cloud-hypervisor/vmm/src/cpu.rs
Rob Bradford b6801e355e vmm: cpu: Refactor vCPU thread starting
Refactor the vCPU thread starting so that there is the possibility to
bring on extra vCPU threads.

Signed-off-by: Rob Bradford <robert.bradford@intel.com>
2019-12-02 13:49:04 +00:00

633 lines
20 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//
use std::os::unix::thread::JoinHandleExt;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Barrier, Mutex, RwLock, Weak};
use std::thread;
use std::{fmt, io, result};
use libc::{c_void, siginfo_t};
use crate::device_manager::DeviceManager;
use devices::{ioapic, BusDevice};
use kvm_bindings::CpuId;
use kvm_ioctls::*;
use vm_memory::{Address, GuestAddress, GuestMemoryMmap};
use vmm_sys_util::eventfd::EventFd;
use vmm_sys_util::signal::{register_signal_handler, validate_signal_num};
const VCPU_RTSIG_OFFSET: i32 = 0;
// Debug I/O port
#[cfg(target_arch = "x86_64")]
const DEBUG_IOPORT: u16 = 0x80;
const DEBUG_IOPORT_PREFIX: &str = "Debug I/O port";
/// Debug I/O port, see:
/// https://www.intel.com/content/www/us/en/support/articles/000005500/boards-and-kits.html
///
/// Since we're not a physical platform, we can freely assign code ranges for
/// debugging specific parts of our virtual platform.
pub enum DebugIoPortRange {
Firmware,
Bootloader,
Kernel,
Userspace,
Custom,
}
impl DebugIoPortRange {
fn from_u8(value: u8) -> DebugIoPortRange {
match value {
0x00..=0x1f => DebugIoPortRange::Firmware,
0x20..=0x3f => DebugIoPortRange::Bootloader,
0x40..=0x5f => DebugIoPortRange::Kernel,
0x60..=0x7f => DebugIoPortRange::Userspace,
_ => DebugIoPortRange::Custom,
}
}
}
impl fmt::Display for DebugIoPortRange {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
DebugIoPortRange::Firmware => write!(f, "{}: Firmware", DEBUG_IOPORT_PREFIX),
DebugIoPortRange::Bootloader => write!(f, "{}: Bootloader", DEBUG_IOPORT_PREFIX),
DebugIoPortRange::Kernel => write!(f, "{}: Kernel", DEBUG_IOPORT_PREFIX),
DebugIoPortRange::Userspace => write!(f, "{}: Userspace", DEBUG_IOPORT_PREFIX),
DebugIoPortRange::Custom => write!(f, "{}: Custom", DEBUG_IOPORT_PREFIX),
}
}
}
#[derive(Debug)]
pub enum Error {
/// Cannot open the VCPU file descriptor.
VcpuFd(kvm_ioctls::Error),
/// Cannot run the VCPUs.
VcpuRun(kvm_ioctls::Error),
/// Cannot spawn a new vCPU thread.
VcpuSpawn(io::Error),
#[cfg(target_arch = "x86_64")]
/// Error configuring the general purpose registers
REGSConfiguration(arch::x86_64::regs::Error),
#[cfg(target_arch = "x86_64")]
/// Error configuring the special registers
SREGSConfiguration(arch::x86_64::regs::Error),
#[cfg(target_arch = "x86_64")]
/// Error configuring the floating point related registers
FPUConfiguration(arch::x86_64::regs::Error),
/// The call to KVM_SET_CPUID2 failed.
SetSupportedCpusFailed(kvm_ioctls::Error),
#[cfg(target_arch = "x86_64")]
/// Cannot set the local interruption due to bad configuration.
LocalIntConfiguration(arch::x86_64::interrupts::Error),
#[cfg(target_arch = "x86_64")]
/// Error configuring the MSR registers
MSRSConfiguration(arch::x86_64::regs::Error),
/// Unexpected KVM_RUN exit reason
VcpuUnhandledKvmExit,
/// Failed to join on vCPU threads
ThreadCleanup,
/// Cannot add legacy device to Bus.
BusError(devices::BusError),
/// Failed to allocate IO port
AllocateIOPort,
/// Asking for more vCPUs that we can have
DesiredVCPUCountExceedsMax,
}
pub type Result<T> = result::Result<T, Error>;
#[allow(dead_code)]
#[derive(Copy, Clone)]
enum CpuidReg {
EAX,
EBX,
ECX,
EDX,
}
pub struct CpuidPatch {
pub function: u32,
pub index: u32,
pub flags_bit: Option<u8>,
pub eax_bit: Option<u8>,
pub ebx_bit: Option<u8>,
pub ecx_bit: Option<u8>,
pub edx_bit: Option<u8>,
}
impl CpuidPatch {
fn set_cpuid_reg(
cpuid: &mut CpuId,
function: u32,
index: Option<u32>,
reg: CpuidReg,
value: u32,
) {
let entries = cpuid.as_mut_slice();
for entry in entries.iter_mut() {
if entry.function == function && (index == None || index.unwrap() == entry.index) {
match reg {
CpuidReg::EAX => {
entry.eax = value;
}
CpuidReg::EBX => {
entry.ebx = value;
}
CpuidReg::ECX => {
entry.ecx = value;
}
CpuidReg::EDX => {
entry.edx = value;
}
}
}
}
}
pub fn patch_cpuid(cpuid: &mut CpuId, patches: Vec<CpuidPatch>) {
let entries = cpuid.as_mut_slice();
for entry in entries.iter_mut() {
for patch in patches.iter() {
if entry.function == patch.function && entry.index == patch.index {
if let Some(flags_bit) = patch.flags_bit {
entry.flags |= 1 << flags_bit;
}
if let Some(eax_bit) = patch.eax_bit {
entry.eax |= 1 << eax_bit;
}
if let Some(ebx_bit) = patch.ebx_bit {
entry.ebx |= 1 << ebx_bit;
}
if let Some(ecx_bit) = patch.ecx_bit {
entry.ecx |= 1 << ecx_bit;
}
if let Some(edx_bit) = patch.edx_bit {
entry.edx |= 1 << edx_bit;
}
}
}
}
}
}
/// A wrapper around creating and using a kvm-based VCPU.
pub struct Vcpu {
fd: VcpuFd,
id: u8,
io_bus: Arc<devices::Bus>,
mmio_bus: Arc<devices::Bus>,
ioapic: Option<Arc<Mutex<ioapic::Ioapic>>>,
vm_ts: std::time::Instant,
}
impl Vcpu {
/// Constructs a new VCPU for `vm`.
///
/// # Arguments
///
/// * `id` - Represents the CPU number between [0, max vcpus).
/// * `vm` - The virtual machine this vcpu will get attached to.
pub fn new(
id: u8,
fd: &Arc<VmFd>,
io_bus: Arc<devices::Bus>,
mmio_bus: Arc<devices::Bus>,
ioapic: Option<Arc<Mutex<ioapic::Ioapic>>>,
creation_ts: std::time::Instant,
) -> Result<Self> {
let kvm_vcpu = fd.create_vcpu(id).map_err(Error::VcpuFd)?;
// Initially the cpuid per vCPU is the one supported by this VM.
Ok(Vcpu {
fd: kvm_vcpu,
id,
io_bus,
mmio_bus,
ioapic,
vm_ts: creation_ts,
})
}
/// Configures a x86_64 specific vcpu and should be called once per vcpu from the vcpu's thread.
///
/// # Arguments
///
/// * `machine_config` - Specifies necessary info used for the CPUID configuration.
/// * `kernel_start_addr` - Offset from `guest_mem` at which the kernel starts.
/// * `vm` - The virtual machine this vcpu will get attached to.
pub fn configure(
&mut self,
kernel_start_addr: GuestAddress,
vm_memory: &Arc<RwLock<GuestMemoryMmap>>,
cpuid: CpuId,
) -> Result<()> {
let mut cpuid = cpuid;
CpuidPatch::set_cpuid_reg(&mut cpuid, 0xb, None, CpuidReg::EDX, u32::from(self.id));
self.fd
.set_cpuid2(&cpuid)
.map_err(Error::SetSupportedCpusFailed)?;
arch::x86_64::regs::setup_msrs(&self.fd).map_err(Error::MSRSConfiguration)?;
// Safe to unwrap because this method is called after the VM is configured
arch::x86_64::regs::setup_regs(
&self.fd,
kernel_start_addr.raw_value(),
arch::x86_64::layout::BOOT_STACK_POINTER.raw_value(),
arch::x86_64::layout::ZERO_PAGE_START.raw_value(),
)
.map_err(Error::REGSConfiguration)?;
arch::x86_64::regs::setup_fpu(&self.fd).map_err(Error::FPUConfiguration)?;
arch::x86_64::regs::setup_sregs(&vm_memory.read().unwrap(), &self.fd)
.map_err(Error::SREGSConfiguration)?;
arch::x86_64::interrupts::set_lint(&self.fd).map_err(Error::LocalIntConfiguration)?;
Ok(())
}
/// Runs the VCPU until it exits, returning the reason.
///
/// Note that the state of the VCPU and associated VM must be setup first for this to do
/// anything useful.
pub fn run(&self) -> Result<bool> {
match self.fd.run() {
Ok(run) => match run {
VcpuExit::IoIn(addr, data) => {
self.io_bus.read(u64::from(addr), data);
Ok(true)
}
VcpuExit::IoOut(addr, data) => {
if addr == DEBUG_IOPORT && data.len() == 1 {
self.log_debug_ioport(data[0]);
}
self.io_bus.write(u64::from(addr), data);
Ok(true)
}
VcpuExit::MmioRead(addr, data) => {
self.mmio_bus.read(addr as u64, data);
Ok(true)
}
VcpuExit::MmioWrite(addr, data) => {
self.mmio_bus.write(addr as u64, data);
Ok(true)
}
VcpuExit::IoapicEoi(vector) => {
if let Some(ioapic) = &self.ioapic {
ioapic.lock().unwrap().end_of_interrupt(vector);
}
Ok(true)
}
VcpuExit::Shutdown => {
// Triple fault to trigger a reboot
Ok(false)
}
r => {
error!("Unexpected exit reason on vcpu run: {:?}", r);
Err(Error::VcpuUnhandledKvmExit)
}
},
Err(ref e) => match e.errno() {
libc::EAGAIN | libc::EINTR => Ok(true),
_ => {
error!("VCPU {:?} error {:?}", self.id, e);
Err(Error::VcpuUnhandledKvmExit)
}
},
}
}
// Log debug io port codes.
fn log_debug_ioport(&self, code: u8) {
let ts = self.vm_ts.elapsed();
debug!(
"[{} code 0x{:x}] {}.{:>06} seconds",
DebugIoPortRange::from_u8(code),
code,
ts.as_secs(),
ts.as_micros()
);
}
}
pub struct CpuManager {
boot_vcpus: u8,
max_vcpus: u8,
io_bus: Weak<devices::Bus>,
mmio_bus: Arc<devices::Bus>,
ioapic: Option<Arc<Mutex<ioapic::Ioapic>>>,
vm_memory: Arc<RwLock<GuestMemoryMmap>>,
cpuid: CpuId,
fd: Arc<VmFd>,
vcpus_kill_signalled: Arc<AtomicBool>,
vcpus_pause_signalled: Arc<AtomicBool>,
reset_evt: EventFd,
vcpu_states: Vec<VcpuState>,
selected_cpu: u8,
}
const CPU_ENABLE_FLAG: usize = 0;
const CPU_STATUS_OFFSET: u64 = 4;
const CPU_SELECTION_OFFSET: u64 = 0;
impl BusDevice for CpuManager {
fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) {
match offset {
CPU_STATUS_OFFSET => {
if self.selected_cpu < self.present_vcpus() {
let state = &self.vcpu_states[usize::from(self.selected_cpu)];
if state.active() {
data[0] |= 1 << CPU_ENABLE_FLAG;
}
}
}
_ => {
warn!(
"Unexpected offset for accessing CPU manager device: {:#}",
offset
);
}
}
}
fn write(&mut self, _base: u64, offset: u64, data: &[u8]) {
match offset {
CPU_SELECTION_OFFSET => {
self.selected_cpu = data[0];
}
_ => {
warn!(
"Unexpected offset for accessing CPU manager device: {:#}",
offset
);
}
}
}
}
struct VcpuState {
handle: Option<thread::JoinHandle<()>>,
}
impl VcpuState {
fn active(&self) -> bool {
self.handle.is_some()
}
fn signal_thread(&self) {
if let Some(handle) = self.handle.as_ref() {
let signum = validate_signal_num(VCPU_RTSIG_OFFSET, true).unwrap();
unsafe {
libc::pthread_kill(handle.as_pthread_t(), signum);
}
}
}
fn join_thread(&mut self) -> Result<()> {
if let Some(handle) = self.handle.take() {
handle.join().map_err(|_| Error::ThreadCleanup)?
}
Ok(())
}
fn unpark_thread(&self) {
if let Some(handle) = self.handle.as_ref() {
handle.thread().unpark()
}
}
}
impl CpuManager {
pub fn new(
boot_vcpus: u8,
max_vcpus: u8,
device_manager: &DeviceManager,
guest_memory: Arc<RwLock<GuestMemoryMmap>>,
fd: Arc<VmFd>,
cpuid: CpuId,
reset_evt: EventFd,
) -> Result<Arc<Mutex<CpuManager>>> {
let cpu_manager = Arc::new(Mutex::new(CpuManager {
boot_vcpus,
max_vcpus,
io_bus: Arc::downgrade(&device_manager.io_bus().clone()),
mmio_bus: device_manager.mmio_bus().clone(),
ioapic: device_manager.ioapic().clone(),
vm_memory: guest_memory,
cpuid,
fd,
vcpus_kill_signalled: Arc::new(AtomicBool::new(false)),
vcpus_pause_signalled: Arc::new(AtomicBool::new(false)),
vcpu_states: Vec::with_capacity(max_vcpus as usize),
reset_evt,
selected_cpu: 0,
}));
device_manager
.allocator()
.lock()
.unwrap()
.allocate_io_addresses(Some(GuestAddress(0x0cd8)), 0x8, None)
.ok_or(Error::AllocateIOPort)?;
cpu_manager
.lock()
.unwrap()
.io_bus
.upgrade()
.unwrap()
.insert(cpu_manager.clone(), 0x0cd8, 0xc)
.map_err(Error::BusError)?;
Ok(cpu_manager)
}
fn activate_vcpus(&mut self, desired_vcpus: u8, entry_addr: GuestAddress) -> Result<()> {
if desired_vcpus > self.max_vcpus {
return Err(Error::DesiredVCPUCountExceedsMax);
}
let creation_ts = std::time::Instant::now();
let vcpu_thread_barrier = Arc::new(Barrier::new(
(desired_vcpus - self.present_vcpus() + 1) as usize,
));
for cpu_id in self.present_vcpus()..desired_vcpus {
let ioapic = if let Some(ioapic) = &self.ioapic {
Some(ioapic.clone())
} else {
None
};
let mut vcpu = Vcpu::new(
cpu_id,
&self.fd,
self.io_bus.clone().upgrade().unwrap(),
self.mmio_bus.clone(),
ioapic,
creation_ts,
)?;
vcpu.configure(entry_addr, &self.vm_memory, self.cpuid.clone())?;
let vcpu_thread_barrier = vcpu_thread_barrier.clone();
let reset_evt = self.reset_evt.try_clone().unwrap();
let vcpu_kill_signalled = self.vcpus_kill_signalled.clone();
let vcpu_pause_signalled = self.vcpus_pause_signalled.clone();
let handle = Some(
thread::Builder::new()
.name(format!("vcpu{}", vcpu.id))
.spawn(move || {
unsafe {
extern "C" fn handle_signal(_: i32, _: *mut siginfo_t, _: *mut c_void) {
}
// This uses an async signal safe handler to kill the vcpu handles.
register_signal_handler(
VCPU_RTSIG_OFFSET,
vmm_sys_util::signal::SignalHandler::Siginfo(handle_signal),
true,
0,
)
.expect("Failed to register vcpu signal handler");
}
// Block until all CPUs are ready.
vcpu_thread_barrier.wait();
loop {
// vcpu.run() returns false on a KVM_EXIT_SHUTDOWN (triple-fault) so trigger a reset
match vcpu.run() {
Err(e) => {
error!("VCPU generated error: {:?}", e);
break;
}
Ok(true) => {}
Ok(false) => {
reset_evt.write(1).unwrap();
break;
}
}
// We've been told to terminate
if vcpu_kill_signalled.load(Ordering::SeqCst) {
break;
}
// If we are being told to pause, we park the thread
// until the pause boolean is toggled.
// The resume operation is responsible for toggling
// the boolean and unpark the thread.
// We enter a loop because park() could spuriously
// return. We will then park() again unless the
// pause boolean has been toggled.
while vcpu_pause_signalled.load(Ordering::SeqCst) {
thread::park();
}
}
})
.map_err(Error::VcpuSpawn)?,
);
self.vcpu_states.push(VcpuState { handle });
}
// Unblock all CPU threads.
vcpu_thread_barrier.wait();
Ok(())
}
// Starts all the vCPUs that the VM is booting with. Blocks until all vCPUs are running.
pub fn start_boot_vcpus(&mut self, entry_addr: GuestAddress) -> Result<()> {
self.activate_vcpus(self.boot_vcpus(), entry_addr)
}
pub fn shutdown(&mut self) -> Result<()> {
// Tell the vCPUs to stop themselves next time they go through the loop
self.vcpus_kill_signalled.store(true, Ordering::SeqCst);
// Signal to the spawned threads (vCPUs and console signal handler). For the vCPU threads
// this will interrupt the KVM_RUN ioctl() allowing the loop to check the boolean set
// above.
for state in self.vcpu_states.iter() {
state.signal_thread();
}
// Wait for all the threads to finish. This removes the state from the vector.
for mut state in self.vcpu_states.drain(..) {
state.join_thread()?;
}
Ok(())
}
pub fn pause(&self) -> Result<()> {
// Tell the vCPUs to pause themselves next time they exit
self.vcpus_pause_signalled.store(true, Ordering::SeqCst);
// Signal to the spawned threads (vCPUs and console signal handler). For the vCPU threads
// this will interrupt the KVM_RUN ioctl() allowing the loop to check the boolean set
// above.
for state in self.vcpu_states.iter() {
state.signal_thread();
}
Ok(())
}
pub fn resume(&self) -> Result<()> {
// Toggle the vCPUs pause boolean
self.vcpus_pause_signalled.store(false, Ordering::SeqCst);
// Unpark all the VCPU threads.
// Once unparked, the next thing they will do is checking for the pause
// boolean. Since it'll be set to false, they will exit their pause loop
// and go back to vmx root.
for state in self.vcpu_states.iter() {
state.unpark_thread();
}
Ok(())
}
pub fn boot_vcpus(&self) -> u8 {
self.boot_vcpus
}
pub fn max_vcpus(&self) -> u8 {
self.max_vcpus
}
fn present_vcpus(&self) -> u8 {
self.vcpu_states.len() as u8
}
}