cloud-hypervisor/virtio-devices/src/vsock/device.rs
Rob Bradford 6f5d4702d4 misc: Simplify snapshot/restore by using helper functions
Simplify snapshot & restore code by using generics to specify helper
functions that take / make a Serialize / Deserialize struct

Signed-off-by: Rob Bradford <robert.bradford@intel.com>
2021-04-08 16:17:14 +01:00

864 lines
31 KiB
Rust

// Copyright 2019 Intel Corporation. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Portions Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the THIRD-PARTY file.
use super::{VsockBackend, VsockPacket};
use crate::seccomp_filters::{get_seccomp_filter, Thread};
use crate::Error as DeviceError;
use crate::VirtioInterrupt;
use crate::{
ActivateError, ActivateResult, EpollHelper, EpollHelperError, EpollHelperHandler, Queue,
VirtioCommon, VirtioDevice, VirtioDeviceType, VirtioInterruptType, EPOLL_HELPER_EVENT_LAST,
VIRTIO_F_IN_ORDER, VIRTIO_F_IOMMU_PLATFORM, VIRTIO_F_VERSION_1,
};
/// This is the `VirtioDevice` implementation for our vsock device. It handles the virtio-level
/// device logic: feature negotiation, device configuration, and device activation.
/// The run-time device logic (i.e. event-driven data handling) is implemented by
/// `super::epoll_handler::EpollHandler`.
///
/// We aim to conform to the VirtIO v1.1 spec:
/// https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
///
/// The vsock device has two input parameters: a CID to identify the device, and a `VsockBackend`
/// to use for offloading vsock traffic.
///
/// Upon its activation, the vsock device creates its `EpollHandler`, passes it the event-interested
/// file descriptors, and registers these descriptors with the VMM `EpollContext`. Going forward,
/// the `EpollHandler` will get notified whenever an event occurs on the just-registered FDs:
/// - an RX queue FD;
/// - a TX queue FD;
/// - an event queue FD; and
/// - a backend FD.
///
use byteorder::{ByteOrder, LittleEndian};
use seccomp::{SeccompAction, SeccompFilter};
use std::io;
use std::os::unix::io::AsRawFd;
use std::path::PathBuf;
use std::result;
use std::sync::atomic::AtomicBool;
use std::sync::{Arc, Barrier, RwLock};
use std::thread;
use vm_memory::{GuestAddressSpace, GuestMemoryAtomic, GuestMemoryMmap};
use vm_migration::{Migratable, MigratableError, Pausable, Snapshot, Snapshottable, Transportable};
use vmm_sys_util::eventfd::EventFd;
const QUEUE_SIZE: u16 = 256;
const NUM_QUEUES: usize = 3;
const QUEUE_SIZES: &[u16] = &[QUEUE_SIZE; NUM_QUEUES];
// New descriptors are pending on the rx queue.
pub const RX_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 1;
// New descriptors are pending on the tx queue.
pub const TX_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 2;
// New descriptors are pending on the event queue.
pub const EVT_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 3;
// Notification coming from the backend.
pub const BACKEND_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 4;
/// The `VsockEpollHandler` implements the runtime logic of our vsock device:
/// 1. Respond to TX queue events by wrapping virtio buffers into `VsockPacket`s, then sending those
/// packets to the `VsockBackend`;
/// 2. Forward backend FD event notifications to the `VsockBackend`;
/// 3. Fetch incoming packets from the `VsockBackend` and place them into the virtio RX queue;
/// 4. Whenever we have processed some virtio buffers (either TX or RX), let the driver know by
/// raising our assigned IRQ.
///
/// In a nutshell, the `VsockEpollHandler` logic looks like this:
/// - on TX queue event:
/// - fetch all packets from the TX queue and send them to the backend; then
/// - if the backend has queued up any incoming packets, fetch them into any available RX buffers.
/// - on RX queue event:
/// - fetch any incoming packets, queued up by the backend, into newly available RX buffers.
/// - on backend event:
/// - forward the event to the backend; then
/// - again, attempt to fetch any incoming packets queued by the backend into virtio RX buffers.
///
pub struct VsockEpollHandler<B: VsockBackend> {
pub mem: GuestMemoryAtomic<GuestMemoryMmap>,
pub queues: Vec<Queue>,
pub queue_evts: Vec<EventFd>,
pub kill_evt: EventFd,
pub pause_evt: EventFd,
pub interrupt_cb: Arc<dyn VirtioInterrupt>,
pub backend: Arc<RwLock<B>>,
}
impl<B> VsockEpollHandler<B>
where
B: VsockBackend,
{
/// Signal the guest driver that we've used some virtio buffers that it had previously made
/// available.
///
fn signal_used_queue(&self, queue: &Queue) -> result::Result<(), DeviceError> {
debug!("vsock: raising IRQ");
self.interrupt_cb
.trigger(&VirtioInterruptType::Queue, Some(queue))
.map_err(|e| {
error!("Failed to signal used queue: {:?}", e);
DeviceError::FailedSignalingUsedQueue(e)
})
}
/// Walk the driver-provided RX queue buffers and attempt to fill them up with any data that we
/// have pending.
///
fn process_rx(&mut self) -> result::Result<(), DeviceError> {
debug!("vsock: epoll_handler::process_rx()");
let mut used_desc_heads = [(0, 0); QUEUE_SIZE as usize];
let mut used_count = 0;
let mem = self.mem.memory();
for avail_desc in self.queues[0].iter(&mem) {
let used_len = match VsockPacket::from_rx_virtq_head(&avail_desc) {
Ok(mut pkt) => {
if self.backend.write().unwrap().recv_pkt(&mut pkt).is_ok() {
pkt.hdr().len() as u32 + pkt.len()
} else {
// We are using a consuming iterator over the virtio buffers, so, if we can't
// fill in this buffer, we'll need to undo the last iterator step.
self.queues[0].go_to_previous_position();
break;
}
}
Err(e) => {
warn!("vsock: RX queue error: {:?}", e);
0
}
};
used_desc_heads[used_count] = (avail_desc.index, used_len);
used_count += 1;
}
for &(desc_index, len) in &used_desc_heads[..used_count] {
self.queues[0].add_used(&mem, desc_index, len);
}
if used_count > 0 {
self.signal_used_queue(&self.queues[0])
} else {
Ok(())
}
}
/// Walk the driver-provided TX queue buffers, package them up as vsock packets, and send them to
/// the backend for processing.
///
fn process_tx(&mut self) -> result::Result<(), DeviceError> {
debug!("vsock: epoll_handler::process_tx()");
let mut used_desc_heads = [(0, 0); QUEUE_SIZE as usize];
let mut used_count = 0;
let mem = self.mem.memory();
for avail_desc in self.queues[1].iter(&mem) {
let pkt = match VsockPacket::from_tx_virtq_head(&avail_desc) {
Ok(pkt) => pkt,
Err(e) => {
error!("vsock: error reading TX packet: {:?}", e);
used_desc_heads[used_count] = (avail_desc.index, 0);
used_count += 1;
continue;
}
};
if self.backend.write().unwrap().send_pkt(&pkt).is_err() {
self.queues[1].go_to_previous_position();
break;
}
used_desc_heads[used_count] = (avail_desc.index, 0);
used_count += 1;
}
for &(desc_index, len) in &used_desc_heads[..used_count] {
self.queues[1].add_used(&mem, desc_index, len);
}
if used_count > 0 {
self.signal_used_queue(&self.queues[1])
} else {
Ok(())
}
}
fn run(
&mut self,
paused: Arc<AtomicBool>,
paused_sync: Arc<Barrier>,
) -> result::Result<(), EpollHelperError> {
let mut helper = EpollHelper::new(&self.kill_evt, &self.pause_evt)?;
helper.add_event(self.queue_evts[0].as_raw_fd(), RX_QUEUE_EVENT)?;
helper.add_event(self.queue_evts[1].as_raw_fd(), TX_QUEUE_EVENT)?;
helper.add_event(self.queue_evts[2].as_raw_fd(), EVT_QUEUE_EVENT)?;
helper.add_event(self.backend.read().unwrap().get_polled_fd(), BACKEND_EVENT)?;
helper.run(paused, paused_sync, self)?;
Ok(())
}
}
impl<B> EpollHelperHandler for VsockEpollHandler<B>
where
B: VsockBackend,
{
fn handle_event(&mut self, _helper: &mut EpollHelper, event: &epoll::Event) -> bool {
let evset = match epoll::Events::from_bits(event.events) {
Some(evset) => evset,
None => {
let evbits = event.events;
warn!("epoll: ignoring unknown event set: 0x{:x}", evbits);
return false;
}
};
let ev_type = event.data as u16;
match ev_type {
RX_QUEUE_EVENT => {
debug!("vsock: RX queue event");
if let Err(e) = self.queue_evts[0].read() {
error!("Failed to get RX queue event: {:?}", e);
return true;
} else if self.backend.read().unwrap().has_pending_rx() {
if let Err(e) = self.process_rx() {
error!("Failed to process RX queue: {:?}", e);
return true;
}
}
}
TX_QUEUE_EVENT => {
debug!("vsock: TX queue event");
if let Err(e) = self.queue_evts[1].read() {
error!("Failed to get TX queue event: {:?}", e);
return true;
} else {
if let Err(e) = self.process_tx() {
error!("Failed to process TX queue: {:?}", e);
return true;
}
// The backend may have queued up responses to the packets we sent during TX queue
// processing. If that happened, we need to fetch those responses and place them
// into RX buffers.
if self.backend.read().unwrap().has_pending_rx() {
if let Err(e) = self.process_rx() {
error!("Failed to process RX queue: {:?}", e);
return true;
}
}
}
}
EVT_QUEUE_EVENT => {
debug!("vsock: EVT queue event");
if let Err(e) = self.queue_evts[2].read() {
error!("Failed to get EVT queue event: {:?}", e);
return true;
}
}
BACKEND_EVENT => {
debug!("vsock: backend event");
self.backend.write().unwrap().notify(evset);
// After the backend has been kicked, it might've freed up some resources, so we
// can attempt to send it more data to process.
// In particular, if `self.backend.send_pkt()` halted the TX queue processing (by
// returning an error) at some point in the past, now is the time to try walking the
// TX queue again.
if let Err(e) = self.process_tx() {
error!("Failed to process TX queue: {:?}", e);
return true;
}
if self.backend.read().unwrap().has_pending_rx() {
if let Err(e) = self.process_rx() {
error!("Failed to process RX queue: {:?}", e);
return true;
}
}
}
_ => {
error!("Unknown event for virtio-vsock");
return true;
}
}
false
}
}
/// Virtio device exposing virtual socket to the guest.
pub struct Vsock<B: VsockBackend> {
common: VirtioCommon,
id: String,
cid: u64,
backend: Arc<RwLock<B>>,
path: PathBuf,
seccomp_action: SeccompAction,
}
#[derive(Serialize, Deserialize)]
pub struct VsockState {
pub avail_features: u64,
pub acked_features: u64,
}
impl<B> Vsock<B>
where
B: VsockBackend,
{
/// Create a new virtio-vsock device with the given VM CID and vsock
/// backend.
pub fn new(
id: String,
cid: u64,
path: PathBuf,
backend: B,
iommu: bool,
seccomp_action: SeccompAction,
) -> io::Result<Vsock<B>> {
let mut avail_features = 1u64 << VIRTIO_F_VERSION_1 | 1u64 << VIRTIO_F_IN_ORDER;
if iommu {
avail_features |= 1u64 << VIRTIO_F_IOMMU_PLATFORM;
}
Ok(Vsock {
common: VirtioCommon {
device_type: VirtioDeviceType::Vsock as u32,
avail_features,
paused_sync: Some(Arc::new(Barrier::new(2))),
queue_sizes: QUEUE_SIZES.to_vec(),
min_queues: NUM_QUEUES as u16,
..Default::default()
},
id,
cid,
backend: Arc::new(RwLock::new(backend)),
path,
seccomp_action,
})
}
fn state(&self) -> VsockState {
VsockState {
avail_features: self.common.avail_features,
acked_features: self.common.acked_features,
}
}
fn set_state(&mut self, state: &VsockState) {
self.common.avail_features = state.avail_features;
self.common.acked_features = state.acked_features;
}
}
impl<B> Drop for Vsock<B>
where
B: VsockBackend,
{
fn drop(&mut self) {
if let Some(kill_evt) = self.common.kill_evt.take() {
// Ignore the result because there is nothing we can do about it.
let _ = kill_evt.write(1);
}
}
}
impl<B> VirtioDevice for Vsock<B>
where
B: VsockBackend + Sync + 'static,
{
fn device_type(&self) -> u32 {
self.common.device_type
}
fn queue_max_sizes(&self) -> &[u16] {
&self.common.queue_sizes
}
fn features(&self) -> u64 {
self.common.avail_features
}
fn ack_features(&mut self, value: u64) {
self.common.ack_features(value)
}
fn read_config(&self, offset: u64, data: &mut [u8]) {
match offset {
0 if data.len() == 8 => LittleEndian::write_u64(data, self.cid),
0 if data.len() == 4 => LittleEndian::write_u32(data, (self.cid & 0xffff_ffff) as u32),
4 if data.len() == 4 => {
LittleEndian::write_u32(data, ((self.cid >> 32) & 0xffff_ffff) as u32)
}
_ => warn!(
"vsock: virtio-vsock received invalid read request of {} bytes at offset {}",
data.len(),
offset
),
}
}
fn activate(
&mut self,
mem: GuestMemoryAtomic<GuestMemoryMmap>,
interrupt_cb: Arc<dyn VirtioInterrupt>,
queues: Vec<Queue>,
queue_evts: Vec<EventFd>,
) -> ActivateResult {
self.common.activate(&queues, &queue_evts, &interrupt_cb)?;
let kill_evt = self
.common
.kill_evt
.as_ref()
.unwrap()
.try_clone()
.map_err(|e| {
error!("failed to clone kill_evt eventfd: {}", e);
ActivateError::BadActivate
})?;
let pause_evt = self
.common
.pause_evt
.as_ref()
.unwrap()
.try_clone()
.map_err(|e| {
error!("failed to clone pause_evt eventfd: {}", e);
ActivateError::BadActivate
})?;
let mut handler = VsockEpollHandler {
mem,
queues,
queue_evts,
kill_evt,
pause_evt,
interrupt_cb,
backend: self.backend.clone(),
};
let paused = self.common.paused.clone();
let paused_sync = self.common.paused_sync.clone();
let mut epoll_threads = Vec::new();
// Retrieve seccomp filter for virtio_vsock thread
let virtio_vsock_seccomp_filter =
get_seccomp_filter(&self.seccomp_action, Thread::VirtioVsock)
.map_err(ActivateError::CreateSeccompFilter)?;
thread::Builder::new()
.name(self.id.clone())
.spawn(move || {
if let Err(e) = SeccompFilter::apply(virtio_vsock_seccomp_filter) {
error!("Error applying seccomp filter: {:?}", e);
} else if let Err(e) = handler.run(paused, paused_sync.unwrap()) {
error!("Error running worker: {:?}", e);
}
})
.map(|thread| epoll_threads.push(thread))
.map_err(|e| {
error!("failed to clone the vsock epoll thread: {}", e);
ActivateError::BadActivate
})?;
self.common.epoll_threads = Some(epoll_threads);
event!("virtio-device", "activated", "id", &self.id);
Ok(())
}
fn reset(&mut self) -> Option<Arc<dyn VirtioInterrupt>> {
let result = self.common.reset();
event!("virtio-device", "reset", "id", &self.id);
result
}
fn shutdown(&mut self) {
std::fs::remove_file(&self.path).ok();
}
}
impl<B> Pausable for Vsock<B>
where
B: VsockBackend + Sync + 'static,
{
fn pause(&mut self) -> result::Result<(), MigratableError> {
self.common.pause()
}
fn resume(&mut self) -> result::Result<(), MigratableError> {
self.common.resume()
}
}
impl<B> Snapshottable for Vsock<B>
where
B: VsockBackend + Sync + 'static,
{
fn id(&self) -> String {
self.id.clone()
}
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
Snapshot::new_from_state(&self.id, &self.state())
}
fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> {
self.set_state(&snapshot.to_state(&self.id)?);
Ok(())
}
}
impl<B> Transportable for Vsock<B> where B: VsockBackend + Sync + 'static {}
impl<B> Migratable for Vsock<B> where B: VsockBackend + Sync + 'static {}
#[cfg(test)]
mod tests {
use super::super::tests::{NoopVirtioInterrupt, TestContext};
use super::super::*;
use super::*;
use crate::vsock::device::{BACKEND_EVENT, EVT_QUEUE_EVENT, RX_QUEUE_EVENT, TX_QUEUE_EVENT};
use libc::EFD_NONBLOCK;
#[test]
fn test_virtio_device() {
let mut ctx = TestContext::new();
let avail_features = 1u64 << VIRTIO_F_VERSION_1 | 1u64 << VIRTIO_F_IN_ORDER;
let device_features = avail_features;
let driver_features: u64 = avail_features | 1 | (1 << 32);
let device_pages = [
(device_features & 0xffff_ffff) as u32,
(device_features >> 32) as u32,
];
let driver_pages = [
(driver_features & 0xffff_ffff) as u32,
(driver_features >> 32) as u32,
];
assert_eq!(ctx.device.device_type(), VirtioDeviceType::Vsock as u32);
assert_eq!(ctx.device.queue_max_sizes(), QUEUE_SIZES);
assert_eq!(ctx.device.features() as u32, device_pages[0]);
assert_eq!((ctx.device.features() >> 32) as u32, device_pages[1]);
// Ack device features, page 0.
ctx.device.ack_features(u64::from(driver_pages[0]));
// Ack device features, page 1.
ctx.device.ack_features(u64::from(driver_pages[1]) << 32);
// Check that no side effect are present, and that the acked features are exactly the same
// as the device features.
assert_eq!(
ctx.device.common.acked_features,
device_features & driver_features
);
// Test reading 32-bit chunks.
let mut data = [0u8; 8];
ctx.device.read_config(0, &mut data[..4]);
assert_eq!(
u64::from(LittleEndian::read_u32(&data)),
ctx.cid & 0xffff_ffff
);
ctx.device.read_config(4, &mut data[4..]);
assert_eq!(
u64::from(LittleEndian::read_u32(&data[4..])),
(ctx.cid >> 32) & 0xffff_ffff
);
// Test reading 64-bit.
let mut data = [0u8; 8];
ctx.device.read_config(0, &mut data);
assert_eq!(LittleEndian::read_u64(&data), ctx.cid);
// Check that out-of-bounds reading doesn't mutate the destination buffer.
let mut data = [0u8, 1, 2, 3, 4, 5, 6, 7];
ctx.device.read_config(2, &mut data);
assert_eq!(data, [0u8, 1, 2, 3, 4, 5, 6, 7]);
// Just covering lines here, since the vsock device has no writable config.
// A warning is, however, logged, if the guest driver attempts to write any config data.
ctx.device.write_config(0, &data[..4]);
// Test a bad activation.
let bad_activate = ctx.device.activate(
GuestMemoryAtomic::new(ctx.mem.clone()),
Arc::new(NoopVirtioInterrupt {}),
Vec::new(),
Vec::new(),
);
match bad_activate {
Err(ActivateError::BadActivate) => (),
other => panic!("{:?}", other),
}
// Test a correct activation.
ctx.device
.activate(
GuestMemoryAtomic::new(ctx.mem.clone()),
Arc::new(NoopVirtioInterrupt {}),
vec![Queue::new(256), Queue::new(256), Queue::new(256)],
vec![
EventFd::new(EFD_NONBLOCK).unwrap(),
EventFd::new(EFD_NONBLOCK).unwrap(),
EventFd::new(EFD_NONBLOCK).unwrap(),
],
)
.unwrap();
}
#[test]
fn test_irq() {
// Test case: successful IRQ signaling.
{
let test_ctx = TestContext::new();
let ctx = test_ctx.create_epoll_handler_context();
let queue = Queue::new(256);
assert!(ctx.handler.signal_used_queue(&queue).is_ok());
}
}
#[test]
fn test_txq_event() {
// Test case:
// - the driver has something to send (there's data in the TX queue); and
// - the backend has no pending RX data.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(false);
ctx.signal_txq_event();
// The available TX descriptor should have been used.
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
// The available RX descriptor should be untouched.
assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
}
// Test case:
// - the driver has something to send (there's data in the TX queue); and
// - the backend also has some pending RX data.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(true);
ctx.signal_txq_event();
// Both available RX and TX descriptors should have been used.
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
}
// Test case:
// - the driver has something to send (there's data in the TX queue); and
// - the backend errors out and cannot process the TX queue.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(false);
ctx.handler
.backend
.write()
.unwrap()
.set_tx_err(Some(VsockError::NoData));
ctx.signal_txq_event();
// Both RX and TX queues should be untouched.
assert_eq!(ctx.guest_txvq.used.idx.get(), 0);
assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
}
// Test case:
// - the driver supplied a malformed TX buffer.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
// Invalidate the packet header descriptor, by setting its length to 0.
ctx.guest_txvq.dtable[0].len.set(0);
ctx.signal_txq_event();
// The available descriptor should have been consumed, but no packet should have
// reached the backend.
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
assert_eq!(ctx.handler.backend.read().unwrap().tx_ok_cnt, 0);
}
// Test case: spurious TXQ_EVENT.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
let events = epoll::Events::EPOLLIN;
let event = epoll::Event::new(events, TX_QUEUE_EVENT as u64);
let mut epoll_helper =
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
if !ctx.handler.handle_event(&mut epoll_helper, &event) {
panic!("handle_event() should have failed");
}
}
}
#[test]
fn test_rxq_event() {
// Test case:
// - there is pending RX data in the backend; and
// - the driver makes RX buffers available; and
// - the backend successfully places its RX data into the queue.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(true);
ctx.handler
.backend
.write()
.unwrap()
.set_rx_err(Some(VsockError::NoData));
ctx.signal_rxq_event();
// The available RX buffer should've been left untouched.
assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
}
// Test case:
// - there is pending RX data in the backend; and
// - the driver makes RX buffers available; and
// - the backend errors out, when attempting to receive data.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(true);
ctx.signal_rxq_event();
// The available RX buffer should have been used.
assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
}
// Test case: the driver provided a malformed RX descriptor chain.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
// Invalidate the packet header descriptor, by setting its length to 0.
ctx.guest_rxvq.dtable[0].len.set(0);
// The chain should've been processed, without employing the backend.
assert!(ctx.handler.process_rx().is_ok());
assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
assert_eq!(ctx.handler.backend.read().unwrap().rx_ok_cnt, 0);
}
// Test case: spurious RXQ_EVENT.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(false);
let events = epoll::Events::EPOLLIN;
let event = epoll::Event::new(events, RX_QUEUE_EVENT as u64);
let mut epoll_helper =
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
if !ctx.handler.handle_event(&mut epoll_helper, &event) {
panic!("handle_event() should have failed");
}
}
}
#[test]
fn test_evq_event() {
// Test case: spurious EVQ_EVENT.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(false);
let events = epoll::Events::EPOLLIN;
let event = epoll::Event::new(events, EVT_QUEUE_EVENT as u64);
let mut epoll_helper =
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
if !ctx.handler.handle_event(&mut epoll_helper, &event) {
panic!("handle_event() should have failed");
}
}
}
#[test]
fn test_backend_event() {
// Test case:
// - a backend event is received; and
// - the backend has pending RX data.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(true);
let events = epoll::Events::EPOLLIN;
let event = epoll::Event::new(events, BACKEND_EVENT as u64);
let mut epoll_helper =
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
ctx.handler.handle_event(&mut epoll_helper, &event);
// The backend should've received this event.
assert_eq!(
ctx.handler.backend.read().unwrap().evset,
Some(epoll::Events::EPOLLIN)
);
// TX queue processing should've been triggered.
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
// RX queue processing should've been triggered.
assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
}
// Test case:
// - a backend event is received; and
// - the backend doesn't have any pending RX data.
{
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
ctx.handler.backend.write().unwrap().set_pending_rx(false);
let events = epoll::Events::EPOLLIN;
let event = epoll::Event::new(events, BACKEND_EVENT as u64);
let mut epoll_helper =
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
ctx.handler.handle_event(&mut epoll_helper, &event);
// The backend should've received this event.
assert_eq!(
ctx.handler.backend.read().unwrap().evset,
Some(epoll::Events::EPOLLIN)
);
// TX queue processing should've been triggered.
assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
// The RX queue should've been left untouched.
assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
}
}
#[test]
fn test_unknown_event() {
let test_ctx = TestContext::new();
let mut ctx = test_ctx.create_epoll_handler_context();
let events = epoll::Events::EPOLLIN;
let event = epoll::Event::new(events, 0xff);
let mut epoll_helper =
EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
if !ctx.handler.handle_event(&mut epoll_helper, &event) {
panic!("handle_event() should have failed");
}
}
}