cloud-hypervisor/vm-virtio/src/iommu.rs
Samuel Ortiz 1b1a2175ca vm-migration: Define the Snapshottable and Transportable traits
A Snapshottable component can snapshot itself and
provide a MigrationSnapshot payload as a result.

A MigrationSnapshot payload is a map of component IDs to a list of
migration sections (MigrationSection). As component can be made of
several Migratable sub-components (e.g. the DeviceManager and its
device objects), a migration snapshot can be made of multiple snapshot
itself.
A snapshot is a list of migration sections, each section being a
component state snapshot. Having multiple sections allows for easier and
backward compatible migration payload extensions.

Once created, a migratable component snapshot may be transported and this
is what the Transportable trait defines, through 2 methods: send and recv.

Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
2020-04-02 13:24:25 +01:00

1045 lines
35 KiB
Rust

// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
use super::Error as DeviceError;
use super::{
ActivateError, ActivateResult, DescriptorChain, DeviceEventT, Queue, VirtioDevice,
VirtioDeviceType, VIRTIO_F_VERSION_1,
};
use crate::{DmaRemapping, VirtioInterrupt, VirtioInterruptType};
use epoll;
use libc::EFD_NONBLOCK;
use std::cmp;
use std::collections::BTreeMap;
use std::fmt::{self, Display};
use std::io::{self, Write};
use std::mem::size_of;
use std::ops::Bound::Included;
use std::os::unix::io::AsRawFd;
use std::result;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, RwLock};
use std::thread;
use vm_device::ExternalDmaMapping;
use vm_memory::{
Address, ByteValued, Bytes, GuestAddress, GuestAddressSpace, GuestMemoryAtomic,
GuestMemoryError, GuestMemoryMmap,
};
use vm_migration::{Migratable, MigratableError, Pausable, Snapshottable, Transportable};
use vmm_sys_util::eventfd::EventFd;
/// Queues sizes
const QUEUE_SIZE: u16 = 256;
const NUM_QUEUES: usize = 2;
const QUEUE_SIZES: &[u16] = &[QUEUE_SIZE; NUM_QUEUES];
/// New descriptors are pending on the request queue.
/// "requestq" is meant to be used anytime an action is required to be
/// performed on behalf of the guest driver.
const REQUEST_Q_EVENT: DeviceEventT = 0;
/// New descriptors are pending on the event queue.
/// "eventq" lets the device report any fault or other asynchronous event to
/// the guest driver.
const EVENT_Q_EVENT: DeviceEventT = 1;
/// The device has been dropped.
const KILL_EVENT: DeviceEventT = 2;
/// The device should be paused.
const PAUSE_EVENT: DeviceEventT = 3;
/// PROBE properties size.
/// This is the minimal size to provide at least one RESV_MEM property.
/// Because virtio-iommu expects one MSI reserved region, we must provide it,
/// otherwise the driver in the guest will define a predefined one between
/// 0x8000000 and 0x80FFFFF, which is only relevant for ARM architecture, but
/// will conflict with x86.
const PROBE_PROP_SIZE: u32 =
(size_of::<VirtioIommuProbeProperty>() + size_of::<VirtioIommuProbeResvMem>()) as u32;
const MSI_IOVA_START: u64 = 0xfee0_0000;
const MSI_IOVA_END: u64 = 0xfeef_ffff;
/// Virtio IOMMU features
#[allow(unused)]
const VIRTIO_IOMMU_F_INPUT_RANGE: u32 = 0;
#[allow(unused)]
const VIRTIO_IOMMU_F_DOMAIN_BITS: u32 = 1;
#[allow(unused)]
const VIRTIO_IOMMU_F_MAP_UNMAP: u32 = 2;
#[allow(unused)]
const VIRTIO_IOMMU_F_BYPASS: u32 = 3;
const VIRTIO_IOMMU_F_PROBE: u32 = 4;
#[allow(unused)]
const VIRTIO_IOMMU_F_MMIO: u32 = 5;
#[allow(unused)]
const VIRTIO_IOMMU_F_TOPOLOGY: u32 = 6;
// Support 2MiB and 4KiB page sizes.
const VIRTIO_IOMMU_PAGE_SIZE_MASK: u64 = (2 << 20) | (4 << 10);
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuRange32 {
start: u32,
end: u32,
}
unsafe impl ByteValued for VirtioIommuRange32 {}
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuRange64 {
start: u64,
end: u64,
}
unsafe impl ByteValued for VirtioIommuRange64 {}
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuTopoConfig {
offset: u32,
num_items: u32,
item_length: u32,
}
unsafe impl ByteValued for VirtioIommuTopoConfig {}
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuConfig {
page_size_mask: u64,
input_range: VirtioIommuRange64,
domain_range: VirtioIommuRange32,
probe_size: u32,
topo_config: VirtioIommuTopoConfig,
}
unsafe impl ByteValued for VirtioIommuConfig {}
#[allow(unused)]
const VIRTIO_IOMMU_TOPO_PCI_RANGE: u16 = 1;
#[allow(unused)]
const VIRTIO_IOMMU_TOPO_ENDPOINT: u16 = 2;
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuTopoPciRange {
type_: u16,
hierarchy: u16,
requester_start: u16,
requester_end: u16,
endpoint_start: u32,
}
unsafe impl ByteValued for VirtioIommuTopoPciRange {}
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuTopoEndpoint {
type_: u16,
reserved: u16,
endpoint: u32,
address: u64,
}
unsafe impl ByteValued for VirtioIommuTopoEndpoint {}
/// Virtio IOMMU request type
const VIRTIO_IOMMU_T_ATTACH: u8 = 1;
const VIRTIO_IOMMU_T_DETACH: u8 = 2;
const VIRTIO_IOMMU_T_MAP: u8 = 3;
const VIRTIO_IOMMU_T_UNMAP: u8 = 4;
const VIRTIO_IOMMU_T_PROBE: u8 = 5;
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuReqHead {
type_: u8,
reserved: [u8; 3],
}
unsafe impl ByteValued for VirtioIommuReqHead {}
/// Virtio IOMMU request status
const VIRTIO_IOMMU_S_OK: u8 = 0;
#[allow(unused)]
const VIRTIO_IOMMU_S_IOERR: u8 = 1;
#[allow(unused)]
const VIRTIO_IOMMU_S_UNSUPP: u8 = 2;
#[allow(unused)]
const VIRTIO_IOMMU_S_DEVERR: u8 = 3;
#[allow(unused)]
const VIRTIO_IOMMU_S_INVAL: u8 = 4;
#[allow(unused)]
const VIRTIO_IOMMU_S_RANGE: u8 = 5;
#[allow(unused)]
const VIRTIO_IOMMU_S_NOENT: u8 = 6;
#[allow(unused)]
const VIRTIO_IOMMU_S_FAULT: u8 = 7;
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuReqTail {
status: u8,
reserved: [u8; 3],
}
unsafe impl ByteValued for VirtioIommuReqTail {}
/// ATTACH request
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuReqAttach {
domain: u32,
endpoint: u32,
reserved: [u8; 8],
}
unsafe impl ByteValued for VirtioIommuReqAttach {}
/// DETACH request
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuReqDetach {
domain: u32,
endpoint: u32,
reserved: [u8; 8],
}
unsafe impl ByteValued for VirtioIommuReqDetach {}
/// Virtio IOMMU request MAP flags
#[allow(unused)]
const VIRTIO_IOMMU_MAP_F_READ: u32 = 1;
#[allow(unused)]
const VIRTIO_IOMMU_MAP_F_WRITE: u32 = 1 << 1;
#[allow(unused)]
const VIRTIO_IOMMU_MAP_F_EXEC: u32 = 1 << 2;
#[allow(unused)]
const VIRTIO_IOMMU_MAP_F_MMIO: u32 = 1 << 3;
/// MAP request
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuReqMap {
domain: u32,
virt_start: u64,
virt_end: u64,
phys_start: u64,
flags: u32,
}
unsafe impl ByteValued for VirtioIommuReqMap {}
/// UNMAP request
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuReqUnmap {
domain: u32,
virt_start: u64,
virt_end: u64,
reserved: [u8; 4],
}
unsafe impl ByteValued for VirtioIommuReqUnmap {}
/// Virtio IOMMU request PROBE types
#[allow(unused)]
const VIRTIO_IOMMU_PROBE_T_MASK: u16 = 0xfff;
#[allow(unused)]
const VIRTIO_IOMMU_PROBE_T_NONE: u16 = 0;
const VIRTIO_IOMMU_PROBE_T_RESV_MEM: u16 = 1;
/// PROBE request
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuReqProbe {
endpoint: u32,
reserved: [u64; 8],
}
unsafe impl ByteValued for VirtioIommuReqProbe {}
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuProbeProperty {
type_: u16,
length: u16,
}
unsafe impl ByteValued for VirtioIommuProbeProperty {}
/// Virtio IOMMU request PROBE property RESV_MEM subtypes
#[allow(unused)]
const VIRTIO_IOMMU_RESV_MEM_T_RESERVED: u8 = 0;
const VIRTIO_IOMMU_RESV_MEM_T_MSI: u8 = 1;
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuProbeResvMem {
subtype: u8,
reserved: [u8; 3],
start: u64,
end: u64,
}
unsafe impl ByteValued for VirtioIommuProbeResvMem {}
/// Virtio IOMMU fault flags
#[allow(unused)]
const VIRTIO_IOMMU_FAULT_F_READ: u32 = 1;
#[allow(unused)]
const VIRTIO_IOMMU_FAULT_F_WRITE: u32 = 1 << 1;
#[allow(unused)]
const VIRTIO_IOMMU_FAULT_F_EXEC: u32 = 1 << 2;
#[allow(unused)]
const VIRTIO_IOMMU_FAULT_F_ADDRESS: u32 = 1 << 8;
/// Virtio IOMMU fault reasons
#[allow(unused)]
const VIRTIO_IOMMU_FAULT_R_UNKNOWN: u32 = 0;
#[allow(unused)]
const VIRTIO_IOMMU_FAULT_R_DOMAIN: u32 = 1;
#[allow(unused)]
const VIRTIO_IOMMU_FAULT_R_MAPPING: u32 = 2;
/// Fault reporting through eventq
#[allow(unused)]
#[derive(Copy, Clone, Debug, Default)]
#[repr(packed)]
struct VirtioIommuFault {
reason: u8,
reserved: [u8; 3],
flags: u32,
endpoint: u32,
reserved1: u32,
address: u64,
}
unsafe impl ByteValued for VirtioIommuFault {}
#[derive(Debug)]
enum Error {
/// Guest gave us bad memory addresses.
GuestMemory(GuestMemoryError),
/// Guest gave us a write only descriptor that protocol says to read from.
UnexpectedWriteOnlyDescriptor,
/// Guest gave us a read only descriptor that protocol says to write to.
UnexpectedReadOnlyDescriptor,
/// Guest gave us too few descriptors in a descriptor chain.
DescriptorChainTooShort,
/// Guest gave us a buffer that was too short to use.
BufferLengthTooSmall,
/// Guest sent us invalid request.
InvalidRequest,
/// Guest sent us invalid ATTACH request.
InvalidAttachRequest,
/// Guest sent us invalid DETACH request.
InvalidDetachRequest,
/// Guest sent us invalid MAP request.
InvalidMapRequest,
/// Guest sent us invalid UNMAP request.
InvalidUnmapRequest,
/// Guest sent us invalid PROBE request.
InvalidProbeRequest,
/// Failed to performing external mapping.
ExternalMapping(io::Error),
/// Failed to performing external unmapping.
ExternalUnmapping(io::Error),
}
impl Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::Error::*;
match self {
BufferLengthTooSmall => write!(f, "buffer length too small"),
DescriptorChainTooShort => write!(f, "descriptor chain too short"),
GuestMemory(e) => write!(f, "bad guest memory address: {}", e),
InvalidRequest => write!(f, "invalid request"),
InvalidAttachRequest => write!(f, "invalid attach request"),
InvalidDetachRequest => write!(f, "invalid detach request"),
InvalidMapRequest => write!(f, "invalid map request"),
InvalidUnmapRequest => write!(f, "invalid unmap request"),
InvalidProbeRequest => write!(f, "invalid probe request"),
UnexpectedReadOnlyDescriptor => write!(f, "unexpected read-only descriptor"),
UnexpectedWriteOnlyDescriptor => write!(f, "unexpected write-only descriptor"),
ExternalMapping(e) => write!(f, "failed performing external mapping: {}", e),
ExternalUnmapping(e) => write!(f, "failed performing external unmapping: {}", e),
}
}
}
struct Request {}
impl Request {
// Parse the available vring buffer. Based on the hashmap table of external
// mappings required from various devices such as VFIO or vhost-user ones,
// this function might update the hashmap table of external mappings per
// domain.
// Basically, the VMM knows about the device_id <=> mapping relationship
// before running the VM, but at runtime, a new domain <=> mapping hashmap
// is created based on the information provided from the guest driver for
// virtio-iommu (giving the link device_id <=> domain).
fn parse(
avail_desc: &DescriptorChain,
mem: &GuestMemoryMmap,
mapping: &Arc<IommuMapping>,
ext_mapping: &BTreeMap<u32, Arc<dyn ExternalDmaMapping>>,
ext_domain_mapping: &mut BTreeMap<u32, Arc<dyn ExternalDmaMapping>>,
) -> result::Result<usize, Error> {
// The head contains the request type which MUST be readable.
if avail_desc.is_write_only() {
return Err(Error::UnexpectedWriteOnlyDescriptor);
}
if (avail_desc.len as usize) < size_of::<VirtioIommuReqHead>() {
return Err(Error::InvalidRequest);
}
let req_head: VirtioIommuReqHead =
mem.read_obj(avail_desc.addr).map_err(Error::GuestMemory)?;
let req_offset = size_of::<VirtioIommuReqHead>();
let desc_size_left = (avail_desc.len as usize) - req_offset;
let req_addr = if let Some(addr) = avail_desc.addr.checked_add(req_offset as u64) {
addr
} else {
return Err(Error::InvalidRequest);
};
// Create the reply
let mut reply: Vec<u8> = Vec::new();
let hdr_len = match req_head.type_ {
VIRTIO_IOMMU_T_ATTACH => {
if desc_size_left != size_of::<VirtioIommuReqAttach>() {
return Err(Error::InvalidAttachRequest);
}
let req: VirtioIommuReqAttach = mem
.read_obj(req_addr as GuestAddress)
.map_err(Error::GuestMemory)?;
debug!("Attach request {:?}", req);
// Copy the value to use it as a proper reference.
let domain = req.domain;
let endpoint = req.endpoint;
// Add endpoint associated with specific domain
mapping.endpoints.write().unwrap().insert(endpoint, domain);
// If the endpoint is part of the list of devices with an
// external mapping, insert a new entry for the corresponding
// domain, with the same reference to the trait.
if let Some(map) = ext_mapping.get(&endpoint) {
ext_domain_mapping.insert(domain, map.clone());
}
// Add new domain with no mapping if the entry didn't exist yet
let mut mappings = mapping.mappings.write().unwrap();
if !mappings.contains_key(&domain) {
mappings.insert(domain, BTreeMap::new());
}
0
}
VIRTIO_IOMMU_T_DETACH => {
if desc_size_left != size_of::<VirtioIommuReqDetach>() {
return Err(Error::InvalidDetachRequest);
}
let req: VirtioIommuReqDetach = mem
.read_obj(req_addr as GuestAddress)
.map_err(Error::GuestMemory)?;
debug!("Detach request {:?}", req);
// Copy the value to use it as a proper reference.
let domain = req.domain;
let endpoint = req.endpoint;
// If the endpoint is part of the list of devices with an
// external mapping, remove the entry for the corresponding
// domain.
if ext_mapping.contains_key(&endpoint) {
ext_domain_mapping.remove(&domain);
}
// Remove endpoint associated with specific domain
mapping.endpoints.write().unwrap().remove(&endpoint);
0
}
VIRTIO_IOMMU_T_MAP => {
if desc_size_left != size_of::<VirtioIommuReqMap>() {
return Err(Error::InvalidMapRequest);
}
let req: VirtioIommuReqMap = mem
.read_obj(req_addr as GuestAddress)
.map_err(Error::GuestMemory)?;
debug!("Map request {:?}", req);
// Copy the value to use it as a proper reference.
let domain = req.domain;
// Trigger external mapping if necessary.
if let Some(ext_map) = ext_domain_mapping.get(&domain) {
let size = req.virt_end - req.virt_start + 1;
ext_map
.map(req.virt_start, req.phys_start, size)
.map_err(Error::ExternalMapping)?;
}
// Add new mapping associated with the domain
if let Some(entry) = mapping.mappings.write().unwrap().get_mut(&domain) {
entry.insert(
req.virt_start,
Mapping {
gpa: req.phys_start,
size: req.virt_end - req.virt_start + 1,
},
);
} else {
return Err(Error::InvalidMapRequest);
}
0
}
VIRTIO_IOMMU_T_UNMAP => {
if desc_size_left != size_of::<VirtioIommuReqUnmap>() {
return Err(Error::InvalidUnmapRequest);
}
let req: VirtioIommuReqUnmap = mem
.read_obj(req_addr as GuestAddress)
.map_err(Error::GuestMemory)?;
debug!("Unmap request {:?}", req);
// Copy the value to use it as a proper reference.
let domain = req.domain;
let virt_start = req.virt_start;
// Trigger external unmapping if necessary.
if let Some(ext_map) = ext_domain_mapping.get(&domain) {
let size = req.virt_end - virt_start + 1;
ext_map
.unmap(virt_start, size)
.map_err(Error::ExternalUnmapping)?;
}
// Add new mapping associated with the domain
if let Some(entry) = mapping.mappings.write().unwrap().get_mut(&domain) {
entry.remove(&virt_start);
}
0
}
VIRTIO_IOMMU_T_PROBE => {
if desc_size_left != size_of::<VirtioIommuReqProbe>() {
return Err(Error::InvalidProbeRequest);
}
let req: VirtioIommuReqProbe = mem
.read_obj(req_addr as GuestAddress)
.map_err(Error::GuestMemory)?;
debug!("Probe request {:?}", req);
let probe_prop = VirtioIommuProbeProperty {
type_: VIRTIO_IOMMU_PROBE_T_RESV_MEM,
length: size_of::<VirtioIommuProbeResvMem>() as u16,
};
reply.extend_from_slice(probe_prop.as_slice());
let resv_mem = VirtioIommuProbeResvMem {
subtype: VIRTIO_IOMMU_RESV_MEM_T_MSI,
start: MSI_IOVA_START,
end: MSI_IOVA_END,
..Default::default()
};
reply.extend_from_slice(resv_mem.as_slice());
PROBE_PROP_SIZE
}
_ => return Err(Error::InvalidRequest),
};
let status_desc = avail_desc
.next_descriptor()
.ok_or(Error::DescriptorChainTooShort)?;
// The status MUST always be writable
if !status_desc.is_write_only() {
return Err(Error::UnexpectedReadOnlyDescriptor);
}
if status_desc.len < hdr_len + size_of::<VirtioIommuReqTail>() as u32 {
return Err(Error::BufferLengthTooSmall);
}
let tail = VirtioIommuReqTail {
status: VIRTIO_IOMMU_S_OK,
..Default::default()
};
reply.extend_from_slice(tail.as_slice());
mem.write_slice(reply.as_slice(), status_desc.addr)
.map_err(Error::GuestMemory)?;
Ok((hdr_len as usize) + size_of::<VirtioIommuReqTail>())
}
}
struct IommuEpollHandler {
queues: Vec<Queue>,
mem: GuestMemoryAtomic<GuestMemoryMmap>,
interrupt_cb: Arc<dyn VirtioInterrupt>,
queue_evts: Vec<EventFd>,
kill_evt: EventFd,
pause_evt: EventFd,
mapping: Arc<IommuMapping>,
ext_mapping: BTreeMap<u32, Arc<dyn ExternalDmaMapping>>,
ext_domain_mapping: BTreeMap<u32, Arc<dyn ExternalDmaMapping>>,
}
impl IommuEpollHandler {
fn request_queue(&mut self) -> bool {
let mut used_desc_heads = [(0, 0); QUEUE_SIZE as usize];
let mut used_count = 0;
let mem = self.mem.memory();
for avail_desc in self.queues[0].iter(&mem) {
let len = match Request::parse(
&avail_desc,
&mem,
&self.mapping,
&self.ext_mapping,
&mut self.ext_domain_mapping,
) {
Ok(len) => len as u32,
Err(e) => {
error!("failed parsing descriptor: {}", e);
0
}
};
used_desc_heads[used_count] = (avail_desc.index, len);
used_count += 1;
}
for &(desc_index, len) in &used_desc_heads[..used_count] {
self.queues[0].add_used(&mem, desc_index, len);
}
used_count > 0
}
fn event_queue(&mut self) -> bool {
false
}
fn signal_used_queue(&self, queue: &Queue) -> result::Result<(), DeviceError> {
self.interrupt_cb
.trigger(&VirtioInterruptType::Queue, Some(queue))
.map_err(|e| {
error!("Failed to signal used queue: {:?}", e);
DeviceError::FailedSignalingUsedQueue(e)
})
}
fn run(&mut self, paused: Arc<AtomicBool>) -> result::Result<(), DeviceError> {
// Create the epoll file descriptor
let epoll_fd = epoll::create(true).map_err(DeviceError::EpollCreateFd)?;
// Add events
epoll::ctl(
epoll_fd,
epoll::ControlOptions::EPOLL_CTL_ADD,
self.queue_evts[0].as_raw_fd(),
epoll::Event::new(epoll::Events::EPOLLIN, u64::from(REQUEST_Q_EVENT)),
)
.map_err(DeviceError::EpollCtl)?;
epoll::ctl(
epoll_fd,
epoll::ControlOptions::EPOLL_CTL_ADD,
self.queue_evts[1].as_raw_fd(),
epoll::Event::new(epoll::Events::EPOLLIN, u64::from(EVENT_Q_EVENT)),
)
.map_err(DeviceError::EpollCtl)?;
epoll::ctl(
epoll_fd,
epoll::ControlOptions::EPOLL_CTL_ADD,
self.kill_evt.as_raw_fd(),
epoll::Event::new(epoll::Events::EPOLLIN, u64::from(KILL_EVENT)),
)
.map_err(DeviceError::EpollCtl)?;
epoll::ctl(
epoll_fd,
epoll::ControlOptions::EPOLL_CTL_ADD,
self.pause_evt.as_raw_fd(),
epoll::Event::new(epoll::Events::EPOLLIN, u64::from(PAUSE_EVENT)),
)
.map_err(DeviceError::EpollCtl)?;
const EPOLL_EVENTS_LEN: usize = 100;
let mut events = vec![epoll::Event::new(epoll::Events::empty(), 0); EPOLL_EVENTS_LEN];
'epoll: loop {
let num_events = match epoll::wait(epoll_fd, -1, &mut events[..]) {
Ok(res) => res,
Err(e) => {
if e.kind() == io::ErrorKind::Interrupted {
// It's well defined from the epoll_wait() syscall
// documentation that the epoll loop can be interrupted
// before any of the requested events occurred or the
// timeout expired. In both those cases, epoll_wait()
// returns an error of type EINTR, but this should not
// be considered as a regular error. Instead it is more
// appropriate to retry, by calling into epoll_wait().
continue;
}
return Err(DeviceError::EpollWait(e));
}
};
for event in events.iter().take(num_events) {
let ev_type = event.data as u16;
match ev_type {
REQUEST_Q_EVENT => {
if let Err(e) = self.queue_evts[0].read() {
error!("Failed to get queue event: {:?}", e);
break 'epoll;
} else if self.request_queue() {
if let Err(e) = self.signal_used_queue(&self.queues[0]) {
error!("Failed to signal used queue: {:?}", e);
break 'epoll;
}
}
}
EVENT_Q_EVENT => {
if let Err(e) = self.queue_evts[1].read() {
error!("Failed to get queue event: {:?}", e);
break 'epoll;
} else if self.event_queue() {
if let Err(e) = self.signal_used_queue(&self.queues[1]) {
error!("Failed to signal used queue: {:?}", e);
break 'epoll;
}
}
}
KILL_EVENT => {
debug!("kill_evt received, stopping epoll loop");
break 'epoll;
}
PAUSE_EVENT => {
// Drain pause event
let _ = self.pause_evt.read();
debug!("PAUSE_EVENT received, pausing virtio-iommu epoll loop");
// We loop here to handle spurious park() returns.
// Until we have not resumed, the paused boolean will
// be true.
while paused.load(Ordering::SeqCst) {
thread::park();
}
}
_ => {
error!("Unknown event for virtio-iommu");
break 'epoll;
}
}
}
info!("Exit epoll loop");
}
Ok(())
}
}
#[derive(Clone, Copy)]
struct Mapping {
gpa: u64,
size: u64,
}
pub struct IommuMapping {
// Domain related to an endpoint.
endpoints: Arc<RwLock<BTreeMap<u32, u32>>>,
// List of mappings per domain.
mappings: Arc<RwLock<BTreeMap<u32, BTreeMap<u64, Mapping>>>>,
}
impl DmaRemapping for IommuMapping {
fn translate(&self, id: u32, addr: u64) -> std::result::Result<u64, std::io::Error> {
debug!("Translate addr 0x{:x}", addr);
if let Some(domain) = self.endpoints.read().unwrap().get(&id) {
if let Some(mapping) = self.mappings.read().unwrap().get(domain) {
let range_start = if VIRTIO_IOMMU_PAGE_SIZE_MASK > addr {
0
} else {
addr - VIRTIO_IOMMU_PAGE_SIZE_MASK
};
for (&key, &value) in mapping.range((Included(&range_start), Included(&addr))) {
if addr >= key && addr < key + value.size {
let new_addr = addr - key + value.gpa;
debug!("Into new_addr 0x{:x}", new_addr);
return Ok(new_addr);
}
}
}
}
debug!("Into same addr...");
Ok(addr)
}
}
pub struct Iommu {
kill_evt: Option<EventFd>,
pause_evt: Option<EventFd>,
avail_features: u64,
acked_features: u64,
config: VirtioIommuConfig,
config_topo_pci_ranges: Vec<VirtioIommuTopoPciRange>,
mapping: Arc<IommuMapping>,
ext_mapping: BTreeMap<u32, Arc<dyn ExternalDmaMapping>>,
queue_evts: Option<Vec<EventFd>>,
interrupt_cb: Option<Arc<dyn VirtioInterrupt>>,
epoll_threads: Option<Vec<thread::JoinHandle<result::Result<(), DeviceError>>>>,
paused: Arc<AtomicBool>,
}
impl Iommu {
pub fn new() -> io::Result<(Self, Arc<IommuMapping>)> {
let config = VirtioIommuConfig {
page_size_mask: VIRTIO_IOMMU_PAGE_SIZE_MASK,
probe_size: PROBE_PROP_SIZE,
..Default::default()
};
let mapping = Arc::new(IommuMapping {
endpoints: Arc::new(RwLock::new(BTreeMap::new())),
mappings: Arc::new(RwLock::new(BTreeMap::new())),
});
Ok((
Iommu {
kill_evt: None,
pause_evt: None,
avail_features: 1u64 << VIRTIO_F_VERSION_1
| 1u64 << VIRTIO_IOMMU_F_MAP_UNMAP
| 1u64 << VIRTIO_IOMMU_F_PROBE,
acked_features: 0u64,
config,
config_topo_pci_ranges: Vec::new(),
mapping: mapping.clone(),
ext_mapping: BTreeMap::new(),
queue_evts: None,
interrupt_cb: None,
epoll_threads: None,
paused: Arc::new(AtomicBool::new(false)),
},
mapping,
))
}
// This function lets the caller specify a list of devices attached to the
// virtual IOMMU. This list is translated into a virtio-iommu configuration
// topology, so that it can be understood by the guest driver.
//
// The topology is overriden everytime this function is being invoked.
//
// This function is dedicated to PCI, which means it will exclusively
// create VIRTIO_IOMMU_TOPO_PCI_RANGE entries.
pub fn attach_pci_devices(&mut self, domain: u16, device_ids: Vec<u32>) {
if device_ids.is_empty() {
warn!("No device to attach to virtual IOMMU");
return;
}
// If there is at least one device attached to the virtual IOMMU, we
// need the topology feature to be enabled.
self.avail_features |= 1u64 << VIRTIO_IOMMU_F_TOPOLOGY;
// Update the topology.
let mut topo_pci_ranges = Vec::new();
for device_id in device_ids.iter() {
let dev_id = *device_id;
topo_pci_ranges.push(VirtioIommuTopoPciRange {
type_: VIRTIO_IOMMU_TOPO_PCI_RANGE,
hierarchy: domain,
requester_start: dev_id as u16,
requester_end: dev_id as u16,
endpoint_start: dev_id,
});
}
self.config_topo_pci_ranges = topo_pci_ranges;
// Update the configuration to include the topology.
self.config.topo_config.offset = size_of::<VirtioIommuConfig>() as u32;
self.config.topo_config.num_items = self.config_topo_pci_ranges.len() as u32;
self.config.topo_config.item_length = size_of::<VirtioIommuTopoPciRange>() as u32;
}
pub fn add_external_mapping(&mut self, device_id: u32, mapping: Arc<dyn ExternalDmaMapping>) {
self.ext_mapping.insert(device_id, mapping);
}
}
impl Drop for Iommu {
fn drop(&mut self) {
if let Some(kill_evt) = self.kill_evt.take() {
// Ignore the result because there is nothing we can do about it.
let _ = kill_evt.write(1);
}
}
}
impl VirtioDevice for Iommu {
fn device_type(&self) -> u32 {
VirtioDeviceType::TYPE_IOMMU as u32
}
fn queue_max_sizes(&self) -> &[u16] {
QUEUE_SIZES
}
fn features(&self) -> u64 {
self.avail_features
}
fn ack_features(&mut self, value: u64) {
let mut v = value;
// Check if the guest is ACK'ing a feature that we didn't claim to have.
let unrequested_features = v & !self.avail_features;
if unrequested_features != 0 {
warn!("Received acknowledge request for unknown feature.");
// Don't count these features as acked.
v &= !unrequested_features;
}
self.acked_features |= v;
}
fn read_config(&self, offset: u64, mut data: &mut [u8]) {
let mut config: Vec<u8> = Vec::new();
config.extend_from_slice(self.config.as_slice());
for config_topo_pci_range in self.config_topo_pci_ranges.iter() {
config.extend_from_slice(config_topo_pci_range.as_slice());
}
let config_slice = config.as_slice();
let config_len = config_slice.len() as u64;
if offset >= config_len {
error!("Failed to read config space");
return;
}
if let Some(end) = offset.checked_add(data.len() as u64) {
// This write can't fail, offset and end are checked against config_len.
data.write_all(&config_slice[offset as usize..cmp::min(end, config_len) as usize])
.unwrap();
}
}
fn write_config(&mut self, _offset: u64, _data: &[u8]) {
warn!("virtio-iommu device configuration is read-only");
}
fn activate(
&mut self,
mem: GuestMemoryAtomic<GuestMemoryMmap>,
interrupt_cb: Arc<dyn VirtioInterrupt>,
queues: Vec<Queue>,
queue_evts: Vec<EventFd>,
) -> ActivateResult {
if queues.len() != NUM_QUEUES || queue_evts.len() != NUM_QUEUES {
error!(
"Cannot perform activate. Expected {} queue(s), got {}",
NUM_QUEUES,
queues.len()
);
return Err(ActivateError::BadActivate);
}
let (self_kill_evt, kill_evt) = EventFd::new(EFD_NONBLOCK)
.and_then(|e| Ok((e.try_clone()?, e)))
.map_err(|e| {
error!("failed creating kill EventFd pair: {}", e);
ActivateError::BadActivate
})?;
self.kill_evt = Some(self_kill_evt);
let (self_pause_evt, pause_evt) = EventFd::new(EFD_NONBLOCK)
.and_then(|e| Ok((e.try_clone()?, e)))
.map_err(|e| {
error!("failed creating pause EventFd pair: {}", e);
ActivateError::BadActivate
})?;
self.pause_evt = Some(self_pause_evt);
// Save the interrupt EventFD as we need to return it on reset
// but clone it to pass into the thread.
self.interrupt_cb = Some(interrupt_cb.clone());
let mut tmp_queue_evts: Vec<EventFd> = Vec::new();
for queue_evt in queue_evts.iter() {
// Save the queue EventFD as we need to return it on reset
// but clone it to pass into the thread.
tmp_queue_evts.push(queue_evt.try_clone().map_err(|e| {
error!("failed to clone queue EventFd: {}", e);
ActivateError::BadActivate
})?);
}
self.queue_evts = Some(tmp_queue_evts);
let mut handler = IommuEpollHandler {
queues,
mem,
interrupt_cb,
queue_evts,
kill_evt,
pause_evt,
mapping: self.mapping.clone(),
ext_mapping: self.ext_mapping.clone(),
ext_domain_mapping: BTreeMap::new(),
};
let paused = self.paused.clone();
let mut epoll_threads = Vec::new();
thread::Builder::new()
.name("virtio_iommu".to_string())
.spawn(move || handler.run(paused))
.map(|thread| epoll_threads.push(thread))
.map_err(|e| {
error!("failed to clone the virtio-iommu epoll thread: {}", e);
ActivateError::BadActivate
})?;
self.epoll_threads = Some(epoll_threads);
Ok(())
}
fn reset(&mut self) -> Option<(Arc<dyn VirtioInterrupt>, Vec<EventFd>)> {
// We first must resume the virtio thread if it was paused.
if self.pause_evt.take().is_some() {
self.resume().ok()?;
}
if let Some(kill_evt) = self.kill_evt.take() {
// Ignore the result because there is nothing we can do about it.
let _ = kill_evt.write(1);
}
// Return the interrupt and queue EventFDs
Some((
self.interrupt_cb.take().unwrap(),
self.queue_evts.take().unwrap(),
))
}
}
virtio_pausable!(Iommu);
impl Snapshottable for Iommu {}
impl Transportable for Iommu {}
impl Migratable for Iommu {}