cloud-hypervisor/vmm/src/device_manager.rs
Sebastien Boeuf c8c3cad8cb vmm: device_manager: Update structure holding PCI IRQs
Make the code a bit clearer by changing the naming of the structure
holding the list of IRQs reserved for PCI devices. It is also modified
into an array of 32 entries since we know this is the amount of PCI
slots that is supported.

Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
2021-03-18 15:26:25 +01:00

4021 lines
139 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//
use crate::config::ConsoleOutputMode;
use crate::config::DeviceConfig;
use crate::config::{DiskConfig, FsConfig, NetConfig, PmemConfig, VmConfig, VsockConfig};
use crate::device_tree::{DeviceNode, DeviceTree};
#[cfg(feature = "kvm")]
use crate::interrupt::kvm::KvmMsiInterruptManager as MsiInterruptManager;
#[cfg(feature = "mshv")]
use crate::interrupt::mshv::MshvMsiInterruptManager as MsiInterruptManager;
use crate::interrupt::LegacyUserspaceInterruptManager;
#[cfg(feature = "acpi")]
use crate::memory_manager::MEMORY_MANAGER_ACPI_SIZE;
use crate::memory_manager::{Error as MemoryManagerError, MemoryManager};
#[cfg(feature = "acpi")]
use crate::vm::NumaNodes;
use crate::PciDeviceInfo;
use crate::{device_node, DEVICE_MANAGER_SNAPSHOT_ID};
#[cfg(feature = "acpi")]
use acpi_tables::{aml, aml::Aml};
use anyhow::anyhow;
#[cfg(target_arch = "aarch64")]
use arch::aarch64::gic::GICDevice;
#[cfg(target_arch = "aarch64")]
use arch::aarch64::DeviceInfoForFDT;
#[cfg(feature = "acpi")]
use arch::layout;
#[cfg(target_arch = "x86_64")]
use arch::layout::{APIC_START, IOAPIC_SIZE, IOAPIC_START};
#[cfg(target_arch = "aarch64")]
use arch::DeviceType;
use block_util::{
async_io::DiskFile, block_io_uring_is_supported, detect_image_type,
fixed_vhd_async::FixedVhdDiskAsync, fixed_vhd_sync::FixedVhdDiskSync, qcow_sync::QcowDiskSync,
raw_async::RawFileDisk, raw_sync::RawFileDiskSync, ImageType,
};
#[cfg(target_arch = "aarch64")]
use devices::gic;
#[cfg(target_arch = "x86_64")]
use devices::ioapic;
#[cfg(target_arch = "x86_64")]
use devices::legacy::Serial;
#[cfg(target_arch = "aarch64")]
use devices::legacy::PL011;
use devices::{
interrupt_controller, interrupt_controller::InterruptController, AcpiNotificationFlags,
};
#[cfg(feature = "kvm")]
use hypervisor::kvm_ioctls::*;
#[cfg(target_arch = "aarch64")]
use hypervisor::CpuState;
#[cfg(feature = "mshv")]
use hypervisor::IoEventAddress;
use libc::{
isatty, tcgetattr, tcsetattr, termios, ECHO, ICANON, ISIG, MAP_NORESERVE, MAP_PRIVATE,
MAP_SHARED, O_TMPFILE, PROT_READ, PROT_WRITE, TCSANOW, TIOCGWINSZ,
};
#[cfg(feature = "kvm")]
use pci::VfioPciDevice;
use pci::{
DeviceRelocation, PciBarRegionType, PciBus, PciConfigIo, PciConfigMmio, PciDevice, PciRoot,
};
use seccomp::SeccompAction;
use std::collections::{BTreeMap, HashMap};
use std::convert::TryInto;
use std::fs::{read_link, File, OpenOptions};
use std::io::{self, sink, stdout, Seek, SeekFrom};
use std::mem::zeroed;
use std::num::Wrapping;
use std::os::unix::fs::OpenOptionsExt;
use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use std::path::PathBuf;
use std::result;
use std::sync::{Arc, Barrier, Mutex};
#[cfg(feature = "kvm")]
use vfio_ioctls::{VfioContainer, VfioDevice};
use virtio_devices::transport::VirtioPciDevice;
use virtio_devices::transport::VirtioTransport;
use virtio_devices::vhost_user::VhostUserConfig;
use virtio_devices::{DmaRemapping, IommuMapping};
use virtio_devices::{VirtioSharedMemory, VirtioSharedMemoryList};
use vm_allocator::SystemAllocator;
#[cfg(feature = "kvm")]
use vm_device::dma_mapping::vfio::VfioDmaMapping;
use vm_device::interrupt::{
InterruptIndex, InterruptManager, LegacyIrqGroupConfig, MsiIrqGroupConfig,
};
use vm_device::{Bus, BusDevice, Resource};
use vm_memory::guest_memory::FileOffset;
#[cfg(feature = "kvm")]
use vm_memory::GuestMemoryRegion;
use vm_memory::{Address, GuestAddress, GuestRegionMmap, GuestUsize, MmapRegion};
#[cfg(feature = "cmos")]
use vm_memory::{GuestAddressSpace, GuestMemory};
use vm_migration::{
Migratable, MigratableError, Pausable, Snapshot, SnapshotDataSection, Snapshottable,
Transportable,
};
use vm_virtio::{VirtioDeviceType, VirtioIommuRemapping};
use vmm_sys_util::eventfd::EventFd;
#[cfg(target_arch = "aarch64")]
const MMIO_LEN: u64 = 0x1000;
#[cfg(feature = "kvm")]
const VFIO_DEVICE_NAME_PREFIX: &str = "_vfio";
#[cfg(target_arch = "x86_64")]
const IOAPIC_DEVICE_NAME: &str = "_ioapic";
const SERIAL_DEVICE_NAME_PREFIX: &str = "_serial";
#[cfg(target_arch = "aarch64")]
const GPIO_DEVICE_NAME_PREFIX: &str = "_gpio";
const CONSOLE_DEVICE_NAME: &str = "_console";
const DISK_DEVICE_NAME_PREFIX: &str = "_disk";
const FS_DEVICE_NAME_PREFIX: &str = "_fs";
const MEM_DEVICE_NAME_PREFIX: &str = "_mem";
const BALLOON_DEVICE_NAME: &str = "_balloon";
const NET_DEVICE_NAME_PREFIX: &str = "_net";
const PMEM_DEVICE_NAME_PREFIX: &str = "_pmem";
const RNG_DEVICE_NAME: &str = "_rng";
const VSOCK_DEVICE_NAME_PREFIX: &str = "_vsock";
const WATCHDOG_DEVICE_NAME: &str = "_watchdog";
const IOMMU_DEVICE_NAME: &str = "_iommu";
const VIRTIO_PCI_DEVICE_NAME_PREFIX: &str = "_virtio-pci";
/// Errors associated with device manager
#[derive(Debug)]
pub enum DeviceManagerError {
/// Cannot create EventFd.
EventFd(io::Error),
/// Cannot open disk path
Disk(io::Error),
/// Cannot create vhost-user-net device
CreateVhostUserNet(virtio_devices::vhost_user::Error),
/// Cannot create virtio-blk device
CreateVirtioBlock(io::Error),
/// Cannot create virtio-net device
CreateVirtioNet(virtio_devices::net::Error),
/// Cannot create virtio-console device
CreateVirtioConsole(io::Error),
/// Cannot create virtio-rng device
CreateVirtioRng(io::Error),
/// Cannot create virtio-fs device
CreateVirtioFs(virtio_devices::vhost_user::Error),
/// Virtio-fs device was created without a socket.
NoVirtioFsSock,
/// Cannot create vhost-user-blk device
CreateVhostUserBlk(virtio_devices::vhost_user::Error),
/// Cannot create virtio-pmem device
CreateVirtioPmem(io::Error),
/// Cannot create virtio-vsock device
CreateVirtioVsock(io::Error),
/// Failed converting Path to &str for the virtio-vsock device.
CreateVsockConvertPath,
/// Cannot create virtio-vsock backend
CreateVsockBackend(virtio_devices::vsock::VsockUnixError),
/// Cannot create virtio-iommu device
CreateVirtioIommu(io::Error),
/// Cannot create virtio-balloon device
CreateVirtioBalloon(io::Error),
/// Cannot create virtio-watchdog device
CreateVirtioWatchdog(io::Error),
/// Failed parsing disk image format
DetectImageType(io::Error),
/// Cannot open qcow disk path
QcowDeviceCreate(qcow::Error),
/// Cannot open tap interface
OpenTap(net_util::TapError),
/// Cannot allocate IRQ.
AllocateIrq,
/// Cannot configure the IRQ.
Irq(vmm_sys_util::errno::Error),
/// Cannot allocate PCI BARs
AllocateBars(pci::PciDeviceError),
/// Could not free the BARs associated with a PCI device.
FreePciBars(pci::PciDeviceError),
/// Cannot register ioevent.
RegisterIoevent(anyhow::Error),
/// Cannot unregister ioevent.
UnRegisterIoevent(anyhow::Error),
/// Cannot create virtio device
VirtioDevice(vmm_sys_util::errno::Error),
/// Cannot add PCI device
AddPciDevice(pci::PciRootError),
/// Cannot open persistent memory file
PmemFileOpen(io::Error),
/// Cannot set persistent memory file size
PmemFileSetLen(io::Error),
/// Cannot find a memory range for persistent memory
PmemRangeAllocation,
/// Cannot find a memory range for virtio-fs
FsRangeAllocation,
/// Error creating serial output file
SerialOutputFileOpen(io::Error),
/// Error creating console output file
ConsoleOutputFileOpen(io::Error),
/// Error creating serial pty
SerialPtyOpen(io::Error),
/// Error creating console pty
ConsolePtyOpen(io::Error),
/// Error setting pty raw mode
SetPtyRaw(vmm_sys_util::errno::Error),
/// Error getting pty peer
GetPtyPeer(vmm_sys_util::errno::Error),
/// Cannot create a VFIO device
VfioCreate(vfio_ioctls::VfioError),
/// Cannot create a VFIO PCI device
VfioPciCreate(pci::VfioPciError),
/// Failed to map VFIO MMIO region.
VfioMapRegion(pci::VfioPciError),
/// Failed to DMA map VFIO device.
VfioDmaMap(pci::VfioPciError),
/// Failed to DMA unmap VFIO device.
VfioDmaUnmap(pci::VfioPciError),
/// Failed to create the passthrough device.
CreatePassthroughDevice(anyhow::Error),
/// Failed to memory map.
Mmap(io::Error),
/// Cannot add legacy device to Bus.
BusError(vm_device::BusError),
/// Failed to allocate IO port
AllocateIOPort,
/// Failed to allocate MMIO address
AllocateMMIOAddress,
// Failed to make hotplug notification
HotPlugNotification(io::Error),
// Error from a memory manager operation
MemoryManager(MemoryManagerError),
/// Failed to create new interrupt source group.
CreateInterruptGroup(io::Error),
/// Failed to update interrupt source group.
UpdateInterruptGroup(io::Error),
/// Failed creating interrupt controller.
CreateInterruptController(interrupt_controller::Error),
/// Failed creating a new MmapRegion instance.
NewMmapRegion(vm_memory::mmap::MmapRegionError),
/// Failed cloning a File.
CloneFile(io::Error),
/// Failed to create socket file
CreateSocketFile(io::Error),
/// Failed to spawn the network backend
SpawnNetBackend(io::Error),
/// Failed to spawn the block backend
SpawnBlockBackend(io::Error),
/// Missing PCI bus.
NoPciBus,
/// Could not find an available device name.
NoAvailableDeviceName,
/// Missing PCI device.
MissingPciDevice,
/// Failed removing a PCI device from the PCI bus.
RemoveDeviceFromPciBus(pci::PciRootError),
/// Failed removing a bus device from the IO bus.
RemoveDeviceFromIoBus(vm_device::BusError),
/// Failed removing a bus device from the MMIO bus.
RemoveDeviceFromMmioBus(vm_device::BusError),
/// Failed to find the device corresponding to a specific PCI b/d/f.
UnknownPciBdf(u32),
/// Not allowed to remove this type of device from the VM.
RemovalNotAllowed(vm_virtio::VirtioDeviceType),
/// Failed to find device corresponding to the given identifier.
UnknownDeviceId(String),
/// Failed to find an available PCI device ID.
NextPciDeviceId(pci::PciRootError),
/// Could not reserve the PCI device ID.
GetPciDeviceId(pci::PciRootError),
/// Could not give the PCI device ID back.
PutPciDeviceId(pci::PciRootError),
/// Incorrect device ID as it is already used by another device.
DeviceIdAlreadyInUse,
/// No disk path was specified when one was expected
NoDiskPath,
/// Failed updating guest memory for virtio device.
UpdateMemoryForVirtioDevice(virtio_devices::Error),
/// Cannot create virtio-mem device
CreateVirtioMem(io::Error),
/// Cannot generate a ResizeSender from the Resize object.
CreateResizeSender(virtio_devices::mem::Error),
/// Cannot find a memory range for virtio-mem memory
VirtioMemRangeAllocation,
/// Failed updating guest memory for VFIO PCI device.
UpdateMemoryForVfioPciDevice(pci::VfioPciError),
/// Trying to use a directory for pmem but no size specified
PmemWithDirectorySizeMissing,
/// Trying to use a size that is not multiple of 2MiB
PmemSizeNotAligned,
/// Could not find the node in the device tree.
MissingNode,
/// Resource was already found.
ResourceAlreadyExists,
/// Expected resources for virtio-pci could not be found.
MissingVirtioPciResources,
/// Expected resources for virtio-fs could not be found.
MissingVirtioFsResources,
/// Missing PCI b/d/f from the DeviceNode.
MissingDeviceNodePciBdf,
/// No support for device passthrough
NoDevicePassthroughSupport,
/// Failed to resize virtio-balloon
VirtioBalloonResize(virtio_devices::balloon::Error),
/// Missing virtio-balloon, can't proceed as expected.
MissingVirtioBalloon,
/// Failed to do power button notification
PowerButtonNotification(io::Error),
/// Failed to do AArch64 GPIO power button notification
#[cfg(target_arch = "aarch64")]
AArch64PowerButtonNotification(devices::legacy::GPIODeviceError),
/// Failed to set O_DIRECT flag to file descriptor
SetDirectIo,
/// Failed to create FixedVhdDiskAsync
CreateFixedVhdDiskAsync(io::Error),
/// Failed to create FixedVhdDiskSync
CreateFixedVhdDiskSync(io::Error),
/// Failed adding DMA mapping handler to virtio-mem device.
AddDmaMappingHandlerVirtioMem(virtio_devices::mem::Error),
/// Failed removing DMA mapping handler from virtio-mem device.
RemoveDmaMappingHandlerVirtioMem(virtio_devices::mem::Error),
}
pub type DeviceManagerResult<T> = result::Result<T, DeviceManagerError>;
type VirtioDeviceArc = Arc<Mutex<dyn virtio_devices::VirtioDevice>>;
#[cfg(feature = "acpi")]
const DEVICE_MANAGER_ACPI_SIZE: usize = 0x10;
pub fn get_win_size() -> (u16, u16) {
#[repr(C)]
#[derive(Default)]
struct WS {
rows: u16,
cols: u16,
xpixel: u16,
ypixel: u16,
}
let ws: WS = WS::default();
unsafe {
libc::ioctl(0, TIOCGWINSZ, &ws);
}
(ws.cols, ws.rows)
}
const TIOCSPTLCK: libc::c_int = 0x4004_5431;
const TIOCGTPEER: libc::c_int = 0x5441;
pub fn create_pty() -> io::Result<(File, File, PathBuf)> {
// Try to use /dev/pts/ptmx first then fall back to /dev/ptmx
// This is done to try and use the devpts filesystem that
// could be available for use in the process's namespace first.
// Ideally these are all the same file though but different
// kernels could have things setup differently.
// See https://www.kernel.org/doc/Documentation/filesystems/devpts.txt
// for further details.
let main = match OpenOptions::new()
.read(true)
.write(true)
.custom_flags(libc::O_NOCTTY)
.open("/dev/pts/ptmx")
{
Ok(f) => f,
_ => OpenOptions::new()
.read(true)
.write(true)
.custom_flags(libc::O_NOCTTY)
.open("/dev/ptmx")?,
};
let mut unlock: libc::c_ulong = 0;
unsafe {
libc::ioctl(
main.as_raw_fd(),
TIOCSPTLCK.try_into().unwrap(),
&mut unlock,
)
};
let sub_fd = unsafe {
libc::ioctl(
main.as_raw_fd(),
TIOCGTPEER.try_into().unwrap(),
libc::O_NOCTTY | libc::O_RDWR,
)
};
if sub_fd == -1 {
return vmm_sys_util::errno::errno_result().map_err(|e| e.into());
}
let proc_path = PathBuf::from(format!("/proc/self/fd/{}", sub_fd));
let path = read_link(proc_path)?;
Ok((main, unsafe { File::from_raw_fd(sub_fd) }, path))
}
enum ConsoleInput {
Serial,
VirtioConsole,
}
#[derive(Default)]
pub struct Console {
#[cfg(target_arch = "x86_64")]
// Serial port on 0x3f8
serial: Option<Arc<Mutex<Serial>>>,
#[cfg(target_arch = "aarch64")]
serial: Option<Arc<Mutex<PL011>>>,
virtio_console_input: Option<Arc<virtio_devices::ConsoleInput>>,
input: Option<ConsoleInput>,
}
impl Console {
pub fn queue_input_bytes(&self, out: &[u8]) -> vmm_sys_util::errno::Result<()> {
match self.input {
Some(ConsoleInput::Serial) => {
self.queue_input_bytes_serial(out)?;
}
Some(ConsoleInput::VirtioConsole) => {
self.queue_input_bytes_console(out);
}
None => {}
}
Ok(())
}
pub fn queue_input_bytes_serial(&self, out: &[u8]) -> vmm_sys_util::errno::Result<()> {
if self.serial.is_some() {
self.serial
.as_ref()
.unwrap()
.lock()
.unwrap()
.queue_input_bytes(out)?;
}
Ok(())
}
pub fn queue_input_bytes_console(&self, out: &[u8]) {
if self.virtio_console_input.is_some() {
self.virtio_console_input
.as_ref()
.unwrap()
.queue_input_bytes(out);
}
}
pub fn update_console_size(&self, cols: u16, rows: u16) {
if self.virtio_console_input.is_some() {
self.virtio_console_input
.as_ref()
.unwrap()
.update_console_size(cols, rows)
}
}
pub fn input_enabled(&self) -> bool {
self.input.is_some()
}
}
struct AddressManager {
allocator: Arc<Mutex<SystemAllocator>>,
#[cfg(target_arch = "x86_64")]
io_bus: Arc<Bus>,
mmio_bus: Arc<Bus>,
vm: Arc<dyn hypervisor::Vm>,
device_tree: Arc<Mutex<DeviceTree>>,
}
impl DeviceRelocation for AddressManager {
fn move_bar(
&self,
old_base: u64,
new_base: u64,
len: u64,
pci_dev: &mut dyn PciDevice,
region_type: PciBarRegionType,
) -> std::result::Result<(), std::io::Error> {
match region_type {
PciBarRegionType::IORegion => {
#[cfg(target_arch = "x86_64")]
{
// Update system allocator
self.allocator
.lock()
.unwrap()
.free_io_addresses(GuestAddress(old_base), len as GuestUsize);
self.allocator
.lock()
.unwrap()
.allocate_io_addresses(
Some(GuestAddress(new_base)),
len as GuestUsize,
None,
)
.ok_or_else(|| {
io::Error::new(io::ErrorKind::Other, "failed allocating new IO range")
})?;
// Update PIO bus
self.io_bus
.update_range(old_base, len, new_base, len)
.map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
}
#[cfg(target_arch = "aarch64")]
error!("I/O region is not supported");
}
PciBarRegionType::Memory32BitRegion | PciBarRegionType::Memory64BitRegion => {
// Update system allocator
if region_type == PciBarRegionType::Memory32BitRegion {
self.allocator
.lock()
.unwrap()
.free_mmio_hole_addresses(GuestAddress(old_base), len as GuestUsize);
self.allocator
.lock()
.unwrap()
.allocate_mmio_hole_addresses(
Some(GuestAddress(new_base)),
len as GuestUsize,
None,
)
.ok_or_else(|| {
io::Error::new(
io::ErrorKind::Other,
"failed allocating new 32 bits MMIO range",
)
})?;
} else {
self.allocator
.lock()
.unwrap()
.free_mmio_addresses(GuestAddress(old_base), len as GuestUsize);
self.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(
Some(GuestAddress(new_base)),
len as GuestUsize,
None,
)
.ok_or_else(|| {
io::Error::new(
io::ErrorKind::Other,
"failed allocating new 64 bits MMIO range",
)
})?;
}
// Update MMIO bus
self.mmio_bus
.update_range(old_base, len, new_base, len)
.map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
}
}
let any_dev = pci_dev.as_any();
if let Some(virtio_pci_dev) = any_dev.downcast_ref::<VirtioPciDevice>() {
// Update the device_tree resources associated with the device
if let Some(node) = self
.device_tree
.lock()
.unwrap()
.get_mut(&virtio_pci_dev.id())
{
let mut resource_updated = false;
for resource in node.resources.iter_mut() {
if let Resource::MmioAddressRange { base, .. } = resource {
if *base == old_base {
*base = new_base;
resource_updated = true;
break;
}
}
}
if !resource_updated {
return Err(io::Error::new(
io::ErrorKind::Other,
format!(
"Couldn't find a resource with base 0x{:x} for device {}",
old_base,
virtio_pci_dev.id()
),
));
}
} else {
return Err(io::Error::new(
io::ErrorKind::Other,
format!(
"Couldn't find device {} from device tree",
virtio_pci_dev.id()
),
));
}
let bar_addr = virtio_pci_dev.config_bar_addr();
if bar_addr == new_base {
for (event, addr) in virtio_pci_dev.ioeventfds(old_base) {
let io_addr = IoEventAddress::Mmio(addr);
self.vm.unregister_ioevent(event, &io_addr).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to unregister ioevent: {:?}", e),
)
})?;
}
for (event, addr) in virtio_pci_dev.ioeventfds(new_base) {
let io_addr = IoEventAddress::Mmio(addr);
self.vm
.register_ioevent(event, &io_addr, None)
.map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to register ioevent: {:?}", e),
)
})?;
}
} else {
let virtio_dev = virtio_pci_dev.virtio_device();
let mut virtio_dev = virtio_dev.lock().unwrap();
if let Some(mut shm_regions) = virtio_dev.get_shm_regions() {
if shm_regions.addr.raw_value() == old_base {
// Remove old region from KVM by passing a size of 0.
let mem_region = self.vm.make_user_memory_region(
shm_regions.mem_slot,
old_base,
0,
shm_regions.host_addr,
false,
false,
);
self.vm.set_user_memory_region(mem_region).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to set user memory region: {:?}", e),
)
})?;
// Create new mapping by inserting new region to KVM.
let mem_region = self.vm.make_user_memory_region(
shm_regions.mem_slot,
new_base,
shm_regions.len,
shm_regions.host_addr,
false,
false,
);
self.vm.set_user_memory_region(mem_region).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to set user memory regions: {:?}", e),
)
})?;
// Update shared memory regions to reflect the new mapping.
shm_regions.addr = GuestAddress(new_base);
virtio_dev.set_shm_regions(shm_regions).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to update shared memory regions: {:?}", e),
)
})?;
}
}
}
}
pci_dev.move_bar(old_base, new_base)
}
}
#[derive(Serialize, Deserialize)]
struct DeviceManagerState {
device_tree: DeviceTree,
device_id_cnt: Wrapping<usize>,
}
/// Private structure for storing information about the MMIO device registered at some address on the bus.
#[derive(Clone, Debug)]
#[cfg(target_arch = "aarch64")]
pub struct MMIODeviceInfo {
addr: u64,
irq: u32,
len: u64,
}
#[cfg(target_arch = "aarch64")]
impl DeviceInfoForFDT for MMIODeviceInfo {
fn addr(&self) -> u64 {
self.addr
}
fn irq(&self) -> u32 {
self.irq
}
fn length(&self) -> u64 {
self.len
}
}
#[derive(Debug)]
pub struct PtyPair {
pub main: File,
pub sub: File,
pub path: PathBuf,
}
impl PtyPair {
fn clone(&self) -> Self {
PtyPair {
main: self.main.try_clone().unwrap(),
sub: self.sub.try_clone().unwrap(),
path: self.path.clone(),
}
}
}
enum PciDeviceHandle {
#[cfg(feature = "kvm")]
Vfio(Arc<Mutex<VfioPciDevice>>),
Virtio(Arc<Mutex<VirtioPciDevice>>),
}
pub struct DeviceManager {
// Manage address space related to devices
address_manager: Arc<AddressManager>,
// Console abstraction
console: Arc<Console>,
// console PTY
console_pty: Option<Arc<Mutex<PtyPair>>>,
// serial PTY
serial_pty: Option<Arc<Mutex<PtyPair>>>,
// Interrupt controller
#[cfg(target_arch = "x86_64")]
interrupt_controller: Option<Arc<Mutex<ioapic::Ioapic>>>,
#[cfg(target_arch = "aarch64")]
interrupt_controller: Option<Arc<Mutex<gic::Gic>>>,
#[cfg(target_arch = "aarch64")]
gic_device_entity: Option<Arc<Mutex<Box<dyn GICDevice>>>>,
// Things to be added to the commandline (i.e. for virtio-mmio)
cmdline_additions: Vec<String>,
// ACPI GED notification device
#[cfg(feature = "acpi")]
ged_notification_device: Option<Arc<Mutex<devices::AcpiGEDDevice>>>,
// VM configuration
config: Arc<Mutex<VmConfig>>,
// Memory Manager
memory_manager: Arc<Mutex<MemoryManager>>,
// The virtio devices on the system
virtio_devices: Vec<(VirtioDeviceArc, bool, String)>,
// List of bus devices
// Let the DeviceManager keep strong references to the BusDevice devices.
// This allows the IO and MMIO buses to be provided with Weak references,
// which prevents cyclic dependencies.
bus_devices: Vec<Arc<Mutex<dyn BusDevice>>>,
// Counter to keep track of the consumed device IDs.
device_id_cnt: Wrapping<usize>,
// Keep a reference to the PCI bus
pci_bus: Option<Arc<Mutex<PciBus>>>,
#[cfg_attr(target_arch = "aarch64", allow(dead_code))]
// MSI Interrupt Manager
msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
// Legacy Interrupt Manager
legacy_interrupt_manager: Option<Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>>,
// Passthrough device handle
passthrough_device: Option<Arc<dyn hypervisor::Device>>,
// Paravirtualized IOMMU
iommu_device: Option<Arc<Mutex<virtio_devices::Iommu>>>,
// Bitmap of PCI devices to hotplug.
pci_devices_up: u32,
// Bitmap of PCI devices to hotunplug.
pci_devices_down: u32,
// BTreeMap of PCI b/d/f to their corresponding MetaPciDevice.
pci_devices: BTreeMap<u32, (String, PciDeviceHandle)>,
// List of allocated IRQs for each PCI slot.
pci_irq_slots: [u8; 32],
// Tree of devices, representing the dependencies between devices.
// Useful for introspection, snapshot and restore.
device_tree: Arc<Mutex<DeviceTree>>,
// Exit event
#[cfg(feature = "acpi")]
exit_evt: EventFd,
reset_evt: EventFd,
#[cfg(target_arch = "aarch64")]
id_to_dev_info: HashMap<(DeviceType, String), MMIODeviceInfo>,
// seccomp action
seccomp_action: SeccompAction,
// List of guest NUMA nodes.
#[cfg(feature = "acpi")]
numa_nodes: NumaNodes,
// Possible handle to the virtio-balloon device
balloon: Option<Arc<Mutex<virtio_devices::Balloon>>>,
// Virtio Device activation EventFd to allow the VMM thread to trigger device
// activation and thus start the threads from the VMM thread
activate_evt: EventFd,
#[cfg(feature = "acpi")]
acpi_address: GuestAddress,
// Possible handle to the virtio-balloon device
virtio_mem_devices: Vec<Arc<Mutex<virtio_devices::Mem>>>,
#[cfg(target_arch = "aarch64")]
// GPIO device for AArch64
gpio_device: Option<Arc<Mutex<devices::legacy::GPIO>>>,
}
impl DeviceManager {
#[allow(clippy::too_many_arguments)]
pub fn new(
vm: Arc<dyn hypervisor::Vm>,
config: Arc<Mutex<VmConfig>>,
memory_manager: Arc<Mutex<MemoryManager>>,
_exit_evt: &EventFd,
reset_evt: &EventFd,
seccomp_action: SeccompAction,
#[cfg(feature = "acpi")] numa_nodes: NumaNodes,
activate_evt: &EventFd,
) -> DeviceManagerResult<Arc<Mutex<Self>>> {
let device_tree = Arc::new(Mutex::new(DeviceTree::new()));
let address_manager = Arc::new(AddressManager {
allocator: memory_manager.lock().unwrap().allocator(),
#[cfg(target_arch = "x86_64")]
io_bus: Arc::new(Bus::new()),
mmio_bus: Arc::new(Bus::new()),
vm: vm.clone(),
device_tree: Arc::clone(&device_tree),
});
// First we create the MSI interrupt manager, the legacy one is created
// later, after the IOAPIC device creation.
// The reason we create the MSI one first is because the IOAPIC needs it,
// and then the legacy interrupt manager needs an IOAPIC. So we're
// handling a linear dependency chain:
// msi_interrupt_manager <- IOAPIC <- legacy_interrupt_manager.
let msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>> =
Arc::new(MsiInterruptManager::new(
Arc::clone(&address_manager.allocator),
vm,
));
#[cfg(feature = "acpi")]
let acpi_address = address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(None, DEVICE_MANAGER_ACPI_SIZE as u64, None)
.ok_or(DeviceManagerError::AllocateIOPort)?;
let device_manager = DeviceManager {
address_manager: Arc::clone(&address_manager),
console: Arc::new(Console::default()),
interrupt_controller: None,
#[cfg(target_arch = "aarch64")]
gic_device_entity: None,
cmdline_additions: Vec::new(),
#[cfg(feature = "acpi")]
ged_notification_device: None,
config,
memory_manager,
virtio_devices: Vec::new(),
bus_devices: Vec::new(),
device_id_cnt: Wrapping(0),
pci_bus: None,
msi_interrupt_manager,
legacy_interrupt_manager: None,
passthrough_device: None,
iommu_device: None,
pci_devices_up: 0,
pci_devices_down: 0,
pci_devices: BTreeMap::new(),
pci_irq_slots: [0; 32],
device_tree,
#[cfg(feature = "acpi")]
exit_evt: _exit_evt.try_clone().map_err(DeviceManagerError::EventFd)?,
reset_evt: reset_evt.try_clone().map_err(DeviceManagerError::EventFd)?,
#[cfg(target_arch = "aarch64")]
id_to_dev_info: HashMap::new(),
seccomp_action,
#[cfg(feature = "acpi")]
numa_nodes,
balloon: None,
activate_evt: activate_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
#[cfg(feature = "acpi")]
acpi_address,
serial_pty: None,
console_pty: None,
virtio_mem_devices: Vec::new(),
#[cfg(target_arch = "aarch64")]
gpio_device: None,
};
let device_manager = Arc::new(Mutex::new(device_manager));
#[cfg(feature = "acpi")]
address_manager
.mmio_bus
.insert(
Arc::clone(&device_manager) as Arc<Mutex<dyn BusDevice>>,
acpi_address.0,
DEVICE_MANAGER_ACPI_SIZE as u64,
)
.map_err(DeviceManagerError::BusError)?;
Ok(device_manager)
}
pub fn serial_pty(&self) -> Option<PtyPair> {
self.serial_pty
.as_ref()
.map(|pty| pty.lock().unwrap().clone())
}
pub fn console_pty(&self) -> Option<PtyPair> {
self.console_pty
.as_ref()
.map(|pty| pty.lock().unwrap().clone())
}
pub fn create_devices(
&mut self,
serial_pty: Option<PtyPair>,
console_pty: Option<PtyPair>,
) -> DeviceManagerResult<()> {
let mut virtio_devices: Vec<(VirtioDeviceArc, bool, String)> = Vec::new();
let interrupt_controller = self.add_interrupt_controller()?;
// Now we can create the legacy interrupt manager, which needs the freshly
// formed IOAPIC device.
let legacy_interrupt_manager: Arc<
dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>,
> = Arc::new(LegacyUserspaceInterruptManager::new(Arc::clone(
&interrupt_controller,
)));
#[cfg(feature = "acpi")]
{
let memory_manager_acpi_address = self.memory_manager.lock().unwrap().acpi_address;
self.address_manager
.mmio_bus
.insert(
Arc::clone(&self.memory_manager) as Arc<Mutex<dyn BusDevice>>,
memory_manager_acpi_address.0,
MEMORY_MANAGER_ACPI_SIZE as u64,
)
.map_err(DeviceManagerError::BusError)?;
}
#[cfg(target_arch = "x86_64")]
self.add_legacy_devices(
self.reset_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
)?;
#[cfg(target_arch = "aarch64")]
self.add_legacy_devices(&legacy_interrupt_manager)?;
#[cfg(feature = "acpi")]
{
self.ged_notification_device = self.add_acpi_devices(
&legacy_interrupt_manager,
self.reset_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
self.exit_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
)?;
}
self.console = self.add_console_device(
&legacy_interrupt_manager,
&mut virtio_devices,
serial_pty,
console_pty,
)?;
// Reserve some IRQs for PCI devices in case they need to support INTx.
self.reserve_legacy_interrupts_for_pci_devices()?;
self.legacy_interrupt_manager = Some(legacy_interrupt_manager);
virtio_devices.append(&mut self.make_virtio_devices()?);
self.add_pci_devices(virtio_devices.clone())?;
self.virtio_devices = virtio_devices;
Ok(())
}
fn reserve_legacy_interrupts_for_pci_devices(&mut self) -> DeviceManagerResult<()> {
// Reserve 8 IRQs which will be shared across all PCI devices.
let num_irqs = 8;
let mut irqs: Vec<u8> = Vec::new();
for _ in 0..num_irqs {
irqs.push(
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.ok_or(DeviceManagerError::AllocateIrq)? as u8,
);
}
// There are 32 devices on the PCI bus, let's assign them an IRQ.
for i in 0..32 {
self.pci_irq_slots[i] = irqs[(i % num_irqs) as usize];
}
Ok(())
}
fn state(&self) -> DeviceManagerState {
DeviceManagerState {
device_tree: self.device_tree.lock().unwrap().clone(),
device_id_cnt: self.device_id_cnt,
}
}
fn set_state(&mut self, state: &DeviceManagerState) {
self.device_tree = Arc::new(Mutex::new(state.device_tree.clone()));
self.device_id_cnt = state.device_id_cnt;
}
#[cfg(target_arch = "aarch64")]
/// Gets the information of the devices registered up to some point in time.
pub fn get_device_info(&self) -> &HashMap<(DeviceType, String), MMIODeviceInfo> {
&self.id_to_dev_info
}
#[allow(unused_variables)]
fn add_pci_devices(
&mut self,
virtio_devices: Vec<(VirtioDeviceArc, bool, String)>,
) -> DeviceManagerResult<()> {
let pci_root = PciRoot::new(None);
let mut pci_bus = PciBus::new(
pci_root,
Arc::clone(&self.address_manager) as Arc<dyn DeviceRelocation>,
);
let iommu_id = String::from(IOMMU_DEVICE_NAME);
let (iommu_device, iommu_mapping) = if self.config.lock().unwrap().iommu {
let (device, mapping) =
virtio_devices::Iommu::new(iommu_id.clone(), self.seccomp_action.clone())
.map_err(DeviceManagerError::CreateVirtioIommu)?;
let device = Arc::new(Mutex::new(device));
self.iommu_device = Some(Arc::clone(&device));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(iommu_id.clone(), device_node!(iommu_id, device));
(Some(device), Some(mapping))
} else {
(None, None)
};
let mut iommu_attached_devices = Vec::new();
for (device, iommu_attached, id) in virtio_devices {
let mapping: &Option<Arc<IommuMapping>> = if iommu_attached {
&iommu_mapping
} else {
&None
};
let dev_id = self.add_virtio_pci_device(device, &mut pci_bus, mapping, id)?;
if iommu_attached {
iommu_attached_devices.push(dev_id);
}
}
let mut vfio_iommu_device_ids = self.add_vfio_devices(&mut pci_bus)?;
iommu_attached_devices.append(&mut vfio_iommu_device_ids);
if let Some(iommu_device) = iommu_device {
iommu_device
.lock()
.unwrap()
.attach_pci_devices(0, iommu_attached_devices);
// Because we determined the virtio-iommu b/d/f, we have to
// add the device to the PCI topology now. Otherwise, the
// b/d/f won't match the virtio-iommu device as expected.
self.add_virtio_pci_device(iommu_device, &mut pci_bus, &None, iommu_id)?;
}
let pci_bus = Arc::new(Mutex::new(pci_bus));
let pci_config_io = Arc::new(Mutex::new(PciConfigIo::new(Arc::clone(&pci_bus))));
self.bus_devices
.push(Arc::clone(&pci_config_io) as Arc<Mutex<dyn BusDevice>>);
#[cfg(target_arch = "x86_64")]
self.address_manager
.io_bus
.insert(pci_config_io, 0xcf8, 0x8)
.map_err(DeviceManagerError::BusError)?;
let pci_config_mmio = Arc::new(Mutex::new(PciConfigMmio::new(Arc::clone(&pci_bus))));
self.bus_devices
.push(Arc::clone(&pci_config_mmio) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.mmio_bus
.insert(
pci_config_mmio,
arch::layout::PCI_MMCONFIG_START.0,
arch::layout::PCI_MMCONFIG_SIZE,
)
.map_err(DeviceManagerError::BusError)?;
self.pci_bus = Some(pci_bus);
Ok(())
}
#[cfg(target_arch = "aarch64")]
fn add_interrupt_controller(
&mut self,
) -> DeviceManagerResult<Arc<Mutex<dyn InterruptController>>> {
let interrupt_controller: Arc<Mutex<gic::Gic>> = Arc::new(Mutex::new(
gic::Gic::new(
self.config.lock().unwrap().cpus.boot_vcpus,
Arc::clone(&self.msi_interrupt_manager),
)
.map_err(DeviceManagerError::CreateInterruptController)?,
));
self.interrupt_controller = Some(interrupt_controller.clone());
// Unlike x86_64, the "interrupt_controller" here for AArch64 is only
// a `Gic` object that implements the `InterruptController` to provide
// interrupt delivery service. This is not the real GIC device so that
// we do not need to insert it to the device tree.
Ok(interrupt_controller)
}
#[cfg(target_arch = "aarch64")]
pub fn set_gic_device_entity(&mut self, device_entity: Arc<Mutex<Box<dyn GICDevice>>>) {
self.gic_device_entity = Some(device_entity);
}
#[cfg(target_arch = "aarch64")]
pub fn get_gic_device_entity(&self) -> Option<&Arc<Mutex<Box<dyn GICDevice>>>> {
self.gic_device_entity.as_ref()
}
#[cfg(target_arch = "aarch64")]
pub fn construct_gicr_typers(&self, vcpu_states: &[CpuState]) {
/* Pre-construct the GICR_TYPER:
* For our implementation:
* Top 32 bits are the affinity value of the associated CPU
* CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
* Processor_Number == CPU index starting from 0
* DPGS == 0 (GICR_CTLR.DPG* not supported)
* Last == 1 if this is the last redistributor in a series of
* contiguous redistributor pages
* DirectLPI == 0 (direct injection of LPIs not supported)
* VLPIS == 0 (virtual LPIs not supported)
* PLPIS == 0 (physical LPIs not supported)
*/
let mut gicr_typers: Vec<u64> = Vec::new();
for (index, state) in vcpu_states.iter().enumerate() {
let last = {
if index == vcpu_states.len() - 1 {
1
} else {
0
}
};
//calculate affinity
let mut cpu_affid = state.mpidr & 1095233437695;
cpu_affid = ((cpu_affid & 0xFF00000000) >> 8) | (cpu_affid & 0xFFFFFF);
gicr_typers.push((cpu_affid << 32) | (1 << 24) | (index as u64) << 8 | (last << 4));
}
self.get_gic_device_entity()
.unwrap()
.lock()
.unwrap()
.set_gicr_typers(gicr_typers)
}
#[cfg(target_arch = "aarch64")]
pub fn enable_interrupt_controller(&self) -> DeviceManagerResult<()> {
if let Some(interrupt_controller) = &self.interrupt_controller {
interrupt_controller.lock().unwrap().enable().unwrap();
}
Ok(())
}
#[cfg(target_arch = "x86_64")]
fn add_interrupt_controller(
&mut self,
) -> DeviceManagerResult<Arc<Mutex<dyn InterruptController>>> {
let id = String::from(IOAPIC_DEVICE_NAME);
// Create IOAPIC
let interrupt_controller = Arc::new(Mutex::new(
ioapic::Ioapic::new(
id.clone(),
APIC_START,
Arc::clone(&self.msi_interrupt_manager),
)
.map_err(DeviceManagerError::CreateInterruptController)?,
));
self.interrupt_controller = Some(interrupt_controller.clone());
self.address_manager
.mmio_bus
.insert(interrupt_controller.clone(), IOAPIC_START.0, IOAPIC_SIZE)
.map_err(DeviceManagerError::BusError)?;
self.bus_devices
.push(Arc::clone(&interrupt_controller) as Arc<Mutex<dyn BusDevice>>);
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, interrupt_controller));
Ok(interrupt_controller)
}
#[cfg(feature = "acpi")]
fn add_acpi_devices(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
reset_evt: EventFd,
exit_evt: EventFd,
) -> DeviceManagerResult<Option<Arc<Mutex<devices::AcpiGEDDevice>>>> {
let shutdown_device = Arc::new(Mutex::new(devices::AcpiShutdownDevice::new(
exit_evt, reset_evt,
)));
self.bus_devices
.push(Arc::clone(&shutdown_device) as Arc<Mutex<dyn BusDevice>>);
#[cfg(target_arch = "x86_64")]
{
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_io_addresses(Some(GuestAddress(0x3c0)), 0x8, None)
.ok_or(DeviceManagerError::AllocateIOPort)?;
self.address_manager
.io_bus
.insert(shutdown_device, 0x3c0, 0x4)
.map_err(DeviceManagerError::BusError)?;
}
let ged_irq = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.unwrap();
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: ged_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let ged_address = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(None, devices::acpi::GED_DEVICE_ACPI_SIZE as u64, None)
.ok_or(DeviceManagerError::AllocateMMIOAddress)?;
let ged_device = Arc::new(Mutex::new(devices::AcpiGEDDevice::new(
interrupt_group,
ged_irq,
ged_address,
)));
self.address_manager
.mmio_bus
.insert(
ged_device.clone(),
ged_address.0,
devices::acpi::GED_DEVICE_ACPI_SIZE as u64,
)
.map_err(DeviceManagerError::BusError)?;
self.bus_devices
.push(Arc::clone(&ged_device) as Arc<Mutex<dyn BusDevice>>);
let pm_timer_device = Arc::new(Mutex::new(devices::AcpiPMTimerDevice::new()));
self.bus_devices
.push(Arc::clone(&pm_timer_device) as Arc<Mutex<dyn BusDevice>>);
#[cfg(target_arch = "x86_64")]
{
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_io_addresses(Some(GuestAddress(0xb008)), 0x4, None)
.ok_or(DeviceManagerError::AllocateIOPort)?;
self.address_manager
.io_bus
.insert(pm_timer_device, 0xb008, 0x4)
.map_err(DeviceManagerError::BusError)?;
}
Ok(Some(ged_device))
}
#[cfg(target_arch = "x86_64")]
fn add_legacy_devices(&mut self, reset_evt: EventFd) -> DeviceManagerResult<()> {
// Add a shutdown device (i8042)
let i8042 = Arc::new(Mutex::new(devices::legacy::I8042Device::new(reset_evt)));
self.bus_devices
.push(Arc::clone(&i8042) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.io_bus
.insert(i8042, 0x61, 0x4)
.map_err(DeviceManagerError::BusError)?;
#[cfg(feature = "cmos")]
{
// Add a CMOS emulated device
let mem_size = self
.memory_manager
.lock()
.unwrap()
.guest_memory()
.memory()
.last_addr()
.0
+ 1;
let mem_below_4g = std::cmp::min(arch::layout::MEM_32BIT_RESERVED_START.0, mem_size);
let mem_above_4g = mem_size.saturating_sub(arch::layout::RAM_64BIT_START.0);
let cmos = Arc::new(Mutex::new(devices::legacy::Cmos::new(
mem_below_4g,
mem_above_4g,
)));
self.bus_devices
.push(Arc::clone(&cmos) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.io_bus
.insert(cmos, 0x70, 0x2)
.map_err(DeviceManagerError::BusError)?;
}
#[cfg(feature = "fwdebug")]
{
let fwdebug = Arc::new(Mutex::new(devices::legacy::FwDebugDevice::new()));
self.bus_devices
.push(Arc::clone(&fwdebug) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.io_bus
.insert(fwdebug, 0x402, 0x1)
.map_err(DeviceManagerError::BusError)?;
}
Ok(())
}
#[cfg(target_arch = "aarch64")]
fn add_legacy_devices(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
) -> DeviceManagerResult<()> {
// Add a RTC device
let rtc_irq = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.unwrap();
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: rtc_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let rtc_device = Arc::new(Mutex::new(devices::legacy::RTC::new(interrupt_group)));
self.bus_devices
.push(Arc::clone(&rtc_device) as Arc<Mutex<dyn BusDevice>>);
let addr = GuestAddress(arch::layout::LEGACY_RTC_MAPPED_IO_START);
self.address_manager
.mmio_bus
.insert(rtc_device, addr.0, MMIO_LEN)
.map_err(DeviceManagerError::BusError)?;
self.id_to_dev_info.insert(
(DeviceType::RTC, "rtc".to_string()),
MMIODeviceInfo {
addr: addr.0,
len: MMIO_LEN,
irq: rtc_irq,
},
);
// Add a GPIO device
let id = String::from(GPIO_DEVICE_NAME_PREFIX);
let gpio_irq = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.unwrap();
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: gpio_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let gpio_device = Arc::new(Mutex::new(devices::legacy::GPIO::new(
id.clone(),
interrupt_group,
)));
self.bus_devices
.push(Arc::clone(&gpio_device) as Arc<Mutex<dyn BusDevice>>);
let addr = GuestAddress(arch::layout::LEGACY_GPIO_MAPPED_IO_START);
self.address_manager
.mmio_bus
.insert(gpio_device.clone(), addr.0, MMIO_LEN)
.map_err(DeviceManagerError::BusError)?;
self.gpio_device = Some(gpio_device.clone());
self.id_to_dev_info.insert(
(DeviceType::GPIO, "gpio".to_string()),
MMIODeviceInfo {
addr: addr.0,
len: MMIO_LEN,
irq: gpio_irq,
},
);
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, gpio_device));
Ok(())
}
#[cfg(target_arch = "x86_64")]
fn add_serial_device(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
serial_writer: Option<Box<dyn io::Write + Send>>,
) -> DeviceManagerResult<Arc<Mutex<Serial>>> {
// Serial is tied to IRQ #4
let serial_irq = 4;
let id = String::from(SERIAL_DEVICE_NAME_PREFIX);
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: serial_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let serial = Arc::new(Mutex::new(Serial::new(
id.clone(),
interrupt_group,
serial_writer,
)));
self.bus_devices
.push(Arc::clone(&serial) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_io_addresses(Some(GuestAddress(0x3f8)), 0x8, None)
.ok_or(DeviceManagerError::AllocateIOPort)?;
self.address_manager
.io_bus
.insert(serial.clone(), 0x3f8, 0x8)
.map_err(DeviceManagerError::BusError)?;
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, serial));
Ok(serial)
}
#[cfg(target_arch = "aarch64")]
fn add_serial_device(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
serial_writer: Option<Box<dyn io::Write + Send>>,
) -> DeviceManagerResult<Arc<Mutex<devices::legacy::PL011>>> {
let id = String::from(SERIAL_DEVICE_NAME_PREFIX);
let serial_irq = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.unwrap();
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: serial_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let serial = Arc::new(Mutex::new(devices::legacy::PL011::new(
id.clone(),
interrupt_group,
serial_writer,
)));
self.bus_devices
.push(Arc::clone(&serial) as Arc<Mutex<dyn BusDevice>>);
let addr = GuestAddress(arch::layout::LEGACY_SERIAL_MAPPED_IO_START);
self.address_manager
.mmio_bus
.insert(serial.clone(), addr.0, MMIO_LEN)
.map_err(DeviceManagerError::BusError)?;
self.id_to_dev_info.insert(
(DeviceType::Serial, DeviceType::Serial.to_string()),
MMIODeviceInfo {
addr: addr.0,
len: MMIO_LEN,
irq: serial_irq,
},
);
self.cmdline_additions
.push(format!("earlycon=pl011,mmio,0x{:08x}", addr.0));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, serial));
Ok(serial)
}
fn modify_mode<F: FnOnce(&mut termios)>(
&self,
fd: RawFd,
f: F,
) -> vmm_sys_util::errno::Result<()> {
// Safe because we check the return value of isatty.
if unsafe { isatty(fd) } != 1 {
return Ok(());
}
// The following pair are safe because termios gets totally overwritten by tcgetattr and we
// check the return result.
let mut termios: termios = unsafe { zeroed() };
let ret = unsafe { tcgetattr(fd, &mut termios as *mut _) };
if ret < 0 {
return vmm_sys_util::errno::errno_result();
}
f(&mut termios);
// Safe because the syscall will only read the extent of termios and we check the return result.
let ret = unsafe { tcsetattr(fd, TCSANOW, &termios as *const _) };
if ret < 0 {
return vmm_sys_util::errno::errno_result();
}
Ok(())
}
fn set_raw_mode(&self, f: &mut File) -> vmm_sys_util::errno::Result<()> {
self.modify_mode(f.as_raw_fd(), |t| t.c_lflag &= !(ICANON | ECHO | ISIG))
}
fn add_console_device(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
virtio_devices: &mut Vec<(VirtioDeviceArc, bool, String)>,
serial_pty: Option<PtyPair>,
console_pty: Option<PtyPair>,
) -> DeviceManagerResult<Arc<Console>> {
let serial_config = self.config.lock().unwrap().serial.clone();
let serial_writer: Option<Box<dyn io::Write + Send>> = match serial_config.mode {
ConsoleOutputMode::File => Some(Box::new(
File::create(serial_config.file.as_ref().unwrap())
.map_err(DeviceManagerError::SerialOutputFileOpen)?,
)),
ConsoleOutputMode::Pty => {
if let Some(pty) = serial_pty {
self.config.lock().unwrap().serial.file = Some(pty.path.clone());
let writer = pty.main.try_clone().unwrap();
self.serial_pty = Some(Arc::new(Mutex::new(pty)));
Some(Box::new(writer))
} else {
let (main, mut sub, path) =
create_pty().map_err(DeviceManagerError::SerialPtyOpen)?;
self.set_raw_mode(&mut sub)
.map_err(DeviceManagerError::SetPtyRaw)?;
self.config.lock().unwrap().serial.file = Some(path.clone());
let writer = main.try_clone().unwrap();
self.serial_pty = Some(Arc::new(Mutex::new(PtyPair { main, sub, path })));
Some(Box::new(writer))
}
}
ConsoleOutputMode::Tty => Some(Box::new(stdout())),
ConsoleOutputMode::Off | ConsoleOutputMode::Null => None,
};
let serial = if serial_config.mode != ConsoleOutputMode::Off {
Some(self.add_serial_device(interrupt_manager, serial_writer)?)
} else {
None
};
// Create serial and virtio-console
let console_config = self.config.lock().unwrap().console.clone();
let console_writer: Option<Box<dyn io::Write + Send + Sync>> = match console_config.mode {
ConsoleOutputMode::File => Some(Box::new(
File::create(console_config.file.as_ref().unwrap())
.map_err(DeviceManagerError::ConsoleOutputFileOpen)?,
)),
ConsoleOutputMode::Pty => {
if let Some(pty) = console_pty {
self.config.lock().unwrap().console.file = Some(pty.path.clone());
let writer = pty.main.try_clone().unwrap();
self.console_pty = Some(Arc::new(Mutex::new(pty)));
Some(Box::new(writer))
} else {
let (main, mut sub, path) =
create_pty().map_err(DeviceManagerError::ConsolePtyOpen)?;
self.set_raw_mode(&mut sub)
.map_err(DeviceManagerError::SetPtyRaw)?;
self.config.lock().unwrap().console.file = Some(path.clone());
let writer = main.try_clone().unwrap();
self.console_pty = Some(Arc::new(Mutex::new(PtyPair { main, sub, path })));
Some(Box::new(writer))
}
}
ConsoleOutputMode::Tty => Some(Box::new(stdout())),
ConsoleOutputMode::Null => Some(Box::new(sink())),
ConsoleOutputMode::Off => None,
};
let (col, row) = get_win_size();
let virtio_console_input = if let Some(writer) = console_writer {
let id = String::from(CONSOLE_DEVICE_NAME);
let (virtio_console_device, virtio_console_input) = virtio_devices::Console::new(
id.clone(),
writer,
col,
row,
console_config.iommu,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioConsole)?;
let virtio_console_device = Arc::new(Mutex::new(virtio_console_device));
virtio_devices.push((
Arc::clone(&virtio_console_device) as VirtioDeviceArc,
console_config.iommu,
id.clone(),
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_console_device));
Some(virtio_console_input)
} else {
None
};
let input = if serial_config.mode.input_enabled() {
Some(ConsoleInput::Serial)
} else if console_config.mode.input_enabled() {
Some(ConsoleInput::VirtioConsole)
} else {
None
};
Ok(Arc::new(Console {
serial,
virtio_console_input,
input,
}))
}
fn make_virtio_devices(&mut self) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices: Vec<(VirtioDeviceArc, bool, String)> = Vec::new();
// Create "standard" virtio devices (net/block/rng)
devices.append(&mut self.make_virtio_block_devices()?);
devices.append(&mut self.make_virtio_net_devices()?);
devices.append(&mut self.make_virtio_rng_devices()?);
// Add virtio-fs if required
devices.append(&mut self.make_virtio_fs_devices()?);
// Add virtio-pmem if required
devices.append(&mut self.make_virtio_pmem_devices()?);
// Add virtio-vsock if required
devices.append(&mut self.make_virtio_vsock_devices()?);
devices.append(&mut self.make_virtio_mem_devices()?);
// Add virtio-balloon if required
devices.append(&mut self.make_virtio_balloon_devices()?);
// Add virtio-watchdog device
devices.append(&mut self.make_virtio_watchdog_devices()?);
Ok(devices)
}
fn make_virtio_block_device(
&mut self,
disk_cfg: &mut DiskConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &disk_cfg.id {
id.clone()
} else {
let id = self.next_device_name(DISK_DEVICE_NAME_PREFIX)?;
disk_cfg.id = Some(id.clone());
id
};
if disk_cfg.vhost_user {
let socket = disk_cfg.vhost_socket.as_ref().unwrap().clone();
let vu_cfg = VhostUserConfig {
socket,
num_queues: disk_cfg.num_queues,
queue_size: disk_cfg.queue_size,
};
let vhost_user_block_device = Arc::new(Mutex::new(
match virtio_devices::vhost_user::Blk::new(
id.clone(),
vu_cfg,
self.seccomp_action.clone(),
) {
Ok(vub_device) => vub_device,
Err(e) => {
return Err(DeviceManagerError::CreateVhostUserBlk(e));
}
},
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, vhost_user_block_device));
Ok((
Arc::clone(&vhost_user_block_device) as VirtioDeviceArc,
false,
id,
))
} else {
let mut options = OpenOptions::new();
options.read(true);
options.write(!disk_cfg.readonly);
if disk_cfg.direct {
options.custom_flags(libc::O_DIRECT);
}
// Open block device path
let mut file: File = options
.open(
disk_cfg
.path
.as_ref()
.ok_or(DeviceManagerError::NoDiskPath)?
.clone(),
)
.map_err(DeviceManagerError::Disk)?;
let image_type =
detect_image_type(&mut file).map_err(DeviceManagerError::DetectImageType)?;
let image = match image_type {
ImageType::FixedVhd => {
// Use asynchronous backend relying on io_uring if the
// syscalls are supported.
if block_io_uring_is_supported() && !disk_cfg.disable_io_uring {
info!("Using asynchronous fixed VHD disk file (io_uring)");
Box::new(
FixedVhdDiskAsync::new(file)
.map_err(DeviceManagerError::CreateFixedVhdDiskAsync)?,
) as Box<dyn DiskFile>
} else {
info!("Using synchronous fixed VHD disk file");
Box::new(
FixedVhdDiskSync::new(file)
.map_err(DeviceManagerError::CreateFixedVhdDiskSync)?,
) as Box<dyn DiskFile>
}
}
ImageType::Raw => {
// Use asynchronous backend relying on io_uring if the
// syscalls are supported.
if block_io_uring_is_supported() && !disk_cfg.disable_io_uring {
info!("Using asynchronous RAW disk file (io_uring)");
Box::new(RawFileDisk::new(file)) as Box<dyn DiskFile>
} else {
info!("Using synchronous RAW disk file");
Box::new(RawFileDiskSync::new(file)) as Box<dyn DiskFile>
}
}
ImageType::Qcow2 => {
info!("Using synchronous QCOW disk file");
Box::new(QcowDiskSync::new(file, disk_cfg.direct)) as Box<dyn DiskFile>
}
};
let dev = Arc::new(Mutex::new(
virtio_devices::Block::new(
id.clone(),
image,
disk_cfg
.path
.as_ref()
.ok_or(DeviceManagerError::NoDiskPath)?
.clone(),
disk_cfg.readonly,
disk_cfg.iommu,
disk_cfg.num_queues,
disk_cfg.queue_size,
self.seccomp_action.clone(),
disk_cfg.rate_limiter_config,
)
.map_err(DeviceManagerError::CreateVirtioBlock)?,
));
let virtio_device = Arc::clone(&dev) as VirtioDeviceArc;
let migratable_device = dev as Arc<Mutex<dyn Migratable>>;
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, migratable_device));
Ok((virtio_device, disk_cfg.iommu, id))
}
}
fn make_virtio_block_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mut block_devices = self.config.lock().unwrap().disks.clone();
if let Some(disk_list_cfg) = &mut block_devices {
for disk_cfg in disk_list_cfg.iter_mut() {
devices.push(self.make_virtio_block_device(disk_cfg)?);
}
}
self.config.lock().unwrap().disks = block_devices;
Ok(devices)
}
fn make_virtio_net_device(
&mut self,
net_cfg: &mut NetConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &net_cfg.id {
id.clone()
} else {
let id = self.next_device_name(NET_DEVICE_NAME_PREFIX)?;
net_cfg.id = Some(id.clone());
id
};
if net_cfg.vhost_user {
let socket = net_cfg.vhost_socket.as_ref().unwrap().clone();
let vu_cfg = VhostUserConfig {
socket,
num_queues: net_cfg.num_queues,
queue_size: net_cfg.queue_size,
};
let vhost_user_net_device = Arc::new(Mutex::new(
match virtio_devices::vhost_user::Net::new(
id.clone(),
net_cfg.mac,
vu_cfg,
self.seccomp_action.clone(),
) {
Ok(vun_device) => vun_device,
Err(e) => {
return Err(DeviceManagerError::CreateVhostUserNet(e));
}
},
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, vhost_user_net_device));
Ok((
Arc::clone(&vhost_user_net_device) as VirtioDeviceArc,
net_cfg.iommu,
id,
))
} else {
let virtio_net_device = if let Some(ref tap_if_name) = net_cfg.tap {
Arc::new(Mutex::new(
virtio_devices::Net::new(
id.clone(),
Some(tap_if_name),
None,
None,
Some(net_cfg.mac),
&mut net_cfg.host_mac,
net_cfg.iommu,
net_cfg.num_queues,
net_cfg.queue_size,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioNet)?,
))
} else if let Some(fds) = &net_cfg.fds {
Arc::new(Mutex::new(
virtio_devices::Net::from_tap_fds(
id.clone(),
fds,
Some(net_cfg.mac),
net_cfg.iommu,
net_cfg.queue_size,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioNet)?,
))
} else {
Arc::new(Mutex::new(
virtio_devices::Net::new(
id.clone(),
None,
Some(net_cfg.ip),
Some(net_cfg.mask),
Some(net_cfg.mac),
&mut net_cfg.host_mac,
net_cfg.iommu,
net_cfg.num_queues,
net_cfg.queue_size,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioNet)?,
))
};
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_net_device));
Ok((
Arc::clone(&virtio_net_device) as VirtioDeviceArc,
net_cfg.iommu,
id,
))
}
}
/// Add virto-net and vhost-user-net devices
fn make_virtio_net_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mut net_devices = self.config.lock().unwrap().net.clone();
if let Some(net_list_cfg) = &mut net_devices {
for net_cfg in net_list_cfg.iter_mut() {
devices.push(self.make_virtio_net_device(net_cfg)?);
}
}
self.config.lock().unwrap().net = net_devices;
Ok(devices)
}
fn make_virtio_rng_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
// Add virtio-rng if required
let rng_config = self.config.lock().unwrap().rng.clone();
if let Some(rng_path) = rng_config.src.to_str() {
let id = String::from(RNG_DEVICE_NAME);
let virtio_rng_device = Arc::new(Mutex::new(
virtio_devices::Rng::new(
id.clone(),
rng_path,
rng_config.iommu,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioRng)?,
));
devices.push((
Arc::clone(&virtio_rng_device) as VirtioDeviceArc,
rng_config.iommu,
id.clone(),
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_rng_device));
}
Ok(devices)
}
fn make_virtio_fs_device(
&mut self,
fs_cfg: &mut FsConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &fs_cfg.id {
id.clone()
} else {
let id = self.next_device_name(FS_DEVICE_NAME_PREFIX)?;
fs_cfg.id = Some(id.clone());
id
};
let mut node = device_node!(id);
// Look for the id in the device tree. If it can be found, that means
// the device is being restored, otherwise it's created from scratch.
let cache_range = if let Some(node) = self.device_tree.lock().unwrap().get(&id) {
debug!("Restoring virtio-fs {} resources", id);
let mut cache_range: Option<(u64, u64)> = None;
for resource in node.resources.iter() {
match resource {
Resource::MmioAddressRange { base, size } => {
if cache_range.is_some() {
return Err(DeviceManagerError::ResourceAlreadyExists);
}
cache_range = Some((*base, *size));
}
_ => {
error!("Unexpected resource {:?} for {}", resource, id);
}
}
}
if cache_range.is_none() {
return Err(DeviceManagerError::MissingVirtioFsResources);
}
cache_range
} else {
None
};
if let Some(fs_socket) = fs_cfg.socket.to_str() {
let cache = if fs_cfg.dax {
let (cache_base, cache_size) = if let Some((base, size)) = cache_range {
// The memory needs to be 2MiB aligned in order to support
// hugepages.
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(
Some(GuestAddress(base)),
size as GuestUsize,
Some(0x0020_0000),
)
.ok_or(DeviceManagerError::FsRangeAllocation)?;
(base, size)
} else {
let size = fs_cfg.cache_size;
// The memory needs to be 2MiB aligned in order to support
// hugepages.
let base = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(None, size as GuestUsize, Some(0x0020_0000))
.ok_or(DeviceManagerError::FsRangeAllocation)?;
(base.raw_value(), size)
};
// Update the node with correct resource information.
node.resources.push(Resource::MmioAddressRange {
base: cache_base,
size: cache_size,
});
let mmap_region = MmapRegion::build(
None,
cache_size as usize,
libc::PROT_NONE,
libc::MAP_ANONYMOUS | libc::MAP_PRIVATE,
)
.map_err(DeviceManagerError::NewMmapRegion)?;
let host_addr: u64 = mmap_region.as_ptr() as u64;
let mem_slot = self
.memory_manager
.lock()
.unwrap()
.create_userspace_mapping(
cache_base, cache_size, host_addr, false, false, false,
)
.map_err(DeviceManagerError::MemoryManager)?;
let mut region_list = Vec::new();
region_list.push(VirtioSharedMemory {
offset: 0,
len: cache_size,
});
Some((
VirtioSharedMemoryList {
host_addr,
mem_slot,
addr: GuestAddress(cache_base),
len: cache_size as GuestUsize,
region_list,
},
mmap_region,
))
} else {
None
};
let virtio_fs_device = Arc::new(Mutex::new(
virtio_devices::vhost_user::Fs::new(
id.clone(),
fs_socket,
&fs_cfg.tag,
fs_cfg.num_queues,
fs_cfg.queue_size,
cache,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioFs)?,
));
// Update the device tree with the migratable device.
node.migratable = Some(Arc::clone(&virtio_fs_device) as Arc<Mutex<dyn Migratable>>);
self.device_tree.lock().unwrap().insert(id.clone(), node);
Ok((Arc::clone(&virtio_fs_device) as VirtioDeviceArc, false, id))
} else {
Err(DeviceManagerError::NoVirtioFsSock)
}
}
fn make_virtio_fs_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mut fs_devices = self.config.lock().unwrap().fs.clone();
if let Some(fs_list_cfg) = &mut fs_devices {
for fs_cfg in fs_list_cfg.iter_mut() {
devices.push(self.make_virtio_fs_device(fs_cfg)?);
}
}
self.config.lock().unwrap().fs = fs_devices;
Ok(devices)
}
fn make_virtio_pmem_device(
&mut self,
pmem_cfg: &mut PmemConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &pmem_cfg.id {
id.clone()
} else {
let id = self.next_device_name(PMEM_DEVICE_NAME_PREFIX)?;
pmem_cfg.id = Some(id.clone());
id
};
let mut node = device_node!(id);
// Look for the id in the device tree. If it can be found, that means
// the device is being restored, otherwise it's created from scratch.
let region_range = if let Some(node) = self.device_tree.lock().unwrap().get(&id) {
debug!("Restoring virtio-pmem {} resources", id);
let mut region_range: Option<(u64, u64)> = None;
for resource in node.resources.iter() {
match resource {
Resource::MmioAddressRange { base, size } => {
if region_range.is_some() {
return Err(DeviceManagerError::ResourceAlreadyExists);
}
region_range = Some((*base, *size));
}
_ => {
error!("Unexpected resource {:?} for {}", resource, id);
}
}
}
if region_range.is_none() {
return Err(DeviceManagerError::MissingVirtioFsResources);
}
region_range
} else {
None
};
let (custom_flags, set_len) = if pmem_cfg.file.is_dir() {
if pmem_cfg.size.is_none() {
return Err(DeviceManagerError::PmemWithDirectorySizeMissing);
}
(O_TMPFILE, true)
} else {
(0, false)
};
let mut file = OpenOptions::new()
.read(true)
.write(!pmem_cfg.discard_writes)
.custom_flags(custom_flags)
.open(&pmem_cfg.file)
.map_err(DeviceManagerError::PmemFileOpen)?;
let size = if let Some(size) = pmem_cfg.size {
if set_len {
file.set_len(size)
.map_err(DeviceManagerError::PmemFileSetLen)?;
}
size
} else {
file.seek(SeekFrom::End(0))
.map_err(DeviceManagerError::PmemFileSetLen)?
};
if size % 0x20_0000 != 0 {
return Err(DeviceManagerError::PmemSizeNotAligned);
}
let (region_base, region_size) = if let Some((base, size)) = region_range {
// The memory needs to be 2MiB aligned in order to support
// hugepages.
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(
Some(GuestAddress(base)),
size as GuestUsize,
Some(0x0020_0000),
)
.ok_or(DeviceManagerError::PmemRangeAllocation)?;
(base, size)
} else {
// The memory needs to be 2MiB aligned in order to support
// hugepages.
let base = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(None, size as GuestUsize, Some(0x0020_0000))
.ok_or(DeviceManagerError::PmemRangeAllocation)?;
(base.raw_value(), size)
};
let cloned_file = file.try_clone().map_err(DeviceManagerError::CloneFile)?;
let mmap_region = MmapRegion::build(
Some(FileOffset::new(cloned_file, 0)),
region_size as usize,
PROT_READ | PROT_WRITE,
MAP_NORESERVE
| if pmem_cfg.discard_writes {
MAP_PRIVATE
} else {
MAP_SHARED
},
)
.map_err(DeviceManagerError::NewMmapRegion)?;
let host_addr: u64 = mmap_region.as_ptr() as u64;
let mem_slot = self
.memory_manager
.lock()
.unwrap()
.create_userspace_mapping(
region_base,
region_size,
host_addr,
pmem_cfg.mergeable,
false,
false,
)
.map_err(DeviceManagerError::MemoryManager)?;
let mapping = virtio_devices::UserspaceMapping {
host_addr,
mem_slot,
addr: GuestAddress(region_base),
len: region_size,
mergeable: pmem_cfg.mergeable,
};
let virtio_pmem_device = Arc::new(Mutex::new(
virtio_devices::Pmem::new(
id.clone(),
file,
GuestAddress(region_base),
mapping,
mmap_region,
pmem_cfg.iommu,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioPmem)?,
));
// Update the device tree with correct resource information and with
// the migratable device.
node.resources.push(Resource::MmioAddressRange {
base: region_base,
size: region_size,
});
node.migratable = Some(Arc::clone(&virtio_pmem_device) as Arc<Mutex<dyn Migratable>>);
self.device_tree.lock().unwrap().insert(id.clone(), node);
Ok((
Arc::clone(&virtio_pmem_device) as VirtioDeviceArc,
pmem_cfg.iommu,
id,
))
}
fn make_virtio_pmem_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
// Add virtio-pmem if required
let mut pmem_devices = self.config.lock().unwrap().pmem.clone();
if let Some(pmem_list_cfg) = &mut pmem_devices {
for pmem_cfg in pmem_list_cfg.iter_mut() {
devices.push(self.make_virtio_pmem_device(pmem_cfg)?);
}
}
self.config.lock().unwrap().pmem = pmem_devices;
Ok(devices)
}
fn make_virtio_vsock_device(
&mut self,
vsock_cfg: &mut VsockConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &vsock_cfg.id {
id.clone()
} else {
let id = self.next_device_name(VSOCK_DEVICE_NAME_PREFIX)?;
vsock_cfg.id = Some(id.clone());
id
};
let socket_path = vsock_cfg
.socket
.to_str()
.ok_or(DeviceManagerError::CreateVsockConvertPath)?;
let backend =
virtio_devices::vsock::VsockUnixBackend::new(vsock_cfg.cid, socket_path.to_string())
.map_err(DeviceManagerError::CreateVsockBackend)?;
let vsock_device = Arc::new(Mutex::new(
virtio_devices::Vsock::new(
id.clone(),
vsock_cfg.cid,
vsock_cfg.socket.clone(),
backend,
vsock_cfg.iommu,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioVsock)?,
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, vsock_device));
Ok((
Arc::clone(&vsock_device) as VirtioDeviceArc,
vsock_cfg.iommu,
id,
))
}
fn make_virtio_vsock_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mut vsock = self.config.lock().unwrap().vsock.clone();
if let Some(ref mut vsock_cfg) = &mut vsock {
devices.push(self.make_virtio_vsock_device(vsock_cfg)?);
}
self.config.lock().unwrap().vsock = vsock;
Ok(devices)
}
fn make_virtio_mem_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mm = self.memory_manager.clone();
let mm = mm.lock().unwrap();
for (_memory_zone_id, memory_zone) in mm.memory_zones().iter() {
if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() {
let id = self.next_device_name(MEM_DEVICE_NAME_PREFIX)?;
#[cfg(not(feature = "acpi"))]
let node_id: Option<u16> = None;
#[cfg(feature = "acpi")]
let node_id = numa_node_id_from_memory_zone_id(&self.numa_nodes, _memory_zone_id)
.map(|i| i as u16);
let virtio_mem_device = Arc::new(Mutex::new(
virtio_devices::Mem::new(
id.clone(),
virtio_mem_zone.region(),
virtio_mem_zone
.resize_handler()
.new_resize_sender()
.map_err(DeviceManagerError::CreateResizeSender)?,
self.seccomp_action.clone(),
node_id,
virtio_mem_zone.hotplugged_size(),
virtio_mem_zone.hugepages(),
)
.map_err(DeviceManagerError::CreateVirtioMem)?,
));
self.virtio_mem_devices.push(Arc::clone(&virtio_mem_device));
devices.push((
Arc::clone(&virtio_mem_device) as VirtioDeviceArc,
false,
id.clone(),
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_mem_device));
}
}
Ok(devices)
}
fn make_virtio_balloon_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
if let Some(balloon_config) = &self.config.lock().unwrap().balloon {
let id = String::from(BALLOON_DEVICE_NAME);
let virtio_balloon_device = Arc::new(Mutex::new(
virtio_devices::Balloon::new(
id.clone(),
balloon_config.size,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioBalloon)?,
));
self.balloon = Some(virtio_balloon_device.clone());
devices.push((
Arc::clone(&virtio_balloon_device) as VirtioDeviceArc,
false,
id.clone(),
));
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_balloon_device));
}
Ok(devices)
}
fn make_virtio_watchdog_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
if !self.config.lock().unwrap().watchdog {
return Ok(devices);
}
let id = String::from(WATCHDOG_DEVICE_NAME);
let virtio_watchdog_device = Arc::new(Mutex::new(
virtio_devices::Watchdog::new(
id.clone(),
self.reset_evt.try_clone().unwrap(),
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioWatchdog)?,
));
devices.push((
Arc::clone(&virtio_watchdog_device) as VirtioDeviceArc,
false,
id.clone(),
));
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_watchdog_device));
Ok(devices)
}
fn next_device_name(&mut self, prefix: &str) -> DeviceManagerResult<String> {
let start_id = self.device_id_cnt;
loop {
// Generate the temporary name.
let name = format!("{}{}", prefix, self.device_id_cnt);
// Increment the counter.
self.device_id_cnt += Wrapping(1);
// Check if the name is already in use.
if !self.device_tree.lock().unwrap().contains_key(&name) {
return Ok(name);
}
if self.device_id_cnt == start_id {
// We went through a full loop and there's nothing else we can
// do.
break;
}
}
Err(DeviceManagerError::NoAvailableDeviceName)
}
#[cfg_attr(not(feature = "kvm"), allow(unused_variables))]
fn add_passthrough_device(
&mut self,
pci: &mut PciBus,
device_cfg: &mut DeviceConfig,
) -> DeviceManagerResult<(u32, String)> {
#[cfg(feature = "kvm")]
return self.add_vfio_device(pci, device_cfg);
#[cfg(not(feature = "kvm"))]
Err(DeviceManagerError::NoDevicePassthroughSupport)
}
#[cfg(feature = "kvm")]
fn add_vfio_device(
&mut self,
pci: &mut PciBus,
device_cfg: &mut DeviceConfig,
) -> DeviceManagerResult<(u32, String)> {
let passthrough_device = self
.passthrough_device
.as_ref()
.ok_or(DeviceManagerError::NoDevicePassthroughSupport)?;
// We need to shift the device id since the 3 first bits
// are dedicated to the PCI function, and we know we don't
// do multifunction. Also, because we only support one PCI
// bus, the bus 0, we don't need to add anything to the
// global device ID.
let pci_device_bdf = pci
.next_device_id()
.map_err(DeviceManagerError::NextPciDeviceId)?
<< 3;
let memory = self.memory_manager.lock().unwrap().guest_memory();
// Safe because we know the RawFd is valid.
//
// This dup() is mandatory to be able to give full ownership of the
// file descriptor to the DeviceFd::from_raw_fd() function later in
// the code.
//
// This is particularly needed so that VfioContainer will still have
// a valid file descriptor even if DeviceManager, and therefore the
// passthrough_device are dropped. In case of Drop, the file descriptor
// would be closed, but Linux would still have the duplicated file
// descriptor opened from DeviceFd, preventing from unexpected behavior
// where the VfioContainer would try to use a closed file descriptor.
let dup_device_fd = unsafe { libc::dup(passthrough_device.as_raw_fd()) };
// SAFETY the raw fd conversion here is safe because:
// 1. This function is only called on KVM, see the feature guard above.
// 2. When running on KVM, passthrough_device wraps around DeviceFd.
// 3. The conversion here extracts the raw fd and then turns the raw fd into a DeviceFd
// of the same (correct) type.
let vfio_container = Arc::new(
VfioContainer::new(Arc::new(unsafe { DeviceFd::from_raw_fd(dup_device_fd) }))
.map_err(DeviceManagerError::VfioCreate)?,
);
let vfio_device = VfioDevice::new(&device_cfg.path, Arc::clone(&vfio_container))
.map_err(DeviceManagerError::VfioCreate)?;
let vfio_mapping = Arc::new(VfioDmaMapping::new(
Arc::clone(&vfio_container),
Arc::new(memory),
));
if device_cfg.iommu {
if let Some(iommu) = &self.iommu_device {
iommu
.lock()
.unwrap()
.add_external_mapping(pci_device_bdf, vfio_mapping);
}
} else {
for virtio_mem_device in self.virtio_mem_devices.iter() {
virtio_mem_device
.lock()
.unwrap()
.add_dma_mapping_handler(pci_device_bdf, vfio_mapping.clone())
.map_err(DeviceManagerError::AddDmaMappingHandlerVirtioMem)?;
}
}
let legacy_interrupt_group = if let Some(legacy_interrupt_manager) =
&self.legacy_interrupt_manager
{
Some(
legacy_interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: self.pci_irq_slots[(pci_device_bdf >> 3) as usize] as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?,
)
} else {
None
};
let mut vfio_pci_device = VfioPciDevice::new(
&self.address_manager.vm,
vfio_device,
vfio_container,
&self.msi_interrupt_manager,
legacy_interrupt_group,
device_cfg.iommu,
)
.map_err(DeviceManagerError::VfioPciCreate)?;
let vfio_name = if let Some(id) = &device_cfg.id {
if self.device_tree.lock().unwrap().contains_key(id) {
return Err(DeviceManagerError::DeviceIdAlreadyInUse);
}
id.clone()
} else {
let id = self.next_device_name(VFIO_DEVICE_NAME_PREFIX)?;
device_cfg.id = Some(id.clone());
id
};
vfio_pci_device
.map_mmio_regions(&self.address_manager.vm, || {
self.memory_manager.lock().unwrap().allocate_memory_slot()
})
.map_err(DeviceManagerError::VfioMapRegion)?;
let mut node = device_node!(vfio_name);
for region in vfio_pci_device.mmio_regions() {
node.resources.push(Resource::MmioAddressRange {
base: region.start.0,
size: region.length as u64,
});
}
// Register DMA mapping in IOMMU.
// Do not register virtio-mem regions, as they are handled directly by
// virtio-mem device itself.
for (_, zone) in self.memory_manager.lock().unwrap().memory_zones().iter() {
for region in zone.regions() {
vfio_pci_device
.dma_map(
region.start_addr().raw_value(),
region.len() as u64,
region.as_ptr() as u64,
)
.map_err(DeviceManagerError::VfioDmaMap)?;
}
}
let vfio_pci_device = Arc::new(Mutex::new(vfio_pci_device));
self.add_pci_device(
pci,
vfio_pci_device.clone(),
vfio_pci_device.clone(),
PciDeviceHandle::Vfio(vfio_pci_device),
pci_device_bdf,
vfio_name.clone(),
)?;
self.device_tree
.lock()
.unwrap()
.insert(vfio_name.clone(), node);
Ok((pci_device_bdf, vfio_name))
}
fn add_pci_device(
&mut self,
pci_bus: &mut PciBus,
bus_device: Arc<Mutex<dyn BusDevice>>,
pci_device: Arc<Mutex<dyn PciDevice>>,
pci_device_handle: PciDeviceHandle,
bdf: u32,
device_id: String,
) -> DeviceManagerResult<Vec<(GuestAddress, GuestUsize, PciBarRegionType)>> {
let bars = pci_device
.lock()
.unwrap()
.allocate_bars(&mut self.address_manager.allocator.lock().unwrap())
.map_err(DeviceManagerError::AllocateBars)?;
pci_bus
.add_device(bdf, pci_device)
.map_err(DeviceManagerError::AddPciDevice)?;
self.pci_devices.insert(bdf, (device_id, pci_device_handle));
self.bus_devices.push(Arc::clone(&bus_device));
pci_bus
.register_mapping(
bus_device,
#[cfg(target_arch = "x86_64")]
self.address_manager.io_bus.as_ref(),
self.address_manager.mmio_bus.as_ref(),
bars.clone(),
)
.map_err(DeviceManagerError::AddPciDevice)?;
Ok(bars)
}
fn add_vfio_devices(&mut self, pci: &mut PciBus) -> DeviceManagerResult<Vec<u32>> {
let mut iommu_attached_device_ids = Vec::new();
let mut devices = self.config.lock().unwrap().devices.clone();
if let Some(device_list_cfg) = &mut devices {
if self.passthrough_device.is_none() {
// Create the passthrough device.
self.passthrough_device = Some(
self.address_manager
.vm
.create_passthrough_device()
.map_err(|e| DeviceManagerError::CreatePassthroughDevice(e.into()))?,
);
}
for device_cfg in device_list_cfg.iter_mut() {
let (device_id, _) = self.add_passthrough_device(pci, device_cfg)?;
if device_cfg.iommu && self.iommu_device.is_some() {
iommu_attached_device_ids.push(device_id);
}
}
}
// Update the list of devices
self.config.lock().unwrap().devices = devices;
Ok(iommu_attached_device_ids)
}
fn add_virtio_pci_device(
&mut self,
virtio_device: VirtioDeviceArc,
pci: &mut PciBus,
iommu_mapping: &Option<Arc<IommuMapping>>,
virtio_device_id: String,
) -> DeviceManagerResult<u32> {
let id = format!("{}-{}", VIRTIO_PCI_DEVICE_NAME_PREFIX, virtio_device_id);
// Add the new virtio-pci node to the device tree.
let mut node = device_node!(id);
node.children = vec![virtio_device_id.clone()];
// Look for the id in the device tree. If it can be found, that means
// the device is being restored, otherwise it's created from scratch.
let (pci_device_bdf, config_bar_addr) =
if let Some(node) = self.device_tree.lock().unwrap().get(&id) {
debug!("Restoring virtio-pci {} resources", id);
let pci_device_bdf = node
.pci_bdf
.ok_or(DeviceManagerError::MissingDeviceNodePciBdf)?;
pci.get_device_id((pci_device_bdf >> 3) as usize)
.map_err(DeviceManagerError::GetPciDeviceId)?;
if node.resources.is_empty() {
return Err(DeviceManagerError::MissingVirtioPciResources);
}
// We know the configuration BAR address is stored on the first
// resource in the list.
let config_bar_addr = match node.resources[0] {
Resource::MmioAddressRange { base, .. } => Some(base),
_ => {
error!("Unexpected resource {:?} for {}", node.resources[0], id);
return Err(DeviceManagerError::MissingVirtioPciResources);
}
};
(pci_device_bdf, config_bar_addr)
} else {
// We need to shift the device id since the 3 first bits are dedicated
// to the PCI function, and we know we don't do multifunction.
// Also, because we only support one PCI bus, the bus 0, we don't need
// to add anything to the global device ID.
let pci_device_bdf = pci
.next_device_id()
.map_err(DeviceManagerError::NextPciDeviceId)?
<< 3;
(pci_device_bdf, None)
};
// Update the existing virtio node by setting the parent.
if let Some(node) = self.device_tree.lock().unwrap().get_mut(&virtio_device_id) {
node.parent = Some(id.clone());
} else {
return Err(DeviceManagerError::MissingNode);
}
// Allows support for one MSI-X vector per queue. It also adds 1
// as we need to take into account the dedicated vector to notify
// about a virtio config change.
let msix_num = (virtio_device.lock().unwrap().queue_max_sizes().len() + 1) as u16;
// Create the callback from the implementation of the DmaRemapping
// trait. The point with the callback is to simplify the code as we
// know about the device ID from this point.
let iommu_mapping_cb: Option<Arc<VirtioIommuRemapping>> =
if let Some(mapping) = iommu_mapping {
let mapping_clone = mapping.clone();
Some(Arc::new(Box::new(move |addr: u64| {
mapping_clone.translate(pci_device_bdf, addr).map_err(|e| {
std::io::Error::new(
std::io::ErrorKind::Other,
format!(
"failed to translate addr 0x{:x} for device 00:{:02x}.0 {}",
addr, pci_device_bdf, e
),
)
})
}) as VirtioIommuRemapping))
} else {
None
};
let memory = self.memory_manager.lock().unwrap().guest_memory();
let mut virtio_pci_device = VirtioPciDevice::new(
id.clone(),
memory,
virtio_device,
msix_num,
iommu_mapping_cb,
&self.msi_interrupt_manager,
pci_device_bdf,
self.activate_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
)
.map_err(DeviceManagerError::VirtioDevice)?;
// This is important as this will set the BAR address if it exists,
// which is mandatory on the restore path.
if let Some(addr) = config_bar_addr {
virtio_pci_device.set_config_bar_addr(addr);
}
let virtio_pci_device = Arc::new(Mutex::new(virtio_pci_device));
let bars = self.add_pci_device(
pci,
virtio_pci_device.clone(),
virtio_pci_device.clone(),
PciDeviceHandle::Virtio(Arc::clone(&virtio_pci_device)),
pci_device_bdf,
virtio_device_id,
)?;
let bar_addr = virtio_pci_device.lock().unwrap().config_bar_addr();
for (event, addr) in virtio_pci_device.lock().unwrap().ioeventfds(bar_addr) {
let io_addr = IoEventAddress::Mmio(addr);
self.address_manager
.vm
.register_ioevent(event, &io_addr, None)
.map_err(|e| DeviceManagerError::RegisterIoevent(e.into()))?;
}
// Update the device tree with correct resource information.
for pci_bar in bars.iter() {
node.resources.push(Resource::MmioAddressRange {
base: pci_bar.0.raw_value(),
size: pci_bar.1 as u64,
});
}
node.migratable = Some(Arc::clone(&virtio_pci_device) as Arc<Mutex<dyn Migratable>>);
node.pci_bdf = Some(pci_device_bdf);
self.device_tree.lock().unwrap().insert(id, node);
Ok(pci_device_bdf)
}
#[cfg(target_arch = "x86_64")]
pub fn io_bus(&self) -> &Arc<Bus> {
&self.address_manager.io_bus
}
pub fn mmio_bus(&self) -> &Arc<Bus> {
&self.address_manager.mmio_bus
}
pub fn allocator(&self) -> &Arc<Mutex<SystemAllocator>> {
&self.address_manager.allocator
}
pub fn interrupt_controller(&self) -> Option<Arc<Mutex<dyn InterruptController>>> {
if let Some(interrupt_controller) = &self.interrupt_controller {
Some(interrupt_controller.clone() as Arc<Mutex<dyn InterruptController>>)
} else {
None
}
}
pub fn console(&self) -> &Arc<Console> {
&self.console
}
pub fn cmdline_additions(&self) -> &[String] {
self.cmdline_additions.as_slice()
}
pub fn update_memory(&self, new_region: &Arc<GuestRegionMmap>) -> DeviceManagerResult<()> {
for (virtio_device, _, _) in self.virtio_devices.iter() {
virtio_device
.lock()
.unwrap()
.add_memory_region(new_region)
.map_err(DeviceManagerError::UpdateMemoryForVirtioDevice)?;
}
// Take care of updating the memory for VFIO PCI devices.
#[cfg(feature = "kvm")]
for (_, (_, pci_device_handle)) in self.pci_devices.iter() {
if let PciDeviceHandle::Vfio(vfio_pci_device) = pci_device_handle {
vfio_pci_device
.lock()
.unwrap()
.dma_map(
new_region.start_addr().raw_value(),
new_region.len() as u64,
new_region.as_ptr() as u64,
)
.map_err(DeviceManagerError::UpdateMemoryForVfioPciDevice)?;
}
}
Ok(())
}
pub fn activate_virtio_devices(&self) -> DeviceManagerResult<()> {
// Find virtio pci devices and activate any pending ones
for (_, (_, pci_device_handle)) in self.pci_devices.iter() {
#[allow(irrefutable_let_patterns)]
if let PciDeviceHandle::Virtio(virtio_pci_device) = pci_device_handle {
virtio_pci_device.lock().unwrap().maybe_activate();
}
}
Ok(())
}
pub fn notify_hotplug(
&self,
_notification_type: AcpiNotificationFlags,
) -> DeviceManagerResult<()> {
#[cfg(feature = "acpi")]
return self
.ged_notification_device
.as_ref()
.unwrap()
.lock()
.unwrap()
.notify(_notification_type)
.map_err(DeviceManagerError::HotPlugNotification);
#[cfg(not(feature = "acpi"))]
return Ok(());
}
pub fn add_device(
&mut self,
device_cfg: &mut DeviceConfig,
) -> DeviceManagerResult<PciDeviceInfo> {
let pci = if let Some(pci_bus) = &self.pci_bus {
Arc::clone(&pci_bus)
} else {
return Err(DeviceManagerError::NoPciBus);
};
if self.passthrough_device.is_none() {
// If the passthrough device has not been created yet, it is created
// here and stored in the DeviceManager structure for future needs.
self.passthrough_device = Some(
self.address_manager
.vm
.create_passthrough_device()
.map_err(|e| DeviceManagerError::CreatePassthroughDevice(e.into()))?,
);
}
let (device_id, device_name) =
self.add_passthrough_device(&mut pci.lock().unwrap(), device_cfg)?;
// Update the PCIU bitmap
self.pci_devices_up |= 1 << (device_id >> 3);
Ok(PciDeviceInfo {
id: device_name,
bdf: device_id,
})
}
pub fn remove_device(&mut self, id: String) -> DeviceManagerResult<()> {
for (pci_device_bdf, (device_id, pci_device_handle)) in self.pci_devices.iter() {
if *device_id == id {
#[allow(irrefutable_let_patterns)]
if let PciDeviceHandle::Virtio(virtio_pci_device) = pci_device_handle {
let device_type = VirtioDeviceType::from(
virtio_pci_device
.lock()
.unwrap()
.virtio_device()
.lock()
.unwrap()
.device_type(),
);
match device_type {
VirtioDeviceType::TYPE_NET
| VirtioDeviceType::TYPE_BLOCK
| VirtioDeviceType::TYPE_PMEM
| VirtioDeviceType::TYPE_FS
| VirtioDeviceType::TYPE_VSOCK => {}
_ => return Err(DeviceManagerError::RemovalNotAllowed(device_type)),
}
}
// Update the PCID bitmap
self.pci_devices_down |= 1 << (*pci_device_bdf >> 3);
// Remove the device from the device tree along with its parent.
let mut device_tree = self.device_tree.lock().unwrap();
if let Some(node) = device_tree.remove(&id) {
if let Some(parent) = &node.parent {
device_tree.remove(parent);
}
}
return Ok(());
}
}
Err(DeviceManagerError::UnknownDeviceId(id))
}
pub fn eject_device(&mut self, device_id: u8) -> DeviceManagerResult<()> {
// Retrieve the PCI bus.
let pci = if let Some(pci_bus) = &self.pci_bus {
Arc::clone(&pci_bus)
} else {
return Err(DeviceManagerError::NoPciBus);
};
// Convert the device ID into the corresponding b/d/f.
let pci_device_bdf = (device_id as u32) << 3;
// Give the PCI device ID back to the PCI bus.
pci.lock()
.unwrap()
.put_device_id(device_id as usize)
.map_err(DeviceManagerError::PutPciDeviceId)?;
if let Some((_, pci_device_handle)) = self.pci_devices.remove(&pci_device_bdf) {
let (pci_device, bus_device, virtio_device) = match pci_device_handle {
#[cfg(feature = "kvm")]
PciDeviceHandle::Vfio(vfio_pci_device) => {
{
// Unregister DMA mapping in IOMMU.
// Do not unregister the virtio-mem region, as it is
// directly handled by the virtio-mem device.
let dev = vfio_pci_device.lock().unwrap();
for (_, zone) in self.memory_manager.lock().unwrap().memory_zones().iter() {
for region in zone.regions() {
dev.dma_unmap(region.start_addr().raw_value(), region.len() as u64)
.map_err(DeviceManagerError::VfioDmaUnmap)?;
}
}
// Unregister the VFIO mapping handler from all virtio-mem
// devices.
if !dev.iommu_attached() {
for virtio_mem_device in self.virtio_mem_devices.iter() {
virtio_mem_device
.lock()
.unwrap()
.remove_dma_mapping_handler(pci_device_bdf)
.map_err(
DeviceManagerError::RemoveDmaMappingHandlerVirtioMem,
)?;
}
}
}
(
Arc::clone(&vfio_pci_device) as Arc<Mutex<dyn PciDevice>>,
Arc::clone(&vfio_pci_device) as Arc<Mutex<dyn BusDevice>>,
None as Option<VirtioDeviceArc>,
)
}
PciDeviceHandle::Virtio(virtio_pci_device) => {
let bar_addr = virtio_pci_device.lock().unwrap().config_bar_addr();
for (event, addr) in virtio_pci_device.lock().unwrap().ioeventfds(bar_addr) {
let io_addr = IoEventAddress::Mmio(addr);
self.address_manager
.vm
.unregister_ioevent(event, &io_addr)
.map_err(|e| DeviceManagerError::UnRegisterIoevent(e.into()))?;
}
(
Arc::clone(&virtio_pci_device) as Arc<Mutex<dyn PciDevice>>,
Arc::clone(&virtio_pci_device) as Arc<Mutex<dyn BusDevice>>,
Some(virtio_pci_device.lock().unwrap().virtio_device()),
)
}
};
// Free the allocated BARs
pci_device
.lock()
.unwrap()
.free_bars(&mut self.address_manager.allocator.lock().unwrap())
.map_err(DeviceManagerError::FreePciBars)?;
// Remove the device from the PCI bus
pci.lock()
.unwrap()
.remove_by_device(&pci_device)
.map_err(DeviceManagerError::RemoveDeviceFromPciBus)?;
#[cfg(target_arch = "x86_64")]
// Remove the device from the IO bus
self.io_bus()
.remove_by_device(&bus_device)
.map_err(DeviceManagerError::RemoveDeviceFromIoBus)?;
// Remove the device from the MMIO bus
self.mmio_bus()
.remove_by_device(&bus_device)
.map_err(DeviceManagerError::RemoveDeviceFromMmioBus)?;
// Remove the device from the list of BusDevice held by the
// DeviceManager.
self.bus_devices
.retain(|dev| !Arc::ptr_eq(dev, &bus_device));
// Shutdown and remove the underlying virtio-device if present
if let Some(virtio_device) = virtio_device {
for mapping in virtio_device.lock().unwrap().userspace_mappings() {
self.memory_manager
.lock()
.unwrap()
.remove_userspace_mapping(
mapping.addr.raw_value(),
mapping.len,
mapping.host_addr,
mapping.mergeable,
mapping.mem_slot,
)
.map_err(DeviceManagerError::MemoryManager)?;
}
virtio_device.lock().unwrap().shutdown();
self.virtio_devices
.retain(|(d, _, _)| !Arc::ptr_eq(d, &virtio_device));
}
// At this point, the device has been removed from all the list and
// buses where it was stored. At the end of this function, after
// any_device, bus_device and pci_device are released, the actual
// device will be dropped.
Ok(())
} else {
Err(DeviceManagerError::MissingPciDevice)
}
}
fn hotplug_virtio_pci_device(
&mut self,
device: VirtioDeviceArc,
iommu_attached: bool,
id: String,
) -> DeviceManagerResult<PciDeviceInfo> {
if iommu_attached {
warn!("Placing device behind vIOMMU is not available for hotplugged devices");
}
let pci = if let Some(pci_bus) = &self.pci_bus {
Arc::clone(&pci_bus)
} else {
return Err(DeviceManagerError::NoPciBus);
};
// Add the virtio device to the device manager list. This is important
// as the list is used to notify virtio devices about memory updates
// for instance.
self.virtio_devices
.push((device.clone(), iommu_attached, id.clone()));
let device_id =
self.add_virtio_pci_device(device, &mut pci.lock().unwrap(), &None, id.clone())?;
// Update the PCIU bitmap
self.pci_devices_up |= 1 << (device_id >> 3);
Ok(PciDeviceInfo { id, bdf: device_id })
}
pub fn add_disk(&mut self, disk_cfg: &mut DiskConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_block_device(disk_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn add_fs(&mut self, fs_cfg: &mut FsConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_fs_device(fs_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn add_pmem(&mut self, pmem_cfg: &mut PmemConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_pmem_device(pmem_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn add_net(&mut self, net_cfg: &mut NetConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_net_device(net_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn add_vsock(&mut self, vsock_cfg: &mut VsockConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_vsock_device(vsock_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn counters(&self) -> HashMap<String, HashMap<&'static str, Wrapping<u64>>> {
let mut counters = HashMap::new();
for (virtio_device, _, id) in &self.virtio_devices {
let virtio_device = virtio_device.lock().unwrap();
if let Some(device_counters) = virtio_device.counters() {
counters.insert(id.clone(), device_counters.clone());
}
}
counters
}
pub fn resize_balloon(&mut self, size: u64) -> DeviceManagerResult<()> {
if let Some(balloon) = &self.balloon {
return balloon
.lock()
.unwrap()
.resize(size)
.map_err(DeviceManagerError::VirtioBalloonResize);
}
warn!("No balloon setup: Can't resize the balloon");
Err(DeviceManagerError::MissingVirtioBalloon)
}
pub fn balloon_size(&self) -> u64 {
if let Some(balloon) = &self.balloon {
return balloon.lock().unwrap().get_actual();
}
0
}
pub fn device_tree(&self) -> Arc<Mutex<DeviceTree>> {
self.device_tree.clone()
}
#[cfg(feature = "acpi")]
#[cfg(target_arch = "x86_64")]
pub fn notify_power_button(&self) -> DeviceManagerResult<()> {
self.ged_notification_device
.as_ref()
.unwrap()
.lock()
.unwrap()
.notify(AcpiNotificationFlags::POWER_BUTTON_CHANGED)
.map_err(DeviceManagerError::PowerButtonNotification)
}
#[cfg(target_arch = "aarch64")]
pub fn notify_power_button(&self) -> DeviceManagerResult<()> {
self.gpio_device
.as_ref()
.unwrap()
.lock()
.unwrap()
.trigger_key(3)
.map_err(DeviceManagerError::AArch64PowerButtonNotification)
}
}
#[cfg(feature = "acpi")]
fn numa_node_id_from_memory_zone_id(numa_nodes: &NumaNodes, memory_zone_id: &str) -> Option<u32> {
for (numa_node_id, numa_node) in numa_nodes.iter() {
if numa_node
.memory_zones()
.contains(&memory_zone_id.to_owned())
{
return Some(*numa_node_id);
}
}
None
}
#[cfg(feature = "acpi")]
struct PciDevSlot {
device_id: u8,
}
#[cfg(feature = "acpi")]
impl Aml for PciDevSlot {
fn to_aml_bytes(&self) -> Vec<u8> {
let sun = self.device_id;
let adr: u32 = (self.device_id as u32) << 16;
aml::Device::new(
format!("S{:03}", self.device_id).as_str().into(),
vec![
&aml::Name::new("_SUN".into(), &sun),
&aml::Name::new("_ADR".into(), &adr),
&aml::Method::new(
"_EJ0".into(),
1,
true,
vec![&aml::MethodCall::new(
"\\_SB_.PHPR.PCEJ".into(),
vec![&aml::Path::new("_SUN")],
)],
),
],
)
.to_aml_bytes()
}
}
#[cfg(feature = "acpi")]
struct PciDevSlotNotify {
device_id: u8,
}
#[cfg(feature = "acpi")]
impl Aml for PciDevSlotNotify {
fn to_aml_bytes(&self) -> Vec<u8> {
let device_id_mask: u32 = 1 << self.device_id;
let object = aml::Path::new(&format!("S{:03}", self.device_id));
let mut bytes = aml::And::new(&aml::Local(0), &aml::Arg(0), &device_id_mask).to_aml_bytes();
bytes.extend_from_slice(
&aml::If::new(
&aml::Equal::new(&aml::Local(0), &device_id_mask),
vec![&aml::Notify::new(&object, &aml::Arg(1))],
)
.to_aml_bytes(),
);
bytes
}
}
#[cfg(feature = "acpi")]
struct PciDevSlotMethods {}
#[cfg(feature = "acpi")]
impl Aml for PciDevSlotMethods {
fn to_aml_bytes(&self) -> Vec<u8> {
let mut device_notifies = Vec::new();
for device_id in 0..32 {
device_notifies.push(PciDevSlotNotify { device_id });
}
let mut device_notifies_refs: Vec<&dyn aml::Aml> = Vec::new();
for device_notify in device_notifies.iter() {
device_notifies_refs.push(device_notify);
}
let mut bytes =
aml::Method::new("DVNT".into(), 2, true, device_notifies_refs).to_aml_bytes();
bytes.extend_from_slice(
&aml::Method::new(
"PCNT".into(),
0,
true,
vec![
&aml::MethodCall::new(
"DVNT".into(),
vec![&aml::Path::new("\\_SB_.PHPR.PCIU"), &aml::ONE],
),
&aml::MethodCall::new(
"DVNT".into(),
vec![&aml::Path::new("\\_SB_.PHPR.PCID"), &3usize],
),
],
)
.to_aml_bytes(),
);
bytes
}
}
#[cfg(feature = "acpi")]
impl Aml for DeviceManager {
fn to_aml_bytes(&self) -> Vec<u8> {
let mut bytes = Vec::new();
// PCI hotplug controller
bytes.extend_from_slice(
&aml::Device::new(
"_SB_.PHPR".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")),
&aml::Name::new("_STA".into(), &0x0bu8),
&aml::Name::new("_UID".into(), &"PCI Hotplug Controller"),
&aml::Mutex::new("BLCK".into(), 0),
&aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
self.acpi_address.0 as u64,
self.acpi_address.0 + DEVICE_MANAGER_ACPI_SIZE as u64 - 1,
)]),
),
// OpRegion and Fields map MMIO range into individual field values
&aml::OpRegion::new(
"PCST".into(),
aml::OpRegionSpace::SystemMemory,
self.acpi_address.0 as usize,
DEVICE_MANAGER_ACPI_SIZE,
),
&aml::Field::new(
"PCST".into(),
aml::FieldAccessType::DWord,
aml::FieldUpdateRule::WriteAsZeroes,
vec![
aml::FieldEntry::Named(*b"PCIU", 32),
aml::FieldEntry::Named(*b"PCID", 32),
aml::FieldEntry::Named(*b"B0EJ", 32),
],
),
&aml::Method::new(
"PCEJ".into(),
1,
true,
vec![
// Take lock defined above
&aml::Acquire::new("BLCK".into(), 0xffff),
// Write PCI bus number (in first argument) to I/O port via field
&aml::ShiftLeft::new(&aml::Path::new("B0EJ"), &aml::ONE, &aml::Arg(0)),
// Release lock
&aml::Release::new("BLCK".into()),
// Return 0
&aml::Return::new(&aml::ZERO),
],
),
],
)
.to_aml_bytes(),
);
let start_of_device_area = self.memory_manager.lock().unwrap().start_of_device_area().0;
let end_of_device_area = self.memory_manager.lock().unwrap().end_of_device_area().0;
let mut pci_dsdt_inner_data: Vec<&dyn aml::Aml> = Vec::new();
let hid = aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A08"));
pci_dsdt_inner_data.push(&hid);
let cid = aml::Name::new("_CID".into(), &aml::EISAName::new("PNP0A03"));
pci_dsdt_inner_data.push(&cid);
let adr = aml::Name::new("_ADR".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&adr);
let seg = aml::Name::new("_SEG".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&seg);
let uid = aml::Name::new("_UID".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&uid);
let supp = aml::Name::new("SUPP".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&supp);
let crs = aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![
&aml::AddressSpace::new_bus_number(0x0u16, 0xffu16),
&aml::IO::new(0xcf8, 0xcf8, 1, 0x8),
&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
layout::MEM_32BIT_DEVICES_START.0 as u32,
(layout::MEM_32BIT_DEVICES_START.0 + layout::MEM_32BIT_DEVICES_SIZE - 1) as u32,
),
&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
start_of_device_area,
end_of_device_area,
),
]),
);
pci_dsdt_inner_data.push(&crs);
let mut pci_devices = Vec::new();
for device_id in 0..32 {
let pci_device = PciDevSlot { device_id };
pci_devices.push(pci_device);
}
for pci_device in pci_devices.iter() {
pci_dsdt_inner_data.push(pci_device);
}
let pci_device_methods = PciDevSlotMethods {};
pci_dsdt_inner_data.push(&pci_device_methods);
// Build PCI routing table, listing IRQs assigned to PCI devices.
let prt_package_list: Vec<(u32, u32)> = self
.pci_irq_slots
.iter()
.enumerate()
.map(|(i, irq)| (((((i as u32) & 0x1fu32) << 16) | 0xffffu32), *irq as u32))
.collect();
let prt_package_list: Vec<aml::Package> = prt_package_list
.iter()
.map(|(bdf, irq)| aml::Package::new(vec![bdf, &0u8, &0u8, irq]))
.collect();
let prt_package_list: Vec<&dyn Aml> = prt_package_list
.iter()
.map(|item| item as &dyn Aml)
.collect();
let prt = aml::Name::new("_PRT".into(), &aml::Package::new(prt_package_list));
pci_dsdt_inner_data.push(&prt);
let pci_dsdt_data =
aml::Device::new("_SB_.PCI0".into(), pci_dsdt_inner_data).to_aml_bytes();
let mbrd_dsdt_data = aml::Device::new(
"_SB_.MBRD".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0C02")),
&aml::Name::new("_UID".into(), &aml::ZERO),
&aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![&aml::Memory32Fixed::new(
true,
layout::PCI_MMCONFIG_START.0 as u32,
layout::PCI_MMCONFIG_SIZE as u32,
)]),
),
],
)
.to_aml_bytes();
let com1_dsdt_data = aml::Device::new(
"_SB_.COM1".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0501")),
&aml::Name::new("_UID".into(), &aml::ZERO),
&aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![
&aml::Interrupt::new(true, true, false, false, 4),
&aml::IO::new(0x3f8, 0x3f8, 0, 0x8),
]),
),
],
)
.to_aml_bytes();
let s5_sleep_data =
aml::Name::new("_S5_".into(), &aml::Package::new(vec![&5u8])).to_aml_bytes();
let power_button_dsdt_data = aml::Device::new(
"_SB_.PWRB".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0C0C")),
&aml::Name::new("_UID".into(), &aml::ZERO),
],
)
.to_aml_bytes();
let ged_data = self
.ged_notification_device
.as_ref()
.unwrap()
.lock()
.unwrap()
.to_aml_bytes();
bytes.extend_from_slice(pci_dsdt_data.as_slice());
bytes.extend_from_slice(mbrd_dsdt_data.as_slice());
if self.config.lock().unwrap().serial.mode != ConsoleOutputMode::Off {
bytes.extend_from_slice(com1_dsdt_data.as_slice());
}
bytes.extend_from_slice(s5_sleep_data.as_slice());
bytes.extend_from_slice(power_button_dsdt_data.as_slice());
bytes.extend_from_slice(ged_data.as_slice());
bytes
}
}
impl Pausable for DeviceManager {
fn pause(&mut self) -> result::Result<(), MigratableError> {
for (_, device_node) in self.device_tree.lock().unwrap().iter() {
if let Some(migratable) = &device_node.migratable {
migratable.lock().unwrap().pause()?;
}
}
Ok(())
}
fn resume(&mut self) -> result::Result<(), MigratableError> {
for (_, device_node) in self.device_tree.lock().unwrap().iter() {
if let Some(migratable) = &device_node.migratable {
migratable.lock().unwrap().resume()?;
}
}
Ok(())
}
}
impl Snapshottable for DeviceManager {
fn id(&self) -> String {
DEVICE_MANAGER_SNAPSHOT_ID.to_string()
}
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
let mut snapshot = Snapshot::new(DEVICE_MANAGER_SNAPSHOT_ID);
// We aggregate all devices snapshots.
for (_, device_node) in self.device_tree.lock().unwrap().iter() {
if let Some(migratable) = &device_node.migratable {
let device_snapshot = migratable.lock().unwrap().snapshot()?;
snapshot.add_snapshot(device_snapshot);
}
}
// Then we store the DeviceManager state.
snapshot.add_data_section(SnapshotDataSection {
id: format!("{}-section", DEVICE_MANAGER_SNAPSHOT_ID),
snapshot: serde_json::to_vec(&self.state())
.map_err(|e| MigratableError::Snapshot(e.into()))?,
});
Ok(snapshot)
}
fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> {
// Let's first restore the DeviceManager.
if let Some(device_manager_section) = snapshot
.snapshot_data
.get(&format!("{}-section", DEVICE_MANAGER_SNAPSHOT_ID))
{
let device_manager_state = serde_json::from_slice(&device_manager_section.snapshot)
.map_err(|e| {
MigratableError::Restore(anyhow!("Could not deserialize DeviceManager {}", e))
})?;
self.set_state(&device_manager_state);
} else {
return Err(MigratableError::Restore(anyhow!(
"Could not find DeviceManager snapshot section"
)));
}
// Now that DeviceManager is updated with the right states, it's time
// to create the devices based on the configuration.
self.create_devices(None, None)
.map_err(|e| MigratableError::Restore(anyhow!("Could not create devices {:?}", e)))?;
// Finally, restore all devices associated with the DeviceManager.
// It's important to restore devices in the right order, that's why
// the device tree is the right way to ensure we restore a child before
// its parent node.
for node in self
.device_tree
.lock()
.unwrap()
.breadth_first_traversal()
.rev()
{
// Restore the node
if let Some(migratable) = &node.migratable {
debug!("Restoring {} from DeviceManager", node.id);
if let Some(snapshot) = snapshot.snapshots.get(&node.id) {
migratable.lock().unwrap().pause()?;
migratable.lock().unwrap().restore(*snapshot.clone())?;
} else {
return Err(MigratableError::Restore(anyhow!(
"Missing device {}",
node.id
)));
}
}
}
Ok(())
}
}
impl Transportable for DeviceManager {}
impl Migratable for DeviceManager {}
const PCIU_FIELD_OFFSET: u64 = 0;
const PCID_FIELD_OFFSET: u64 = 4;
const B0EJ_FIELD_OFFSET: u64 = 8;
const PCIU_FIELD_SIZE: usize = 4;
const PCID_FIELD_SIZE: usize = 4;
const B0EJ_FIELD_SIZE: usize = 4;
impl BusDevice for DeviceManager {
fn read(&mut self, base: u64, offset: u64, data: &mut [u8]) {
match offset {
PCIU_FIELD_OFFSET => {
assert!(data.len() == PCIU_FIELD_SIZE);
data.copy_from_slice(&self.pci_devices_up.to_le_bytes());
// Clear the PCIU bitmap
self.pci_devices_up = 0;
}
PCID_FIELD_OFFSET => {
assert!(data.len() == PCID_FIELD_SIZE);
data.copy_from_slice(&self.pci_devices_down.to_le_bytes());
// Clear the PCID bitmap
self.pci_devices_down = 0;
}
_ => error!(
"Accessing unknown location at base 0x{:x}, offset 0x{:x}",
base, offset
),
}
debug!(
"PCI_HP_REG_R: base 0x{:x}, offset 0x{:x}, data {:?}",
base, offset, data
)
}
fn write(&mut self, base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
match offset {
B0EJ_FIELD_OFFSET => {
assert!(data.len() == B0EJ_FIELD_SIZE);
let mut data_array: [u8; 4] = [0, 0, 0, 0];
data_array.copy_from_slice(&data[..]);
let device_bitmap = u32::from_le_bytes(data_array);
for device_id in 0..32 {
let mask = 1u32 << device_id;
if (device_bitmap & mask) == mask {
if let Err(e) = self.eject_device(device_id as u8) {
error!("Failed ejecting device {}: {:?}", device_id, e);
}
}
}
}
_ => error!(
"Accessing unknown location at base 0x{:x}, offset 0x{:x}",
base, offset
),
}
debug!(
"PCI_HP_REG_W: base 0x{:x}, offset 0x{:x}, data {:?}",
base, offset, data
);
None
}
}
impl Drop for DeviceManager {
fn drop(&mut self) {
for (device, _, _) in self.virtio_devices.drain(..) {
device.lock().unwrap().shutdown();
}
}
}