activation.
|
|
/// The run-time device logic (i.e. event-driven data handling) is implemented by
|
|
/// `super::epoll_handler::EpollHandler`.
|
|
///
|
|
/// We aim to conform to the VirtIO v1.1 spec:
|
|
/// https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
|
|
///
|
|
/// The vsock device has two input parameters: a CID to identify the device, and a `VsockBackend`
|
|
/// to use for offloading vsock traffic.
|
|
///
|
|
/// Upon its activation, the vsock device creates its `EpollHandler`, passes it the event-interested
|
|
/// file descriptors, and registers these descriptors with the VMM `EpollContext`. Going forward,
|
|
/// the `EpollHandler` will get notified whenever an event occurs on the just-registered FDs:
|
|
/// - an RX queue FD;
|
|
/// - a TX queue FD;
|
|
/// - an event queue FD; and
|
|
/// - a backend FD.
|
|
///
|
|
use byteorder::{ByteOrder, LittleEndian};
|
|
use seccomp::{SeccompAction, SeccompFilter};
|
|
use std::io;
|
|
use std::os::unix::io::AsRawFd;
|
|
use std::path::PathBuf;
|
|
use std::result;
|
|
use std::sync::atomic::AtomicBool;
|
|
use std::sync::{Arc, Barrier, RwLock};
|
|
use std::thread;
|
|
use vm_memory::{GuestAddressSpace, GuestMemoryAtomic, GuestMemoryMmap};
|
|
use vm_migration::{Migratable, MigratableError, Pausable, Snapshot, Snapshottable, Transportable};
|
|
use vmm_sys_util::eventfd::EventFd;
|
|
|
|
const QUEUE_SIZE: u16 = 256;
|
|
const NUM_QUEUES: usize = 3;
|
|
const QUEUE_SIZES: &[u16] = &[QUEUE_SIZE; NUM_QUEUES];
|
|
|
|
// New descriptors are pending on the rx queue.
|
|
pub const RX_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 1;
|
|
// New descriptors are pending on the tx queue.
|
|
pub const TX_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 2;
|
|
// New descriptors are pending on the event queue.
|
|
pub const EVT_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 3;
|
|
// Notification coming from the backend.
|
|
pub const BACKEND_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 4;
|
|
|
|
/// The `VsockEpollHandler` implements the runtime logic of our vsock device:
|
|
/// 1. Respond to TX queue events by wrapping virtio buffers into `VsockPacket`s, then sending those
|
|
/// packets to the `VsockBackend`;
|
|
/// 2. Forward backend FD event notifications to the `VsockBackend`;
|
|
/// 3. Fetch incoming packets from the `VsockBackend` and place them into the virtio RX queue;
|
|
/// 4. Whenever we have processed some virtio buffers (either TX or RX), let the driver know by
|
|
/// raising our assigned IRQ.
|
|
///
|
|
/// In a nutshell, the `VsockEpollHandler` logic looks like this:
|
|
/// - on TX queue event:
|
|
/// - fetch all packets from the TX queue and send them to the backend; then
|
|
/// - if the backend has queued up any incoming packets, fetch them into any available RX buffers.
|
|
/// - on RX queue event:
|
|
/// - fetch any incoming packets, queued up by the backend, into newly available RX buffers.
|
|
/// - on backend event:
|
|
/// - forward the event to the backend; then
|
|
/// - again, attempt to fetch any incoming packets queued by the backend into virtio RX buffers.
|
|
///
|
|
pub struct VsockEpollHandler<B: VsockBackend> {
|
|
pub mem: GuestMemoryAtomic<GuestMemoryMmap>,
|
|
pub queues: Vec<Queue>,
|
|
pub queue_evts: Vec<EventFd>,
|
|
pub kill_evt: EventFd,
|
|
pub pause_evt: EventFd,
|
|
pub interrupt_cb: Arc<dyn VirtioInterrupt>,
|
|
pub backend: Arc<RwLock<B>>,
|
|
}
|
|
|
|
impl<B> VsockEpollHandler<B>
|
|
where
|
|
B: VsockBackend,
|
|
{
|
|
/// Signal the guest driver that we've used some virtio buffers that it had previously made
|
|
/// available.
|
|
///
|
|
fn signal_used_queue(&self, queue: &Queue) -> result::Result<(), DeviceError> {
|
|
debug!("vsock: raising IRQ");
|
|
|
|
self.interrupt_cb
|
|
.trigger(&VirtioInterruptType::Queue, Some(queue))
|
|
.map_err(|e| {
|
|
error!("Failed to signal used queue: {:?}", e);
|
|
DeviceError::FailedSignalingUsedQueue(e)
|
|
})
|
|
}
|
|
|
|
/// Walk the driver-provided RX queue buffers and attempt to fill them up with any data that we
|
|
/// have pending.
|
|
///
|
|
fn process_rx(&mut self) -> result::Result<(), DeviceError> {
|
|
debug!("vsock: epoll_handler::process_rx()");
|
|
|
|
let mut used_desc_heads = [(0, 0); QUEUE_SIZE as usize];
|
|
let mut used_count = 0;
|
|
let mem = self.mem.memory();
|
|
for avail_desc in self.queues[0].iter(&mem) {
|
|
let used_len = match VsockPacket::from_rx_virtq_head(&avail_desc) {
|
|
Ok(mut pkt) => {
|
|
if self.backend.write().unwrap().recv_pkt(&mut pkt).is_ok() {
|
|
pkt.hdr().len() as u32 + pkt.len()
|
|
} else {
|
|
// We are using a consuming iterator over the virtio buffers, so, if we can't
|
|
// fill in this buffer, we'll need to undo the last iterator step.
|
|
self.queues[0].go_to_previous_position();
|
|
break;
|
|
}
|
|
}
|
|
Err(e) => {
|
|
warn!("vsock: RX queue error: {:?}", e);
|
|
0
|
|
}
|
|
};
|
|
|
|
used_desc_heads[used_count] = (avail_desc.index, used_len);
|
|
used_count += 1;
|
|
}
|
|
|
|
for &(desc_index, len) in &used_desc_heads[..used_count] {
|
|
self.queues[0].add_used(&mem, desc_index, len);
|
|
}
|
|
|
|
if used_count > 0 {
|
|
self.signal_used_queue(&self.queues[0])
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Walk the driver-provided TX queue buffers, package them up as vsock packets, and send them to
|
|
/// the backend for processing.
|
|
///
|
|
fn process_tx(&mut self) -> result::Result<(), DeviceError> {
|
|
debug!("vsock: epoll_handler::process_tx()");
|
|
|
|
let mut used_desc_heads = [(0, 0); QUEUE_SIZE as usize];
|
|
let mut used_count = 0;
|
|
let mem = self.mem.memory();
|
|
for avail_desc in self.queues[1].iter(&mem) {
|
|
let pkt = match VsockPacket::from_tx_virtq_head(&avail_desc) {
|
|
Ok(pkt) => pkt,
|
|
Err(e) => {
|
|
error!("vsock: error reading TX packet: {:?}", e);
|
|
used_desc_heads[used_count] = (avail_desc.index, 0);
|
|
used_count += 1;
|
|
continue;
|
|
}
|
|
};
|
|
|
|
if self.backend.write().unwrap().send_pkt(&pkt).is_err() {
|
|
self.queues[1].go_to_previous_position();
|
|
break;
|
|
}
|
|
|
|
used_desc_heads[used_count] = (avail_desc.index, 0);
|
|
used_count += 1;
|
|
}
|
|
|
|
for &(desc_index, len) in &used_desc_heads[..used_count] {
|
|
self.queues[1].add_used(&mem, desc_index, len);
|
|
}
|
|
|
|
if used_count > 0 {
|
|
self.signal_used_queue(&self.queues[1])
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn run(
|
|
&mut self,
|
|
paused: Arc<AtomicBool>,
|
|
paused_sync: Arc<Barrier>,
|
|
) -> result::Result<(), EpollHelperError> {
|
|
let mut helper = EpollHelper::new(&self.kill_evt, &self.pause_evt)?;
|
|
helper.add_event(self.queue_evts[0].as_raw_fd(), RX_QUEUE_EVENT)?;
|
|
helper.add_event(self.queue_evts[1].as_raw_fd(), TX_QUEUE_EVENT)?;
|
|
helper.add_event(self.queue_evts[2].as_raw_fd(), EVT_QUEUE_EVENT)?;
|
|
helper.add_event(self.backend.read().unwrap().get_polled_fd(), BACKEND_EVENT)?;
|
|
helper.run(paused, paused_sync, self)?;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<B> EpollHelperHandler for VsockEpollHandler<B>
|
|
where
|
|
B: VsockBackend,
|
|
{
|
|
fn handle_event(&mut self, _helper: &mut EpollHelper, event: &epoll::Event) -> bool {
|
|
let evset = match epoll::Events::from_bits(event.events) {
|
|
Some(evset) => evset,
|
|
None => {
|
|
let evbits = event.events;
|
|
warn!("epoll: ignoring unknown event set: 0x{:x}", evbits);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
let ev_type = event.data as u16;
|
|
match ev_type {
|
|
RX_QUEUE_EVENT => {
|
|
debug!("vsock: RX queue event");
|
|
if let Err(e) = self.queue_evts[0].read() {
|
|
error!("Failed to get RX queue event: {:?}", e);
|
|
return true;
|
|
} else if self.backend.read().unwrap().has_pending_rx() {
|
|
if let Err(e) = self.process_rx() {
|
|
error!("Failed to process RX queue: {:?}", e);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
TX_QUEUE_EVENT => {
|
|
debug!("vsock: TX queue event");
|
|
if let Err(e) = self.queue_evts[1].read() {
|
|
error!("Failed to get TX queue event: {:?}", e);
|
|
return true;
|
|
} else {
|
|
if let Err(e) = self.process_tx() {
|
|
error!("Failed to process TX queue: {:?}", e);
|
|
return true;
|
|
}
|
|
// The backend may have queued up responses to the packets we sent during TX queue
|
|
// processing. If that happened, we need to fetch those responses and place them
|
|
// into RX buffers.
|
|
if self.backend.read().unwrap().has_pending_rx() {
|
|
if let Err(e) = self.process_rx() {
|
|
error!("Failed to process RX queue: {:?}", e);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
EVT_QUEUE_EVENT => {
|
|
debug!("vsock: EVT queue event");
|
|
if let Err(e) = self.queue_evts[2].read() {
|
|
error!("Failed to get EVT queue event: {:?}", e);
|
|
return true;
|
|
}
|
|
}
|
|
BACKEND_EVENT => {
|
|
debug!("vsock: backend event");
|
|
self.backend.write().unwrap().notify(evset);
|
|
// After the backend has been kicked, it might've freed up some resources, so we
|
|
// can attempt to send it more data to process.
|
|
// In particular, if `self.backend.send_pkt()` halted the TX queue processing (by
|
|
// returning an error) at some point in the past, now is the time to try walking the
|
|
// TX queue again.
|
|
if let Err(e) = self.process_tx() {
|
|
error!("Failed to process TX queue: {:?}", e);
|
|
return true;
|
|
}
|
|
if self.backend.read().unwrap().has_pending_rx() {
|
|
if let Err(e) = self.process_rx() {
|
|
error!("Failed to process RX queue: {:?}", e);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
error!("Unknown event for virtio-vsock");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
false
|
|
}
|
|
}
|
|
|
|
/// Virtio device exposing virtual socket to the guest.
|
|
pub struct Vsock<B: VsockBackend> {
|
|
common: VirtioCommon,
|
|
id: String,
|
|
cid: u64,
|
|
backend: Arc<RwLock<B>>,
|
|
path: PathBuf,
|
|
seccomp_action: SeccompAction,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
pub struct VsockState {
|
|
pub avail_features: u64,
|
|
pub acked_features: u64,
|
|
}
|
|
|
|
impl<B> Vsock<B>
|
|
where
|
|
B: VsockBackend,
|
|
{
|
|
/// Create a new virtio-vsock device with the given VM CID and vsock
|
|
/// backend.
|
|
pub fn new(
|
|
id: String,
|
|
cid: u64,
|
|
path: PathBuf,
|
|
backend: B,
|
|
iommu: bool,
|
|
seccomp_action: SeccompAction,
|
|
) -> io::Result<Vsock<B>> {
|
|
let mut avail_features = 1u64 << VIRTIO_F_VERSION_1 | 1u64 << VIRTIO_F_IN_ORDER;
|
|
|
|
if iommu {
|
|
avail_features |= 1u64 << VIRTIO_F_IOMMU_PLATFORM;
|
|
}
|
|
|
|
Ok(Vsock {
|
|
common: VirtioCommon {
|
|
device_type: VirtioDeviceType::Vsock as u32,
|
|
avail_features,
|
|
paused_sync: Some(Arc::new(Barrier::new(2))),
|
|
queue_sizes: QUEUE_SIZES.to_vec(),
|
|
min_queues: NUM_QUEUES as u16,
|
|
..Default::default()
|
|
},
|
|
id,
|
|
cid,
|
|
backend: Arc::new(RwLock::new(backend)),
|
|
path,
|
|
seccomp_action,
|
|
})
|
|
}
|
|
|
|
fn state(&self) -> VsockState {
|
|
VsockState {
|
|
avail_features: self.common.avail_features,
|
|
acked_features: self.common.acked_features,
|
|
}
|
|
}
|
|
|
|
fn set_state(&mut self, state: &VsockState) {
|
|
self.common.avail_features = state.avail_features;
|
|
self.common.acked_features = state.acked_features;
|
|
}
|
|
}
|
|
|
|
impl<B> Drop for Vsock<B>
|
|
where
|
|
B: VsockBackend,
|
|
{
|
|
fn drop(&mut self) {
|
|
if let Some(kill_evt) = self.common.kill_evt.take() {
|
|
// Ignore the result because there is nothing we can do about it.
|
|
let _ = kill_evt.write(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<B> VirtioDevice for Vsock<B>
|
|
where
|
|
B: VsockBackend + Sync + 'static,
|
|
{
|
|
fn device_type(&self) -> u32 {
|
|
self.common.device_type
|
|
}
|
|
|
|
fn queue_max_sizes(&self) -> &[u16] {
|
|
&self.common.queue_sizes
|
|
}
|
|
|
|
fn features(&self) -> u64 {
|
|
self.common.avail_features
|
|
}
|
|
|
|
fn ack_features(&mut self, value: u64) {
|
|
self.common.ack_features(value)
|
|
}
|
|
|
|
fn read_config(&self, offset: u64, data: &mut [u8]) {
|
|
match offset {
|
|
0 if data.len() == 8 => LittleEndian::write_u64(data, self.cid),
|
|
0 if data.len() == 4 => LittleEndian::write_u32(data, (self.cid & 0xffff_ffff) as u32),
|
|
4 if data.len() == 4 => {
|
|
LittleEndian::write_u32(data, ((self.cid >> 32) & 0xffff_ffff) as u32)
|
|
}
|
|
_ => warn!(
|
|
"vsock: virtio-vsock received invalid read request of {} bytes at offset {}",
|
|
data.len(),
|
|
offset
|
|
),
|
|
}
|
|
}
|
|
|
|
fn activate(
|
|
&mut self,
|
|
mem: GuestMemoryAtomic<GuestMemoryMmap>,
|
|
interrupt_cb: Arc<dyn VirtioInterrupt>,
|
|
queues: Vec<Queue>,
|
|
queue_evts: Vec<EventFd>,
|
|
) -> ActivateResult {
|
|
self.common.activate(&queues, &queue_evts, &interrupt_cb)?;
|
|
let kill_evt = self
|
|
.common
|
|
.kill_evt
|
|
.as_ref()
|
|
.unwrap()
|
|
.try_clone()
|
|
.map_err(|e| {
|
|
error!("failed to clone kill_evt eventfd: {}", e);
|
|
ActivateError::BadActivate
|
|
})?;
|
|
let pause_evt = self
|
|
.common
|
|
.pause_evt
|
|
.as_ref()
|
|
.unwrap()
|
|
.try_clone()
|
|
.map_err(|e| {
|
|
error!("failed to clone pause_evt eventfd: {}", e);
|
|
ActivateError::BadActivate
|
|
})?;
|
|
|
|
let mut handler = VsockEpollHandler {
|
|
mem,
|
|
queues,
|
|
queue_evts,
|
|
kill_evt,
|
|
pause_evt,
|
|
interrupt_cb,
|
|
backend: self.backend.clone(),
|
|
};
|
|
|
|
let paused = self.common.paused.clone();
|
|
let paused_sync = self.common.paused_sync.clone();
|
|
let mut epoll_threads = Vec::new();
|
|
// Retrieve seccomp filter for virtio_vsock thread
|
|
let virtio_vsock_seccomp_filter =
|
|
get_seccomp_filter(&self.seccomp_action, Thread::VirtioVsock)
|
|
.map_err(ActivateError::CreateSeccompFilter)?;
|
|
thread::Builder::new()
|
|
.name(self.id.clone())
|
|
.spawn(move || {
|
|
if let Err(e) = SeccompFilter::apply(virtio_vsock_seccomp_filter) {
|
|
error!("Error applying seccomp filter: {:?}", e);
|
|
} else if let Err(e) = handler.run(paused, paused_sync.unwrap()) {
|
|
error!("Error running worker: {:?}", e);
|
|
}
|
|
})
|
|
.map(|thread| epoll_threads.push(thread))
|
|
.map_err(|e| {
|
|
error!("failed to clone the vsock epoll thread: {}", e);
|
|
ActivateError::BadActivate
|
|
})?;
|
|
|
|
self.common.epoll_threads = Some(epoll_threads);
|
|
|
|
event!("virtio-device", "activated", "id", &self.id);
|
|
Ok(())
|
|
}
|
|
|
|
fn reset(&mut self) -> Option<Arc<dyn VirtioInterrupt>> {
|
|
let result = self.common.reset();
|
|
event!("virtio-device", "reset", "id", &self.id);
|
|
result
|
|
}
|
|
|
|
fn shutdown(&mut self) {
|
|
std::fs::remove_file(&self.path).ok();
|
|
}
|
|
}
|
|
|
|
impl<B> Pausable for Vsock<B>
|
|
where
|
|
B: VsockBackend + Sync + 'static,
|
|
{
|
|
fn pause(&mut self) -> result::Result<(), MigratableError> {
|
|
self.common.pause()
|
|
}
|
|
|
|
fn resume(&mut self) -> result::Result<(), MigratableError> {
|
|
self.common.resume()
|
|
}
|
|
}
|
|
|
|
impl<B> Snapshottable for Vsock<B>
|
|
where
|
|
B: VsockBackend + Sync + 'static,
|
|
{
|
|
fn id(&self) -> String {
|
|
self.id.clone()
|
|
}
|
|
|
|
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
|
|
Snapshot::new_from_state(&self.id, &self.state())
|
|
}
|
|
|
|
fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> {
|
|
self.set_state(&snapshot.to_state(&self.id)?);
|
|
Ok(())
|
|
}
|
|
}
|
|
impl<B> Transportable for Vsock<B> where B: VsockBackend + Sync + 'static {}
|
|
impl<B> Migratable for Vsock<B> where B: VsockBackend + Sync + 'static {}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::super::tests::{NoopVirtioInterrupt, TestContext};
|
|
use super::super::*;
|
|
use super::*;
|
|
use crate::vsock::device::{BACKEND_EVENT, EVT_QUEUE_EVENT, RX_QUEUE_EVENT, TX_QUEUE_EVENT};
|
|
use libc::EFD_NONBLOCK;
|
|
|
|
#[test]
|
|
fn test_virtio_device() {
|
|
let mut ctx = TestContext::new();
|
|
let avail_features = 1u64 << VIRTIO_F_VERSION_1 | 1u64 << VIRTIO_F_IN_ORDER;
|
|
let device_features = avail_features;
|
|
let driver_features: u64 = avail_features | 1 | (1 << 32);
|
|
let device_pages = [
|
|
(device_features & 0xffff_ffff) as u32,
|
|
(device_features >> 32) as u32,
|
|
];
|
|
let driver_pages = [
|
|
(driver_features & 0xffff_ffff) as u32,
|
|
(driver_features >> 32) as u32,
|
|
];
|
|
assert_eq!(ctx.device.device_type(), VirtioDeviceType::Vsock as u32);
|
|
assert_eq!(ctx.device.queue_max_sizes(), QUEUE_SIZES);
|
|
assert_eq!(ctx.device.features() as u32, device_pages[0]);
|
|
assert_eq!((ctx.device.features() >> 32) as u32, device_pages[1]);
|
|
|
|
// Ack device features, page 0.
|
|
ctx.device.ack_features(u64::from(driver_pages[0]));
|
|
// Ack device features, page 1.
|
|
ctx.device.ack_features(u64::from(driver_pages[1]) << 32);
|
|
// Check that no side effect are present, and that the acked features are exactly the same
|
|
// as the device features.
|
|
assert_eq!(
|
|
ctx.device.common.acked_features,
|
|
device_features & driver_features
|
|
);
|
|
|
|
// Test reading 32-bit chunks.
|
|
let mut data = [0u8; 8];
|
|
ctx.device.read_config(0, &mut data[..4]);
|
|
assert_eq!(
|
|
u64::from(LittleEndian::read_u32(&data)),
|
|
ctx.cid & 0xffff_ffff
|
|
);
|
|
ctx.device.read_config(4, &mut data[4..]);
|
|
assert_eq!(
|
|
u64::from(LittleEndian::read_u32(&data[4..])),
|
|
(ctx.cid >> 32) & 0xffff_ffff
|
|
);
|
|
|
|
// Test reading 64-bit.
|
|
let mut data = [0u8; 8];
|
|
ctx.device.read_config(0, &mut data);
|
|
assert_eq!(LittleEndian::read_u64(&data), ctx.cid);
|
|
|
|
// Check that out-of-bounds reading doesn't mutate the destination buffer.
|
|
let mut data = [0u8, 1, 2, 3, 4, 5, 6, 7];
|
|
ctx.device.read_config(2, &mut data);
|
|
assert_eq!(data, [0u8, 1, 2, 3, 4, 5, 6, 7]);
|
|
|
|
// Just covering lines here, since the vsock device has no writable config.
|
|
// A warning is, however, logged, if the guest driver attempts to write any config data.
|
|
ctx.device.write_config(0, &data[..4]);
|
|
|
|
// Test a bad activation.
|
|
let bad_activate = ctx.device.activate(
|
|
GuestMemoryAtomic::new(ctx.mem.clone()),
|
|
Arc::new(NoopVirtioInterrupt {}),
|
|
Vec::new(),
|
|
Vec::new(),
|
|
);
|
|
match bad_activate {
|
|
Err(ActivateError::BadActivate) => (),
|
|
other => panic!("{:?}", other),
|
|
}
|
|
|
|
// Test a correct activation.
|
|
ctx.device
|
|
.activate(
|
|
GuestMemoryAtomic::new(ctx.mem.clone()),
|
|
Arc::new(NoopVirtioInterrupt {}),
|
|
vec![Queue::new(256), Queue::new(256), Queue::new(256)],
|
|
vec![
|
|
EventFd::new(EFD_NONBLOCK).unwrap(),
|
|
EventFd::new(EFD_NONBLOCK).unwrap(),
|
|
EventFd::new(EFD_NONBLOCK).unwrap(),
|
|
],
|
|
)
|
|
.unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_irq() {
|
|
// Test case: successful IRQ signaling.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
let queue = Queue::new(256);
|
|
assert!(ctx.handler.signal_used_queue(&queue).is_ok());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_txq_event() {
|
|
// Test case:
|
|
// - the driver has something to send (there's data in the TX queue); and
|
|
// - the backend has no pending RX data.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(false);
|
|
ctx.signal_txq_event();
|
|
|
|
// The available TX descriptor should have been used.
|
|
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
|
|
// The available RX descriptor should be untouched.
|
|
assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
|
|
}
|
|
|
|
// Test case:
|
|
// - the driver has something to send (there's data in the TX queue); and
|
|
// - the backend also has some pending RX data.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(true);
|
|
ctx.signal_txq_event();
|
|
|
|
// Both available RX and TX descriptors should have been used.
|
|
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
|
|
assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
|
|
}
|
|
|
|
// Test case:
|
|
// - the driver has something to send (there's data in the TX queue); and
|
|
// - the backend errors out and cannot process the TX queue.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(false);
|
|
ctx.handler
|
|
.backend
|
|
.write()
|
|
.unwrap()
|
|
.set_tx_err(Some(VsockError::NoData));
|
|
ctx.signal_txq_event();
|
|
|
|
// Both RX and TX queues should be untouched.
|
|
assert_eq!(ctx.guest_txvq.used.idx.get(), 0);
|
|
assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
|
|
}
|
|
|
|
// Test case:
|
|
// - the driver supplied a malformed TX buffer.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
// Invalidate the packet header descriptor, by setting its length to 0.
|
|
ctx.guest_txvq.dtable[0].len.set(0);
|
|
ctx.signal_txq_event();
|
|
|
|
// The available descriptor should have been consumed, but no packet should have
|
|
// reached the backend.
|
|
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
|
|
assert_eq!(ctx.handler.backend.read().unwrap().tx_ok_cnt, 0);
|
|
}
|
|
|
|
// Test case: spurious TXQ_EVENT.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
let events = epoll::Events::EPOLLIN;
|
|
let event = epoll::Event::new(events, TX_QUEUE_EVENT as u64);
|
|
let mut epoll_helper =
|
|
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
|
|
|
|
if !ctx.handler.handle_event(&mut epoll_helper, &event) {
|
|
panic!("handle_event() should have failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_rxq_event() {
|
|
// Test case:
|
|
// - there is pending RX data in the backend; and
|
|
// - the driver makes RX buffers available; and
|
|
// - the backend successfully places its RX data into the queue.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(true);
|
|
ctx.handler
|
|
.backend
|
|
.write()
|
|
.unwrap()
|
|
.set_rx_err(Some(VsockError::NoData));
|
|
ctx.signal_rxq_event();
|
|
|
|
// The available RX buffer should've been left untouched.
|
|
assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
|
|
}
|
|
|
|
// Test case:
|
|
// - there is pending RX data in the backend; and
|
|
// - the driver makes RX buffers available; and
|
|
// - the backend errors out, when attempting to receive data.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(true);
|
|
ctx.signal_rxq_event();
|
|
|
|
// The available RX buffer should have been used.
|
|
assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
|
|
}
|
|
|
|
// Test case: the driver provided a malformed RX descriptor chain.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
// Invalidate the packet header descriptor, by setting its length to 0.
|
|
ctx.guest_rxvq.dtable[0].len.set(0);
|
|
|
|
// The chain should've been processed, without employing the backend.
|
|
assert!(ctx.handler.process_rx().is_ok());
|
|
assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
|
|
assert_eq!(ctx.handler.backend.read().unwrap().rx_ok_cnt, 0);
|
|
}
|
|
|
|
// Test case: spurious RXQ_EVENT.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(false);
|
|
|
|
let events = epoll::Events::EPOLLIN;
|
|
let event = epoll::Event::new(events, RX_QUEUE_EVENT as u64);
|
|
let mut epoll_helper =
|
|
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
|
|
|
|
if !ctx.handler.handle_event(&mut epoll_helper, &event) {
|
|
panic!("handle_event() should have failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_evq_event() {
|
|
// Test case: spurious EVQ_EVENT.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(false);
|
|
|
|
let events = epoll::Events::EPOLLIN;
|
|
let event = epoll::Event::new(events, EVT_QUEUE_EVENT as u64);
|
|
let mut epoll_helper =
|
|
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
|
|
|
|
if !ctx.handler.handle_event(&mut epoll_helper, &event) {
|
|
panic!("handle_event() should have failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_backend_event() {
|
|
// Test case:
|
|
// - a backend event is received; and
|
|
// - the backend has pending RX data.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(true);
|
|
|
|
let events = epoll::Events::EPOLLIN;
|
|
let event = epoll::Event::new(events, BACKEND_EVENT as u64);
|
|
let mut epoll_helper =
|
|
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
|
|
ctx.handler.handle_event(&mut epoll_helper, &event);
|
|
|
|
// The backend should've received this event.
|
|
assert_eq!(
|
|
ctx.handler.backend.read().unwrap().evset,
|
|
Some(epoll::Events::EPOLLIN)
|
|
);
|
|
// TX queue processing should've been triggered.
|
|
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
|
|
// RX queue processing should've been triggered.
|
|
assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
|
|
}
|
|
|
|
// Test case:
|
|
// - a backend event is received; and
|
|
// - the backend doesn't have any pending RX data.
|
|
{
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
ctx.handler.backend.write().unwrap().set_pending_rx(false);
|
|
|
|
let events = epoll::Events::EPOLLIN;
|
|
let event = epoll::Event::new(events, BACKEND_EVENT as u64);
|
|
let mut epoll_helper =
|
|
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
|
|
ctx.handler.handle_event(&mut epoll_helper, &event);
|
|
|
|
// The backend should've received this event.
|
|
assert_eq!(
|
|
ctx.handler.backend.read().unwrap().evset,
|
|
Some(epoll::Events::EPOLLIN)
|
|
);
|
|
// TX queue processing should've been triggered.
|
|
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
|
|
// The RX queue should've been left untouched.
|
|
assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_unknown_event() {
|
|
let test_ctx = TestContext::new();
|
|
let mut ctx = test_ctx.create_epoll_handler_context();
|
|
|
|
let events = epoll::Events::EPOLLIN;
|
|
let event = epoll::Event::new(events, 0xff);
|
|
let mut epoll_helper =
|
|
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
|
|
|
|
if !ctx.handler.handle_event(&mut epoll_helper, &event) {
|
|
panic!("handle_event() should have failed");
|
|
}
|
|
}
|
|
}
|