cloud-hypervisor/vmm/src/device_manager.rs
Sebastien Boeuf e311fd66cd vmm: device_manager: Remove the need for Any
We define a new enum in order to classify PCI device under virtio or
VFIO. This is a cleaner approach than using the Any trait, and
downcasting it to find the object back.

Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
2021-03-18 15:26:25 +01:00

4022 lines
139 KiB
Rust

// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//
use crate::config::ConsoleOutputMode;
use crate::config::DeviceConfig;
use crate::config::{DiskConfig, FsConfig, NetConfig, PmemConfig, VmConfig, VsockConfig};
use crate::device_tree::{DeviceNode, DeviceTree};
#[cfg(feature = "kvm")]
use crate::interrupt::kvm::KvmMsiInterruptManager as MsiInterruptManager;
#[cfg(feature = "mshv")]
use crate::interrupt::mshv::MshvMsiInterruptManager as MsiInterruptManager;
use crate::interrupt::LegacyUserspaceInterruptManager;
#[cfg(feature = "acpi")]
use crate::memory_manager::MEMORY_MANAGER_ACPI_SIZE;
use crate::memory_manager::{Error as MemoryManagerError, MemoryManager};
#[cfg(feature = "acpi")]
use crate::vm::NumaNodes;
use crate::PciDeviceInfo;
use crate::{device_node, DEVICE_MANAGER_SNAPSHOT_ID};
#[cfg(feature = "acpi")]
use acpi_tables::{aml, aml::Aml};
use anyhow::anyhow;
#[cfg(target_arch = "aarch64")]
use arch::aarch64::gic::GICDevice;
#[cfg(target_arch = "aarch64")]
use arch::aarch64::DeviceInfoForFDT;
#[cfg(feature = "acpi")]
use arch::layout;
#[cfg(target_arch = "x86_64")]
use arch::layout::{APIC_START, IOAPIC_SIZE, IOAPIC_START};
#[cfg(target_arch = "aarch64")]
use arch::DeviceType;
use block_util::{
async_io::DiskFile, block_io_uring_is_supported, detect_image_type,
fixed_vhd_async::FixedVhdDiskAsync, fixed_vhd_sync::FixedVhdDiskSync, qcow_sync::QcowDiskSync,
raw_async::RawFileDisk, raw_sync::RawFileDiskSync, ImageType,
};
#[cfg(target_arch = "aarch64")]
use devices::gic;
#[cfg(target_arch = "x86_64")]
use devices::ioapic;
#[cfg(target_arch = "x86_64")]
use devices::legacy::Serial;
#[cfg(target_arch = "aarch64")]
use devices::legacy::PL011;
use devices::{
interrupt_controller, interrupt_controller::InterruptController, AcpiNotificationFlags,
};
#[cfg(feature = "kvm")]
use hypervisor::kvm_ioctls::*;
#[cfg(target_arch = "aarch64")]
use hypervisor::CpuState;
#[cfg(feature = "mshv")]
use hypervisor::IoEventAddress;
use libc::{
isatty, tcgetattr, tcsetattr, termios, ECHO, ICANON, ISIG, MAP_NORESERVE, MAP_PRIVATE,
MAP_SHARED, O_TMPFILE, PROT_READ, PROT_WRITE, TCSANOW, TIOCGWINSZ,
};
#[cfg(feature = "kvm")]
use pci::VfioPciDevice;
use pci::{
DeviceRelocation, PciBarRegionType, PciBus, PciConfigIo, PciConfigMmio, PciDevice, PciRoot,
};
use seccomp::SeccompAction;
use std::collections::{BTreeMap, HashMap};
use std::convert::TryInto;
use std::fs::{read_link, File, OpenOptions};
use std::io::{self, sink, stdout, Seek, SeekFrom};
use std::mem::zeroed;
use std::num::Wrapping;
use std::os::unix::fs::OpenOptionsExt;
use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use std::path::PathBuf;
use std::result;
use std::sync::{Arc, Barrier, Mutex};
#[cfg(feature = "kvm")]
use vfio_ioctls::{VfioContainer, VfioDevice};
use virtio_devices::transport::VirtioPciDevice;
use virtio_devices::transport::VirtioTransport;
use virtio_devices::vhost_user::VhostUserConfig;
use virtio_devices::{DmaRemapping, IommuMapping};
use virtio_devices::{VirtioSharedMemory, VirtioSharedMemoryList};
use vm_allocator::SystemAllocator;
#[cfg(feature = "kvm")]
use vm_device::dma_mapping::vfio::VfioDmaMapping;
use vm_device::interrupt::{
InterruptIndex, InterruptManager, LegacyIrqGroupConfig, MsiIrqGroupConfig,
};
use vm_device::{Bus, BusDevice, Resource};
use vm_memory::guest_memory::FileOffset;
#[cfg(feature = "kvm")]
use vm_memory::GuestMemoryRegion;
use vm_memory::{Address, GuestAddress, GuestRegionMmap, GuestUsize, MmapRegion};
#[cfg(feature = "cmos")]
use vm_memory::{GuestAddressSpace, GuestMemory};
use vm_migration::{
Migratable, MigratableError, Pausable, Snapshot, SnapshotDataSection, Snapshottable,
Transportable,
};
use vm_virtio::{VirtioDeviceType, VirtioIommuRemapping};
use vmm_sys_util::eventfd::EventFd;
#[cfg(target_arch = "aarch64")]
const MMIO_LEN: u64 = 0x1000;
#[cfg(feature = "kvm")]
const VFIO_DEVICE_NAME_PREFIX: &str = "_vfio";
#[cfg(target_arch = "x86_64")]
const IOAPIC_DEVICE_NAME: &str = "_ioapic";
const SERIAL_DEVICE_NAME_PREFIX: &str = "_serial";
#[cfg(target_arch = "aarch64")]
const GPIO_DEVICE_NAME_PREFIX: &str = "_gpio";
const CONSOLE_DEVICE_NAME: &str = "_console";
const DISK_DEVICE_NAME_PREFIX: &str = "_disk";
const FS_DEVICE_NAME_PREFIX: &str = "_fs";
const MEM_DEVICE_NAME_PREFIX: &str = "_mem";
const BALLOON_DEVICE_NAME: &str = "_balloon";
const NET_DEVICE_NAME_PREFIX: &str = "_net";
const PMEM_DEVICE_NAME_PREFIX: &str = "_pmem";
const RNG_DEVICE_NAME: &str = "_rng";
const VSOCK_DEVICE_NAME_PREFIX: &str = "_vsock";
const WATCHDOG_DEVICE_NAME: &str = "_watchdog";
const IOMMU_DEVICE_NAME: &str = "_iommu";
const VIRTIO_PCI_DEVICE_NAME_PREFIX: &str = "_virtio-pci";
/// Errors associated with device manager
#[derive(Debug)]
pub enum DeviceManagerError {
/// Cannot create EventFd.
EventFd(io::Error),
/// Cannot open disk path
Disk(io::Error),
/// Cannot create vhost-user-net device
CreateVhostUserNet(virtio_devices::vhost_user::Error),
/// Cannot create virtio-blk device
CreateVirtioBlock(io::Error),
/// Cannot create virtio-net device
CreateVirtioNet(virtio_devices::net::Error),
/// Cannot create virtio-console device
CreateVirtioConsole(io::Error),
/// Cannot create virtio-rng device
CreateVirtioRng(io::Error),
/// Cannot create virtio-fs device
CreateVirtioFs(virtio_devices::vhost_user::Error),
/// Virtio-fs device was created without a socket.
NoVirtioFsSock,
/// Cannot create vhost-user-blk device
CreateVhostUserBlk(virtio_devices::vhost_user::Error),
/// Cannot create virtio-pmem device
CreateVirtioPmem(io::Error),
/// Cannot create virtio-vsock device
CreateVirtioVsock(io::Error),
/// Failed converting Path to &str for the virtio-vsock device.
CreateVsockConvertPath,
/// Cannot create virtio-vsock backend
CreateVsockBackend(virtio_devices::vsock::VsockUnixError),
/// Cannot create virtio-iommu device
CreateVirtioIommu(io::Error),
/// Cannot create virtio-balloon device
CreateVirtioBalloon(io::Error),
/// Cannot create virtio-watchdog device
CreateVirtioWatchdog(io::Error),
/// Failed parsing disk image format
DetectImageType(io::Error),
/// Cannot open qcow disk path
QcowDeviceCreate(qcow::Error),
/// Cannot open tap interface
OpenTap(net_util::TapError),
/// Cannot allocate IRQ.
AllocateIrq,
/// Cannot configure the IRQ.
Irq(vmm_sys_util::errno::Error),
/// Cannot allocate PCI BARs
AllocateBars(pci::PciDeviceError),
/// Could not free the BARs associated with a PCI device.
FreePciBars(pci::PciDeviceError),
/// Cannot register ioevent.
RegisterIoevent(anyhow::Error),
/// Cannot unregister ioevent.
UnRegisterIoevent(anyhow::Error),
/// Cannot create virtio device
VirtioDevice(vmm_sys_util::errno::Error),
/// Cannot add PCI device
AddPciDevice(pci::PciRootError),
/// Cannot open persistent memory file
PmemFileOpen(io::Error),
/// Cannot set persistent memory file size
PmemFileSetLen(io::Error),
/// Cannot find a memory range for persistent memory
PmemRangeAllocation,
/// Cannot find a memory range for virtio-fs
FsRangeAllocation,
/// Error creating serial output file
SerialOutputFileOpen(io::Error),
/// Error creating console output file
ConsoleOutputFileOpen(io::Error),
/// Error creating serial pty
SerialPtyOpen(io::Error),
/// Error creating console pty
ConsolePtyOpen(io::Error),
/// Error setting pty raw mode
SetPtyRaw(vmm_sys_util::errno::Error),
/// Error getting pty peer
GetPtyPeer(vmm_sys_util::errno::Error),
/// Cannot create a VFIO device
VfioCreate(vfio_ioctls::VfioError),
/// Cannot create a VFIO PCI device
VfioPciCreate(pci::VfioPciError),
/// Failed to map VFIO MMIO region.
VfioMapRegion(pci::VfioPciError),
/// Failed to DMA map VFIO device.
VfioDmaMap(pci::VfioPciError),
/// Failed to DMA unmap VFIO device.
VfioDmaUnmap(pci::VfioPciError),
/// Failed to create the passthrough device.
CreatePassthroughDevice(anyhow::Error),
/// Failed to memory map.
Mmap(io::Error),
/// Cannot add legacy device to Bus.
BusError(vm_device::BusError),
/// Failed to allocate IO port
AllocateIOPort,
/// Failed to allocate MMIO address
AllocateMMIOAddress,
// Failed to make hotplug notification
HotPlugNotification(io::Error),
// Error from a memory manager operation
MemoryManager(MemoryManagerError),
/// Failed to create new interrupt source group.
CreateInterruptGroup(io::Error),
/// Failed to update interrupt source group.
UpdateInterruptGroup(io::Error),
/// Failed creating interrupt controller.
CreateInterruptController(interrupt_controller::Error),
/// Failed creating a new MmapRegion instance.
NewMmapRegion(vm_memory::mmap::MmapRegionError),
/// Failed cloning a File.
CloneFile(io::Error),
/// Failed to create socket file
CreateSocketFile(io::Error),
/// Failed to spawn the network backend
SpawnNetBackend(io::Error),
/// Failed to spawn the block backend
SpawnBlockBackend(io::Error),
/// Missing PCI bus.
NoPciBus,
/// Could not find an available device name.
NoAvailableDeviceName,
/// Missing PCI device.
MissingPciDevice,
/// Failed removing a PCI device from the PCI bus.
RemoveDeviceFromPciBus(pci::PciRootError),
/// Failed removing a bus device from the IO bus.
RemoveDeviceFromIoBus(vm_device::BusError),
/// Failed removing a bus device from the MMIO bus.
RemoveDeviceFromMmioBus(vm_device::BusError),
/// Failed to find the device corresponding to a specific PCI b/d/f.
UnknownPciBdf(u32),
/// Not allowed to remove this type of device from the VM.
RemovalNotAllowed(vm_virtio::VirtioDeviceType),
/// Failed to find device corresponding to the given identifier.
UnknownDeviceId(String),
/// Failed to find an available PCI device ID.
NextPciDeviceId(pci::PciRootError),
/// Could not reserve the PCI device ID.
GetPciDeviceId(pci::PciRootError),
/// Could not give the PCI device ID back.
PutPciDeviceId(pci::PciRootError),
/// Incorrect device ID as it is already used by another device.
DeviceIdAlreadyInUse,
/// No disk path was specified when one was expected
NoDiskPath,
/// Failed updating guest memory for virtio device.
UpdateMemoryForVirtioDevice(virtio_devices::Error),
/// Cannot create virtio-mem device
CreateVirtioMem(io::Error),
/// Cannot generate a ResizeSender from the Resize object.
CreateResizeSender(virtio_devices::mem::Error),
/// Cannot find a memory range for virtio-mem memory
VirtioMemRangeAllocation,
/// Failed updating guest memory for VFIO PCI device.
UpdateMemoryForVfioPciDevice(pci::VfioPciError),
/// Trying to use a directory for pmem but no size specified
PmemWithDirectorySizeMissing,
/// Trying to use a size that is not multiple of 2MiB
PmemSizeNotAligned,
/// Could not find the node in the device tree.
MissingNode,
/// Resource was already found.
ResourceAlreadyExists,
/// Expected resources for virtio-pci could not be found.
MissingVirtioPciResources,
/// Expected resources for virtio-fs could not be found.
MissingVirtioFsResources,
/// Missing PCI b/d/f from the DeviceNode.
MissingDeviceNodePciBdf,
/// No support for device passthrough
NoDevicePassthroughSupport,
/// Failed to resize virtio-balloon
VirtioBalloonResize(virtio_devices::balloon::Error),
/// Missing virtio-balloon, can't proceed as expected.
MissingVirtioBalloon,
/// Failed to do power button notification
PowerButtonNotification(io::Error),
/// Failed to do AArch64 GPIO power button notification
#[cfg(target_arch = "aarch64")]
AArch64PowerButtonNotification(devices::legacy::GPIODeviceError),
/// Failed to set O_DIRECT flag to file descriptor
SetDirectIo,
/// Failed to create FixedVhdDiskAsync
CreateFixedVhdDiskAsync(io::Error),
/// Failed to create FixedVhdDiskSync
CreateFixedVhdDiskSync(io::Error),
/// Failed adding DMA mapping handler to virtio-mem device.
AddDmaMappingHandlerVirtioMem(virtio_devices::mem::Error),
/// Failed removing DMA mapping handler from virtio-mem device.
RemoveDmaMappingHandlerVirtioMem(virtio_devices::mem::Error),
}
pub type DeviceManagerResult<T> = result::Result<T, DeviceManagerError>;
type VirtioDeviceArc = Arc<Mutex<dyn virtio_devices::VirtioDevice>>;
#[cfg(feature = "acpi")]
const DEVICE_MANAGER_ACPI_SIZE: usize = 0x10;
pub fn get_win_size() -> (u16, u16) {
#[repr(C)]
#[derive(Default)]
struct WS {
rows: u16,
cols: u16,
xpixel: u16,
ypixel: u16,
}
let ws: WS = WS::default();
unsafe {
libc::ioctl(0, TIOCGWINSZ, &ws);
}
(ws.cols, ws.rows)
}
const TIOCSPTLCK: libc::c_int = 0x4004_5431;
const TIOCGTPEER: libc::c_int = 0x5441;
pub fn create_pty() -> io::Result<(File, File, PathBuf)> {
// Try to use /dev/pts/ptmx first then fall back to /dev/ptmx
// This is done to try and use the devpts filesystem that
// could be available for use in the process's namespace first.
// Ideally these are all the same file though but different
// kernels could have things setup differently.
// See https://www.kernel.org/doc/Documentation/filesystems/devpts.txt
// for further details.
let main = match OpenOptions::new()
.read(true)
.write(true)
.custom_flags(libc::O_NOCTTY)
.open("/dev/pts/ptmx")
{
Ok(f) => f,
_ => OpenOptions::new()
.read(true)
.write(true)
.custom_flags(libc::O_NOCTTY)
.open("/dev/ptmx")?,
};
let mut unlock: libc::c_ulong = 0;
unsafe {
libc::ioctl(
main.as_raw_fd(),
TIOCSPTLCK.try_into().unwrap(),
&mut unlock,
)
};
let sub_fd = unsafe {
libc::ioctl(
main.as_raw_fd(),
TIOCGTPEER.try_into().unwrap(),
libc::O_NOCTTY | libc::O_RDWR,
)
};
if sub_fd == -1 {
return vmm_sys_util::errno::errno_result().map_err(|e| e.into());
}
let proc_path = PathBuf::from(format!("/proc/self/fd/{}", sub_fd));
let path = read_link(proc_path)?;
Ok((main, unsafe { File::from_raw_fd(sub_fd) }, path))
}
enum ConsoleInput {
Serial,
VirtioConsole,
}
#[derive(Default)]
pub struct Console {
#[cfg(target_arch = "x86_64")]
// Serial port on 0x3f8
serial: Option<Arc<Mutex<Serial>>>,
#[cfg(target_arch = "aarch64")]
serial: Option<Arc<Mutex<PL011>>>,
virtio_console_input: Option<Arc<virtio_devices::ConsoleInput>>,
input: Option<ConsoleInput>,
}
impl Console {
pub fn queue_input_bytes(&self, out: &[u8]) -> vmm_sys_util::errno::Result<()> {
match self.input {
Some(ConsoleInput::Serial) => {
self.queue_input_bytes_serial(out)?;
}
Some(ConsoleInput::VirtioConsole) => {
self.queue_input_bytes_console(out);
}
None => {}
}
Ok(())
}
pub fn queue_input_bytes_serial(&self, out: &[u8]) -> vmm_sys_util::errno::Result<()> {
if self.serial.is_some() {
self.serial
.as_ref()
.unwrap()
.lock()
.unwrap()
.queue_input_bytes(out)?;
}
Ok(())
}
pub fn queue_input_bytes_console(&self, out: &[u8]) {
if self.virtio_console_input.is_some() {
self.virtio_console_input
.as_ref()
.unwrap()
.queue_input_bytes(out);
}
}
pub fn update_console_size(&self, cols: u16, rows: u16) {
if self.virtio_console_input.is_some() {
self.virtio_console_input
.as_ref()
.unwrap()
.update_console_size(cols, rows)
}
}
pub fn input_enabled(&self) -> bool {
self.input.is_some()
}
}
struct AddressManager {
allocator: Arc<Mutex<SystemAllocator>>,
#[cfg(target_arch = "x86_64")]
io_bus: Arc<Bus>,
mmio_bus: Arc<Bus>,
vm: Arc<dyn hypervisor::Vm>,
device_tree: Arc<Mutex<DeviceTree>>,
}
impl DeviceRelocation for AddressManager {
fn move_bar(
&self,
old_base: u64,
new_base: u64,
len: u64,
pci_dev: &mut dyn PciDevice,
region_type: PciBarRegionType,
) -> std::result::Result<(), std::io::Error> {
match region_type {
PciBarRegionType::IORegion => {
#[cfg(target_arch = "x86_64")]
{
// Update system allocator
self.allocator
.lock()
.unwrap()
.free_io_addresses(GuestAddress(old_base), len as GuestUsize);
self.allocator
.lock()
.unwrap()
.allocate_io_addresses(
Some(GuestAddress(new_base)),
len as GuestUsize,
None,
)
.ok_or_else(|| {
io::Error::new(io::ErrorKind::Other, "failed allocating new IO range")
})?;
// Update PIO bus
self.io_bus
.update_range(old_base, len, new_base, len)
.map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
}
#[cfg(target_arch = "aarch64")]
error!("I/O region is not supported");
}
PciBarRegionType::Memory32BitRegion | PciBarRegionType::Memory64BitRegion => {
// Update system allocator
if region_type == PciBarRegionType::Memory32BitRegion {
self.allocator
.lock()
.unwrap()
.free_mmio_hole_addresses(GuestAddress(old_base), len as GuestUsize);
self.allocator
.lock()
.unwrap()
.allocate_mmio_hole_addresses(
Some(GuestAddress(new_base)),
len as GuestUsize,
None,
)
.ok_or_else(|| {
io::Error::new(
io::ErrorKind::Other,
"failed allocating new 32 bits MMIO range",
)
})?;
} else {
self.allocator
.lock()
.unwrap()
.free_mmio_addresses(GuestAddress(old_base), len as GuestUsize);
self.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(
Some(GuestAddress(new_base)),
len as GuestUsize,
None,
)
.ok_or_else(|| {
io::Error::new(
io::ErrorKind::Other,
"failed allocating new 64 bits MMIO range",
)
})?;
}
// Update MMIO bus
self.mmio_bus
.update_range(old_base, len, new_base, len)
.map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
}
}
let any_dev = pci_dev.as_any();
if let Some(virtio_pci_dev) = any_dev.downcast_ref::<VirtioPciDevice>() {
// Update the device_tree resources associated with the device
if let Some(node) = self
.device_tree
.lock()
.unwrap()
.get_mut(&virtio_pci_dev.id())
{
let mut resource_updated = false;
for resource in node.resources.iter_mut() {
if let Resource::MmioAddressRange { base, .. } = resource {
if *base == old_base {
*base = new_base;
resource_updated = true;
break;
}
}
}
if !resource_updated {
return Err(io::Error::new(
io::ErrorKind::Other,
format!(
"Couldn't find a resource with base 0x{:x} for device {}",
old_base,
virtio_pci_dev.id()
),
));
}
} else {
return Err(io::Error::new(
io::ErrorKind::Other,
format!(
"Couldn't find device {} from device tree",
virtio_pci_dev.id()
),
));
}
let bar_addr = virtio_pci_dev.config_bar_addr();
if bar_addr == new_base {
for (event, addr) in virtio_pci_dev.ioeventfds(old_base) {
let io_addr = IoEventAddress::Mmio(addr);
self.vm.unregister_ioevent(event, &io_addr).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to unregister ioevent: {:?}", e),
)
})?;
}
for (event, addr) in virtio_pci_dev.ioeventfds(new_base) {
let io_addr = IoEventAddress::Mmio(addr);
self.vm
.register_ioevent(event, &io_addr, None)
.map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to register ioevent: {:?}", e),
)
})?;
}
} else {
let virtio_dev = virtio_pci_dev.virtio_device();
let mut virtio_dev = virtio_dev.lock().unwrap();
if let Some(mut shm_regions) = virtio_dev.get_shm_regions() {
if shm_regions.addr.raw_value() == old_base {
// Remove old region from KVM by passing a size of 0.
let mem_region = self.vm.make_user_memory_region(
shm_regions.mem_slot,
old_base,
0,
shm_regions.host_addr,
false,
false,
);
self.vm.set_user_memory_region(mem_region).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to set user memory region: {:?}", e),
)
})?;
// Create new mapping by inserting new region to KVM.
let mem_region = self.vm.make_user_memory_region(
shm_regions.mem_slot,
new_base,
shm_regions.len,
shm_regions.host_addr,
false,
false,
);
self.vm.set_user_memory_region(mem_region).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to set user memory regions: {:?}", e),
)
})?;
// Update shared memory regions to reflect the new mapping.
shm_regions.addr = GuestAddress(new_base);
virtio_dev.set_shm_regions(shm_regions).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to update shared memory regions: {:?}", e),
)
})?;
}
}
}
}
pci_dev.move_bar(old_base, new_base)
}
}
#[derive(Serialize, Deserialize)]
struct DeviceManagerState {
device_tree: DeviceTree,
device_id_cnt: Wrapping<usize>,
}
/// Private structure for storing information about the MMIO device registered at some address on the bus.
#[derive(Clone, Debug)]
#[cfg(target_arch = "aarch64")]
pub struct MMIODeviceInfo {
addr: u64,
irq: u32,
len: u64,
}
#[cfg(target_arch = "aarch64")]
impl DeviceInfoForFDT for MMIODeviceInfo {
fn addr(&self) -> u64 {
self.addr
}
fn irq(&self) -> u32 {
self.irq
}
fn length(&self) -> u64 {
self.len
}
}
#[derive(Debug)]
pub struct PtyPair {
pub main: File,
pub sub: File,
pub path: PathBuf,
}
impl PtyPair {
fn clone(&self) -> Self {
PtyPair {
main: self.main.try_clone().unwrap(),
sub: self.sub.try_clone().unwrap(),
path: self.path.clone(),
}
}
}
enum PciDeviceHandle {
#[cfg(feature = "kvm")]
Vfio(Arc<Mutex<VfioPciDevice>>),
Virtio(Arc<Mutex<VirtioPciDevice>>),
}
pub struct DeviceManager {
// Manage address space related to devices
address_manager: Arc<AddressManager>,
// Console abstraction
console: Arc<Console>,
// console PTY
console_pty: Option<Arc<Mutex<PtyPair>>>,
// serial PTY
serial_pty: Option<Arc<Mutex<PtyPair>>>,
// Interrupt controller
#[cfg(target_arch = "x86_64")]
interrupt_controller: Option<Arc<Mutex<ioapic::Ioapic>>>,
#[cfg(target_arch = "aarch64")]
interrupt_controller: Option<Arc<Mutex<gic::Gic>>>,
#[cfg(target_arch = "aarch64")]
gic_device_entity: Option<Arc<Mutex<Box<dyn GICDevice>>>>,
// Things to be added to the commandline (i.e. for virtio-mmio)
cmdline_additions: Vec<String>,
// ACPI GED notification device
#[cfg(feature = "acpi")]
ged_notification_device: Option<Arc<Mutex<devices::AcpiGEDDevice>>>,
// VM configuration
config: Arc<Mutex<VmConfig>>,
// Memory Manager
memory_manager: Arc<Mutex<MemoryManager>>,
// The virtio devices on the system
virtio_devices: Vec<(VirtioDeviceArc, bool, String)>,
// List of bus devices
// Let the DeviceManager keep strong references to the BusDevice devices.
// This allows the IO and MMIO buses to be provided with Weak references,
// which prevents cyclic dependencies.
bus_devices: Vec<Arc<Mutex<dyn BusDevice>>>,
// Counter to keep track of the consumed device IDs.
device_id_cnt: Wrapping<usize>,
// Keep a reference to the PCI bus
pci_bus: Option<Arc<Mutex<PciBus>>>,
#[cfg_attr(target_arch = "aarch64", allow(dead_code))]
// MSI Interrupt Manager
msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
// Legacy Interrupt Manager
legacy_interrupt_manager: Option<Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>>,
// Passthrough device handle
passthrough_device: Option<Arc<dyn hypervisor::Device>>,
// Paravirtualized IOMMU
iommu_device: Option<Arc<Mutex<virtio_devices::Iommu>>>,
// Bitmap of PCI devices to hotplug.
pci_devices_up: u32,
// Bitmap of PCI devices to hotunplug.
pci_devices_down: u32,
// BTreeMap of PCI b/d/f to their corresponding MetaPciDevice.
pci_devices: BTreeMap<u32, (String, PciDeviceHandle)>,
// BTreeMap of PCI b/d/f to their allocated IRQ.
pci_device_irqs: BTreeMap<u32, u32>,
// Tree of devices, representing the dependencies between devices.
// Useful for introspection, snapshot and restore.
device_tree: Arc<Mutex<DeviceTree>>,
// Exit event
#[cfg(feature = "acpi")]
exit_evt: EventFd,
reset_evt: EventFd,
#[cfg(target_arch = "aarch64")]
id_to_dev_info: HashMap<(DeviceType, String), MMIODeviceInfo>,
// seccomp action
seccomp_action: SeccompAction,
// List of guest NUMA nodes.
#[cfg(feature = "acpi")]
numa_nodes: NumaNodes,
// Possible handle to the virtio-balloon device
balloon: Option<Arc<Mutex<virtio_devices::Balloon>>>,
// Virtio Device activation EventFd to allow the VMM thread to trigger device
// activation and thus start the threads from the VMM thread
activate_evt: EventFd,
#[cfg(feature = "acpi")]
acpi_address: GuestAddress,
// Possible handle to the virtio-balloon device
virtio_mem_devices: Vec<Arc<Mutex<virtio_devices::Mem>>>,
#[cfg(target_arch = "aarch64")]
// GPIO device for AArch64
gpio_device: Option<Arc<Mutex<devices::legacy::GPIO>>>,
}
impl DeviceManager {
#[allow(clippy::too_many_arguments)]
pub fn new(
vm: Arc<dyn hypervisor::Vm>,
config: Arc<Mutex<VmConfig>>,
memory_manager: Arc<Mutex<MemoryManager>>,
_exit_evt: &EventFd,
reset_evt: &EventFd,
seccomp_action: SeccompAction,
#[cfg(feature = "acpi")] numa_nodes: NumaNodes,
activate_evt: &EventFd,
) -> DeviceManagerResult<Arc<Mutex<Self>>> {
let device_tree = Arc::new(Mutex::new(DeviceTree::new()));
let address_manager = Arc::new(AddressManager {
allocator: memory_manager.lock().unwrap().allocator(),
#[cfg(target_arch = "x86_64")]
io_bus: Arc::new(Bus::new()),
mmio_bus: Arc::new(Bus::new()),
vm: vm.clone(),
device_tree: Arc::clone(&device_tree),
});
// First we create the MSI interrupt manager, the legacy one is created
// later, after the IOAPIC device creation.
// The reason we create the MSI one first is because the IOAPIC needs it,
// and then the legacy interrupt manager needs an IOAPIC. So we're
// handling a linear dependency chain:
// msi_interrupt_manager <- IOAPIC <- legacy_interrupt_manager.
let msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>> =
Arc::new(MsiInterruptManager::new(
Arc::clone(&address_manager.allocator),
vm,
));
#[cfg(feature = "acpi")]
let acpi_address = address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(None, DEVICE_MANAGER_ACPI_SIZE as u64, None)
.ok_or(DeviceManagerError::AllocateIOPort)?;
let device_manager = DeviceManager {
address_manager: Arc::clone(&address_manager),
console: Arc::new(Console::default()),
interrupt_controller: None,
#[cfg(target_arch = "aarch64")]
gic_device_entity: None,
cmdline_additions: Vec::new(),
#[cfg(feature = "acpi")]
ged_notification_device: None,
config,
memory_manager,
virtio_devices: Vec::new(),
bus_devices: Vec::new(),
device_id_cnt: Wrapping(0),
pci_bus: None,
msi_interrupt_manager,
legacy_interrupt_manager: None,
passthrough_device: None,
iommu_device: None,
pci_devices_up: 0,
pci_devices_down: 0,
pci_devices: BTreeMap::new(),
pci_device_irqs: BTreeMap::new(),
device_tree,
#[cfg(feature = "acpi")]
exit_evt: _exit_evt.try_clone().map_err(DeviceManagerError::EventFd)?,
reset_evt: reset_evt.try_clone().map_err(DeviceManagerError::EventFd)?,
#[cfg(target_arch = "aarch64")]
id_to_dev_info: HashMap::new(),
seccomp_action,
#[cfg(feature = "acpi")]
numa_nodes,
balloon: None,
activate_evt: activate_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
#[cfg(feature = "acpi")]
acpi_address,
serial_pty: None,
console_pty: None,
virtio_mem_devices: Vec::new(),
#[cfg(target_arch = "aarch64")]
gpio_device: None,
};
let device_manager = Arc::new(Mutex::new(device_manager));
#[cfg(feature = "acpi")]
address_manager
.mmio_bus
.insert(
Arc::clone(&device_manager) as Arc<Mutex<dyn BusDevice>>,
acpi_address.0,
DEVICE_MANAGER_ACPI_SIZE as u64,
)
.map_err(DeviceManagerError::BusError)?;
Ok(device_manager)
}
pub fn serial_pty(&self) -> Option<PtyPair> {
self.serial_pty
.as_ref()
.map(|pty| pty.lock().unwrap().clone())
}
pub fn console_pty(&self) -> Option<PtyPair> {
self.console_pty
.as_ref()
.map(|pty| pty.lock().unwrap().clone())
}
pub fn create_devices(
&mut self,
serial_pty: Option<PtyPair>,
console_pty: Option<PtyPair>,
) -> DeviceManagerResult<()> {
let mut virtio_devices: Vec<(VirtioDeviceArc, bool, String)> = Vec::new();
let interrupt_controller = self.add_interrupt_controller()?;
// Now we can create the legacy interrupt manager, which needs the freshly
// formed IOAPIC device.
let legacy_interrupt_manager: Arc<
dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>,
> = Arc::new(LegacyUserspaceInterruptManager::new(Arc::clone(
&interrupt_controller,
)));
#[cfg(feature = "acpi")]
{
let memory_manager_acpi_address = self.memory_manager.lock().unwrap().acpi_address;
self.address_manager
.mmio_bus
.insert(
Arc::clone(&self.memory_manager) as Arc<Mutex<dyn BusDevice>>,
memory_manager_acpi_address.0,
MEMORY_MANAGER_ACPI_SIZE as u64,
)
.map_err(DeviceManagerError::BusError)?;
}
#[cfg(target_arch = "x86_64")]
self.add_legacy_devices(
self.reset_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
)?;
#[cfg(target_arch = "aarch64")]
self.add_legacy_devices(&legacy_interrupt_manager)?;
#[cfg(feature = "acpi")]
{
self.ged_notification_device = self.add_acpi_devices(
&legacy_interrupt_manager,
self.reset_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
self.exit_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
)?;
}
self.console = self.add_console_device(
&legacy_interrupt_manager,
&mut virtio_devices,
serial_pty,
console_pty,
)?;
// Reserve some IRQs for PCI devices in case they need to support INTx.
self.reserve_legacy_interrupts_for_pci_devices()?;
self.legacy_interrupt_manager = Some(legacy_interrupt_manager);
virtio_devices.append(&mut self.make_virtio_devices()?);
self.add_pci_devices(virtio_devices.clone())?;
self.virtio_devices = virtio_devices;
Ok(())
}
fn reserve_legacy_interrupts_for_pci_devices(&mut self) -> DeviceManagerResult<()> {
// Reserve 8 IRQs which will be shared across all PCI devices.
let num_irqs = 8;
let mut irqs: Vec<u32> = Vec::new();
for _ in 0..num_irqs {
irqs.push(
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.ok_or(DeviceManagerError::AllocateIrq)?,
);
}
// There are 32 devices on the PCI bus, let's assign them an IRQ.
for i in 0..32 {
self.pci_device_irqs
.insert(i << 3, irqs[(i % num_irqs) as usize]);
}
Ok(())
}
fn state(&self) -> DeviceManagerState {
DeviceManagerState {
device_tree: self.device_tree.lock().unwrap().clone(),
device_id_cnt: self.device_id_cnt,
}
}
fn set_state(&mut self, state: &DeviceManagerState) {
self.device_tree = Arc::new(Mutex::new(state.device_tree.clone()));
self.device_id_cnt = state.device_id_cnt;
}
#[cfg(target_arch = "aarch64")]
/// Gets the information of the devices registered up to some point in time.
pub fn get_device_info(&self) -> &HashMap<(DeviceType, String), MMIODeviceInfo> {
&self.id_to_dev_info
}
#[allow(unused_variables)]
fn add_pci_devices(
&mut self,
virtio_devices: Vec<(VirtioDeviceArc, bool, String)>,
) -> DeviceManagerResult<()> {
let pci_root = PciRoot::new(None);
let mut pci_bus = PciBus::new(
pci_root,
Arc::clone(&self.address_manager) as Arc<dyn DeviceRelocation>,
);
let iommu_id = String::from(IOMMU_DEVICE_NAME);
let (iommu_device, iommu_mapping) = if self.config.lock().unwrap().iommu {
let (device, mapping) =
virtio_devices::Iommu::new(iommu_id.clone(), self.seccomp_action.clone())
.map_err(DeviceManagerError::CreateVirtioIommu)?;
let device = Arc::new(Mutex::new(device));
self.iommu_device = Some(Arc::clone(&device));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(iommu_id.clone(), device_node!(iommu_id, device));
(Some(device), Some(mapping))
} else {
(None, None)
};
let mut iommu_attached_devices = Vec::new();
for (device, iommu_attached, id) in virtio_devices {
let mapping: &Option<Arc<IommuMapping>> = if iommu_attached {
&iommu_mapping
} else {
&None
};
let dev_id = self.add_virtio_pci_device(device, &mut pci_bus, mapping, id)?;
if iommu_attached {
iommu_attached_devices.push(dev_id);
}
}
let mut vfio_iommu_device_ids = self.add_vfio_devices(&mut pci_bus)?;
iommu_attached_devices.append(&mut vfio_iommu_device_ids);
if let Some(iommu_device) = iommu_device {
iommu_device
.lock()
.unwrap()
.attach_pci_devices(0, iommu_attached_devices);
// Because we determined the virtio-iommu b/d/f, we have to
// add the device to the PCI topology now. Otherwise, the
// b/d/f won't match the virtio-iommu device as expected.
self.add_virtio_pci_device(iommu_device, &mut pci_bus, &None, iommu_id)?;
}
let pci_bus = Arc::new(Mutex::new(pci_bus));
let pci_config_io = Arc::new(Mutex::new(PciConfigIo::new(Arc::clone(&pci_bus))));
self.bus_devices
.push(Arc::clone(&pci_config_io) as Arc<Mutex<dyn BusDevice>>);
#[cfg(target_arch = "x86_64")]
self.address_manager
.io_bus
.insert(pci_config_io, 0xcf8, 0x8)
.map_err(DeviceManagerError::BusError)?;
let pci_config_mmio = Arc::new(Mutex::new(PciConfigMmio::new(Arc::clone(&pci_bus))));
self.bus_devices
.push(Arc::clone(&pci_config_mmio) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.mmio_bus
.insert(
pci_config_mmio,
arch::layout::PCI_MMCONFIG_START.0,
arch::layout::PCI_MMCONFIG_SIZE,
)
.map_err(DeviceManagerError::BusError)?;
self.pci_bus = Some(pci_bus);
Ok(())
}
#[cfg(target_arch = "aarch64")]
fn add_interrupt_controller(
&mut self,
) -> DeviceManagerResult<Arc<Mutex<dyn InterruptController>>> {
let interrupt_controller: Arc<Mutex<gic::Gic>> = Arc::new(Mutex::new(
gic::Gic::new(
self.config.lock().unwrap().cpus.boot_vcpus,
Arc::clone(&self.msi_interrupt_manager),
)
.map_err(DeviceManagerError::CreateInterruptController)?,
));
self.interrupt_controller = Some(interrupt_controller.clone());
// Unlike x86_64, the "interrupt_controller" here for AArch64 is only
// a `Gic` object that implements the `InterruptController` to provide
// interrupt delivery service. This is not the real GIC device so that
// we do not need to insert it to the device tree.
Ok(interrupt_controller)
}
#[cfg(target_arch = "aarch64")]
pub fn set_gic_device_entity(&mut self, device_entity: Arc<Mutex<Box<dyn GICDevice>>>) {
self.gic_device_entity = Some(device_entity);
}
#[cfg(target_arch = "aarch64")]
pub fn get_gic_device_entity(&self) -> Option<&Arc<Mutex<Box<dyn GICDevice>>>> {
self.gic_device_entity.as_ref()
}
#[cfg(target_arch = "aarch64")]
pub fn construct_gicr_typers(&self, vcpu_states: &[CpuState]) {
/* Pre-construct the GICR_TYPER:
* For our implementation:
* Top 32 bits are the affinity value of the associated CPU
* CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
* Processor_Number == CPU index starting from 0
* DPGS == 0 (GICR_CTLR.DPG* not supported)
* Last == 1 if this is the last redistributor in a series of
* contiguous redistributor pages
* DirectLPI == 0 (direct injection of LPIs not supported)
* VLPIS == 0 (virtual LPIs not supported)
* PLPIS == 0 (physical LPIs not supported)
*/
let mut gicr_typers: Vec<u64> = Vec::new();
for (index, state) in vcpu_states.iter().enumerate() {
let last = {
if index == vcpu_states.len() - 1 {
1
} else {
0
}
};
//calculate affinity
let mut cpu_affid = state.mpidr & 1095233437695;
cpu_affid = ((cpu_affid & 0xFF00000000) >> 8) | (cpu_affid & 0xFFFFFF);
gicr_typers.push((cpu_affid << 32) | (1 << 24) | (index as u64) << 8 | (last << 4));
}
self.get_gic_device_entity()
.unwrap()
.lock()
.unwrap()
.set_gicr_typers(gicr_typers)
}
#[cfg(target_arch = "aarch64")]
pub fn enable_interrupt_controller(&self) -> DeviceManagerResult<()> {
if let Some(interrupt_controller) = &self.interrupt_controller {
interrupt_controller.lock().unwrap().enable().unwrap();
}
Ok(())
}
#[cfg(target_arch = "x86_64")]
fn add_interrupt_controller(
&mut self,
) -> DeviceManagerResult<Arc<Mutex<dyn InterruptController>>> {
let id = String::from(IOAPIC_DEVICE_NAME);
// Create IOAPIC
let interrupt_controller = Arc::new(Mutex::new(
ioapic::Ioapic::new(
id.clone(),
APIC_START,
Arc::clone(&self.msi_interrupt_manager),
)
.map_err(DeviceManagerError::CreateInterruptController)?,
));
self.interrupt_controller = Some(interrupt_controller.clone());
self.address_manager
.mmio_bus
.insert(interrupt_controller.clone(), IOAPIC_START.0, IOAPIC_SIZE)
.map_err(DeviceManagerError::BusError)?;
self.bus_devices
.push(Arc::clone(&interrupt_controller) as Arc<Mutex<dyn BusDevice>>);
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, interrupt_controller));
Ok(interrupt_controller)
}
#[cfg(feature = "acpi")]
fn add_acpi_devices(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
reset_evt: EventFd,
exit_evt: EventFd,
) -> DeviceManagerResult<Option<Arc<Mutex<devices::AcpiGEDDevice>>>> {
let shutdown_device = Arc::new(Mutex::new(devices::AcpiShutdownDevice::new(
exit_evt, reset_evt,
)));
self.bus_devices
.push(Arc::clone(&shutdown_device) as Arc<Mutex<dyn BusDevice>>);
#[cfg(target_arch = "x86_64")]
{
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_io_addresses(Some(GuestAddress(0x3c0)), 0x8, None)
.ok_or(DeviceManagerError::AllocateIOPort)?;
self.address_manager
.io_bus
.insert(shutdown_device, 0x3c0, 0x4)
.map_err(DeviceManagerError::BusError)?;
}
let ged_irq = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.unwrap();
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: ged_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let ged_address = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(None, devices::acpi::GED_DEVICE_ACPI_SIZE as u64, None)
.ok_or(DeviceManagerError::AllocateMMIOAddress)?;
let ged_device = Arc::new(Mutex::new(devices::AcpiGEDDevice::new(
interrupt_group,
ged_irq,
ged_address,
)));
self.address_manager
.mmio_bus
.insert(
ged_device.clone(),
ged_address.0,
devices::acpi::GED_DEVICE_ACPI_SIZE as u64,
)
.map_err(DeviceManagerError::BusError)?;
self.bus_devices
.push(Arc::clone(&ged_device) as Arc<Mutex<dyn BusDevice>>);
let pm_timer_device = Arc::new(Mutex::new(devices::AcpiPMTimerDevice::new()));
self.bus_devices
.push(Arc::clone(&pm_timer_device) as Arc<Mutex<dyn BusDevice>>);
#[cfg(target_arch = "x86_64")]
{
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_io_addresses(Some(GuestAddress(0xb008)), 0x4, None)
.ok_or(DeviceManagerError::AllocateIOPort)?;
self.address_manager
.io_bus
.insert(pm_timer_device, 0xb008, 0x4)
.map_err(DeviceManagerError::BusError)?;
}
Ok(Some(ged_device))
}
#[cfg(target_arch = "x86_64")]
fn add_legacy_devices(&mut self, reset_evt: EventFd) -> DeviceManagerResult<()> {
// Add a shutdown device (i8042)
let i8042 = Arc::new(Mutex::new(devices::legacy::I8042Device::new(reset_evt)));
self.bus_devices
.push(Arc::clone(&i8042) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.io_bus
.insert(i8042, 0x61, 0x4)
.map_err(DeviceManagerError::BusError)?;
#[cfg(feature = "cmos")]
{
// Add a CMOS emulated device
let mem_size = self
.memory_manager
.lock()
.unwrap()
.guest_memory()
.memory()
.last_addr()
.0
+ 1;
let mem_below_4g = std::cmp::min(arch::layout::MEM_32BIT_RESERVED_START.0, mem_size);
let mem_above_4g = mem_size.saturating_sub(arch::layout::RAM_64BIT_START.0);
let cmos = Arc::new(Mutex::new(devices::legacy::Cmos::new(
mem_below_4g,
mem_above_4g,
)));
self.bus_devices
.push(Arc::clone(&cmos) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.io_bus
.insert(cmos, 0x70, 0x2)
.map_err(DeviceManagerError::BusError)?;
}
#[cfg(feature = "fwdebug")]
{
let fwdebug = Arc::new(Mutex::new(devices::legacy::FwDebugDevice::new()));
self.bus_devices
.push(Arc::clone(&fwdebug) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.io_bus
.insert(fwdebug, 0x402, 0x1)
.map_err(DeviceManagerError::BusError)?;
}
Ok(())
}
#[cfg(target_arch = "aarch64")]
fn add_legacy_devices(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
) -> DeviceManagerResult<()> {
// Add a RTC device
let rtc_irq = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.unwrap();
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: rtc_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let rtc_device = Arc::new(Mutex::new(devices::legacy::RTC::new(interrupt_group)));
self.bus_devices
.push(Arc::clone(&rtc_device) as Arc<Mutex<dyn BusDevice>>);
let addr = GuestAddress(arch::layout::LEGACY_RTC_MAPPED_IO_START);
self.address_manager
.mmio_bus
.insert(rtc_device, addr.0, MMIO_LEN)
.map_err(DeviceManagerError::BusError)?;
self.id_to_dev_info.insert(
(DeviceType::RTC, "rtc".to_string()),
MMIODeviceInfo {
addr: addr.0,
len: MMIO_LEN,
irq: rtc_irq,
},
);
// Add a GPIO device
let id = String::from(GPIO_DEVICE_NAME_PREFIX);
let gpio_irq = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.unwrap();
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: gpio_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let gpio_device = Arc::new(Mutex::new(devices::legacy::GPIO::new(
id.clone(),
interrupt_group,
)));
self.bus_devices
.push(Arc::clone(&gpio_device) as Arc<Mutex<dyn BusDevice>>);
let addr = GuestAddress(arch::layout::LEGACY_GPIO_MAPPED_IO_START);
self.address_manager
.mmio_bus
.insert(gpio_device.clone(), addr.0, MMIO_LEN)
.map_err(DeviceManagerError::BusError)?;
self.gpio_device = Some(gpio_device.clone());
self.id_to_dev_info.insert(
(DeviceType::GPIO, "gpio".to_string()),
MMIODeviceInfo {
addr: addr.0,
len: MMIO_LEN,
irq: gpio_irq,
},
);
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, gpio_device));
Ok(())
}
#[cfg(target_arch = "x86_64")]
fn add_serial_device(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
serial_writer: Option<Box<dyn io::Write + Send>>,
) -> DeviceManagerResult<Arc<Mutex<Serial>>> {
// Serial is tied to IRQ #4
let serial_irq = 4;
let id = String::from(SERIAL_DEVICE_NAME_PREFIX);
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: serial_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let serial = Arc::new(Mutex::new(Serial::new(
id.clone(),
interrupt_group,
serial_writer,
)));
self.bus_devices
.push(Arc::clone(&serial) as Arc<Mutex<dyn BusDevice>>);
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_io_addresses(Some(GuestAddress(0x3f8)), 0x8, None)
.ok_or(DeviceManagerError::AllocateIOPort)?;
self.address_manager
.io_bus
.insert(serial.clone(), 0x3f8, 0x8)
.map_err(DeviceManagerError::BusError)?;
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, serial));
Ok(serial)
}
#[cfg(target_arch = "aarch64")]
fn add_serial_device(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
serial_writer: Option<Box<dyn io::Write + Send>>,
) -> DeviceManagerResult<Arc<Mutex<devices::legacy::PL011>>> {
let id = String::from(SERIAL_DEVICE_NAME_PREFIX);
let serial_irq = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_irq()
.unwrap();
let interrupt_group = interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: serial_irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?;
let serial = Arc::new(Mutex::new(devices::legacy::PL011::new(
id.clone(),
interrupt_group,
serial_writer,
)));
self.bus_devices
.push(Arc::clone(&serial) as Arc<Mutex<dyn BusDevice>>);
let addr = GuestAddress(arch::layout::LEGACY_SERIAL_MAPPED_IO_START);
self.address_manager
.mmio_bus
.insert(serial.clone(), addr.0, MMIO_LEN)
.map_err(DeviceManagerError::BusError)?;
self.id_to_dev_info.insert(
(DeviceType::Serial, DeviceType::Serial.to_string()),
MMIODeviceInfo {
addr: addr.0,
len: MMIO_LEN,
irq: serial_irq,
},
);
self.cmdline_additions
.push(format!("earlycon=pl011,mmio,0x{:08x}", addr.0));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, serial));
Ok(serial)
}
fn modify_mode<F: FnOnce(&mut termios)>(
&self,
fd: RawFd,
f: F,
) -> vmm_sys_util::errno::Result<()> {
// Safe because we check the return value of isatty.
if unsafe { isatty(fd) } != 1 {
return Ok(());
}
// The following pair are safe because termios gets totally overwritten by tcgetattr and we
// check the return result.
let mut termios: termios = unsafe { zeroed() };
let ret = unsafe { tcgetattr(fd, &mut termios as *mut _) };
if ret < 0 {
return vmm_sys_util::errno::errno_result();
}
f(&mut termios);
// Safe because the syscall will only read the extent of termios and we check the return result.
let ret = unsafe { tcsetattr(fd, TCSANOW, &termios as *const _) };
if ret < 0 {
return vmm_sys_util::errno::errno_result();
}
Ok(())
}
fn set_raw_mode(&self, f: &mut File) -> vmm_sys_util::errno::Result<()> {
self.modify_mode(f.as_raw_fd(), |t| t.c_lflag &= !(ICANON | ECHO | ISIG))
}
fn add_console_device(
&mut self,
interrupt_manager: &Arc<dyn InterruptManager<GroupConfig = LegacyIrqGroupConfig>>,
virtio_devices: &mut Vec<(VirtioDeviceArc, bool, String)>,
serial_pty: Option<PtyPair>,
console_pty: Option<PtyPair>,
) -> DeviceManagerResult<Arc<Console>> {
let serial_config = self.config.lock().unwrap().serial.clone();
let serial_writer: Option<Box<dyn io::Write + Send>> = match serial_config.mode {
ConsoleOutputMode::File => Some(Box::new(
File::create(serial_config.file.as_ref().unwrap())
.map_err(DeviceManagerError::SerialOutputFileOpen)?,
)),
ConsoleOutputMode::Pty => {
if let Some(pty) = serial_pty {
self.config.lock().unwrap().serial.file = Some(pty.path.clone());
let writer = pty.main.try_clone().unwrap();
self.serial_pty = Some(Arc::new(Mutex::new(pty)));
Some(Box::new(writer))
} else {
let (main, mut sub, path) =
create_pty().map_err(DeviceManagerError::SerialPtyOpen)?;
self.set_raw_mode(&mut sub)
.map_err(DeviceManagerError::SetPtyRaw)?;
self.config.lock().unwrap().serial.file = Some(path.clone());
let writer = main.try_clone().unwrap();
self.serial_pty = Some(Arc::new(Mutex::new(PtyPair { main, sub, path })));
Some(Box::new(writer))
}
}
ConsoleOutputMode::Tty => Some(Box::new(stdout())),
ConsoleOutputMode::Off | ConsoleOutputMode::Null => None,
};
let serial = if serial_config.mode != ConsoleOutputMode::Off {
Some(self.add_serial_device(interrupt_manager, serial_writer)?)
} else {
None
};
// Create serial and virtio-console
let console_config = self.config.lock().unwrap().console.clone();
let console_writer: Option<Box<dyn io::Write + Send + Sync>> = match console_config.mode {
ConsoleOutputMode::File => Some(Box::new(
File::create(console_config.file.as_ref().unwrap())
.map_err(DeviceManagerError::ConsoleOutputFileOpen)?,
)),
ConsoleOutputMode::Pty => {
if let Some(pty) = console_pty {
self.config.lock().unwrap().console.file = Some(pty.path.clone());
let writer = pty.main.try_clone().unwrap();
self.console_pty = Some(Arc::new(Mutex::new(pty)));
Some(Box::new(writer))
} else {
let (main, mut sub, path) =
create_pty().map_err(DeviceManagerError::ConsolePtyOpen)?;
self.set_raw_mode(&mut sub)
.map_err(DeviceManagerError::SetPtyRaw)?;
self.config.lock().unwrap().console.file = Some(path.clone());
let writer = main.try_clone().unwrap();
self.console_pty = Some(Arc::new(Mutex::new(PtyPair { main, sub, path })));
Some(Box::new(writer))
}
}
ConsoleOutputMode::Tty => Some(Box::new(stdout())),
ConsoleOutputMode::Null => Some(Box::new(sink())),
ConsoleOutputMode::Off => None,
};
let (col, row) = get_win_size();
let virtio_console_input = if let Some(writer) = console_writer {
let id = String::from(CONSOLE_DEVICE_NAME);
let (virtio_console_device, virtio_console_input) = virtio_devices::Console::new(
id.clone(),
writer,
col,
row,
console_config.iommu,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioConsole)?;
let virtio_console_device = Arc::new(Mutex::new(virtio_console_device));
virtio_devices.push((
Arc::clone(&virtio_console_device) as VirtioDeviceArc,
console_config.iommu,
id.clone(),
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_console_device));
Some(virtio_console_input)
} else {
None
};
let input = if serial_config.mode.input_enabled() {
Some(ConsoleInput::Serial)
} else if console_config.mode.input_enabled() {
Some(ConsoleInput::VirtioConsole)
} else {
None
};
Ok(Arc::new(Console {
serial,
virtio_console_input,
input,
}))
}
fn make_virtio_devices(&mut self) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices: Vec<(VirtioDeviceArc, bool, String)> = Vec::new();
// Create "standard" virtio devices (net/block/rng)
devices.append(&mut self.make_virtio_block_devices()?);
devices.append(&mut self.make_virtio_net_devices()?);
devices.append(&mut self.make_virtio_rng_devices()?);
// Add virtio-fs if required
devices.append(&mut self.make_virtio_fs_devices()?);
// Add virtio-pmem if required
devices.append(&mut self.make_virtio_pmem_devices()?);
// Add virtio-vsock if required
devices.append(&mut self.make_virtio_vsock_devices()?);
devices.append(&mut self.make_virtio_mem_devices()?);
// Add virtio-balloon if required
devices.append(&mut self.make_virtio_balloon_devices()?);
// Add virtio-watchdog device
devices.append(&mut self.make_virtio_watchdog_devices()?);
Ok(devices)
}
fn make_virtio_block_device(
&mut self,
disk_cfg: &mut DiskConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &disk_cfg.id {
id.clone()
} else {
let id = self.next_device_name(DISK_DEVICE_NAME_PREFIX)?;
disk_cfg.id = Some(id.clone());
id
};
if disk_cfg.vhost_user {
let socket = disk_cfg.vhost_socket.as_ref().unwrap().clone();
let vu_cfg = VhostUserConfig {
socket,
num_queues: disk_cfg.num_queues,
queue_size: disk_cfg.queue_size,
};
let vhost_user_block_device = Arc::new(Mutex::new(
match virtio_devices::vhost_user::Blk::new(
id.clone(),
vu_cfg,
self.seccomp_action.clone(),
) {
Ok(vub_device) => vub_device,
Err(e) => {
return Err(DeviceManagerError::CreateVhostUserBlk(e));
}
},
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, vhost_user_block_device));
Ok((
Arc::clone(&vhost_user_block_device) as VirtioDeviceArc,
false,
id,
))
} else {
let mut options = OpenOptions::new();
options.read(true);
options.write(!disk_cfg.readonly);
if disk_cfg.direct {
options.custom_flags(libc::O_DIRECT);
}
// Open block device path
let mut file: File = options
.open(
disk_cfg
.path
.as_ref()
.ok_or(DeviceManagerError::NoDiskPath)?
.clone(),
)
.map_err(DeviceManagerError::Disk)?;
let image_type =
detect_image_type(&mut file).map_err(DeviceManagerError::DetectImageType)?;
let image = match image_type {
ImageType::FixedVhd => {
// Use asynchronous backend relying on io_uring if the
// syscalls are supported.
if block_io_uring_is_supported() && !disk_cfg.disable_io_uring {
info!("Using asynchronous fixed VHD disk file (io_uring)");
Box::new(
FixedVhdDiskAsync::new(file)
.map_err(DeviceManagerError::CreateFixedVhdDiskAsync)?,
) as Box<dyn DiskFile>
} else {
info!("Using synchronous fixed VHD disk file");
Box::new(
FixedVhdDiskSync::new(file)
.map_err(DeviceManagerError::CreateFixedVhdDiskSync)?,
) as Box<dyn DiskFile>
}
}
ImageType::Raw => {
// Use asynchronous backend relying on io_uring if the
// syscalls are supported.
if block_io_uring_is_supported() && !disk_cfg.disable_io_uring {
info!("Using asynchronous RAW disk file (io_uring)");
Box::new(RawFileDisk::new(file)) as Box<dyn DiskFile>
} else {
info!("Using synchronous RAW disk file");
Box::new(RawFileDiskSync::new(file)) as Box<dyn DiskFile>
}
}
ImageType::Qcow2 => {
info!("Using synchronous QCOW disk file");
Box::new(QcowDiskSync::new(file, disk_cfg.direct)) as Box<dyn DiskFile>
}
};
let dev = Arc::new(Mutex::new(
virtio_devices::Block::new(
id.clone(),
image,
disk_cfg
.path
.as_ref()
.ok_or(DeviceManagerError::NoDiskPath)?
.clone(),
disk_cfg.readonly,
disk_cfg.iommu,
disk_cfg.num_queues,
disk_cfg.queue_size,
self.seccomp_action.clone(),
disk_cfg.rate_limiter_config,
)
.map_err(DeviceManagerError::CreateVirtioBlock)?,
));
let virtio_device = Arc::clone(&dev) as VirtioDeviceArc;
let migratable_device = dev as Arc<Mutex<dyn Migratable>>;
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, migratable_device));
Ok((virtio_device, disk_cfg.iommu, id))
}
}
fn make_virtio_block_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mut block_devices = self.config.lock().unwrap().disks.clone();
if let Some(disk_list_cfg) = &mut block_devices {
for disk_cfg in disk_list_cfg.iter_mut() {
devices.push(self.make_virtio_block_device(disk_cfg)?);
}
}
self.config.lock().unwrap().disks = block_devices;
Ok(devices)
}
fn make_virtio_net_device(
&mut self,
net_cfg: &mut NetConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &net_cfg.id {
id.clone()
} else {
let id = self.next_device_name(NET_DEVICE_NAME_PREFIX)?;
net_cfg.id = Some(id.clone());
id
};
if net_cfg.vhost_user {
let socket = net_cfg.vhost_socket.as_ref().unwrap().clone();
let vu_cfg = VhostUserConfig {
socket,
num_queues: net_cfg.num_queues,
queue_size: net_cfg.queue_size,
};
let vhost_user_net_device = Arc::new(Mutex::new(
match virtio_devices::vhost_user::Net::new(
id.clone(),
net_cfg.mac,
vu_cfg,
self.seccomp_action.clone(),
) {
Ok(vun_device) => vun_device,
Err(e) => {
return Err(DeviceManagerError::CreateVhostUserNet(e));
}
},
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, vhost_user_net_device));
Ok((
Arc::clone(&vhost_user_net_device) as VirtioDeviceArc,
net_cfg.iommu,
id,
))
} else {
let virtio_net_device = if let Some(ref tap_if_name) = net_cfg.tap {
Arc::new(Mutex::new(
virtio_devices::Net::new(
id.clone(),
Some(tap_if_name),
None,
None,
Some(net_cfg.mac),
&mut net_cfg.host_mac,
net_cfg.iommu,
net_cfg.num_queues,
net_cfg.queue_size,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioNet)?,
))
} else if let Some(fds) = &net_cfg.fds {
Arc::new(Mutex::new(
virtio_devices::Net::from_tap_fds(
id.clone(),
fds,
Some(net_cfg.mac),
net_cfg.iommu,
net_cfg.queue_size,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioNet)?,
))
} else {
Arc::new(Mutex::new(
virtio_devices::Net::new(
id.clone(),
None,
Some(net_cfg.ip),
Some(net_cfg.mask),
Some(net_cfg.mac),
&mut net_cfg.host_mac,
net_cfg.iommu,
net_cfg.num_queues,
net_cfg.queue_size,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioNet)?,
))
};
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_net_device));
Ok((
Arc::clone(&virtio_net_device) as VirtioDeviceArc,
net_cfg.iommu,
id,
))
}
}
/// Add virto-net and vhost-user-net devices
fn make_virtio_net_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mut net_devices = self.config.lock().unwrap().net.clone();
if let Some(net_list_cfg) = &mut net_devices {
for net_cfg in net_list_cfg.iter_mut() {
devices.push(self.make_virtio_net_device(net_cfg)?);
}
}
self.config.lock().unwrap().net = net_devices;
Ok(devices)
}
fn make_virtio_rng_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
// Add virtio-rng if required
let rng_config = self.config.lock().unwrap().rng.clone();
if let Some(rng_path) = rng_config.src.to_str() {
let id = String::from(RNG_DEVICE_NAME);
let virtio_rng_device = Arc::new(Mutex::new(
virtio_devices::Rng::new(
id.clone(),
rng_path,
rng_config.iommu,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioRng)?,
));
devices.push((
Arc::clone(&virtio_rng_device) as VirtioDeviceArc,
rng_config.iommu,
id.clone(),
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_rng_device));
}
Ok(devices)
}
fn make_virtio_fs_device(
&mut self,
fs_cfg: &mut FsConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &fs_cfg.id {
id.clone()
} else {
let id = self.next_device_name(FS_DEVICE_NAME_PREFIX)?;
fs_cfg.id = Some(id.clone());
id
};
let mut node = device_node!(id);
// Look for the id in the device tree. If it can be found, that means
// the device is being restored, otherwise it's created from scratch.
let cache_range = if let Some(node) = self.device_tree.lock().unwrap().get(&id) {
debug!("Restoring virtio-fs {} resources", id);
let mut cache_range: Option<(u64, u64)> = None;
for resource in node.resources.iter() {
match resource {
Resource::MmioAddressRange { base, size } => {
if cache_range.is_some() {
return Err(DeviceManagerError::ResourceAlreadyExists);
}
cache_range = Some((*base, *size));
}
_ => {
error!("Unexpected resource {:?} for {}", resource, id);
}
}
}
if cache_range.is_none() {
return Err(DeviceManagerError::MissingVirtioFsResources);
}
cache_range
} else {
None
};
if let Some(fs_socket) = fs_cfg.socket.to_str() {
let cache = if fs_cfg.dax {
let (cache_base, cache_size) = if let Some((base, size)) = cache_range {
// The memory needs to be 2MiB aligned in order to support
// hugepages.
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(
Some(GuestAddress(base)),
size as GuestUsize,
Some(0x0020_0000),
)
.ok_or(DeviceManagerError::FsRangeAllocation)?;
(base, size)
} else {
let size = fs_cfg.cache_size;
// The memory needs to be 2MiB aligned in order to support
// hugepages.
let base = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(None, size as GuestUsize, Some(0x0020_0000))
.ok_or(DeviceManagerError::FsRangeAllocation)?;
(base.raw_value(), size)
};
// Update the node with correct resource information.
node.resources.push(Resource::MmioAddressRange {
base: cache_base,
size: cache_size,
});
let mmap_region = MmapRegion::build(
None,
cache_size as usize,
libc::PROT_NONE,
libc::MAP_ANONYMOUS | libc::MAP_PRIVATE,
)
.map_err(DeviceManagerError::NewMmapRegion)?;
let host_addr: u64 = mmap_region.as_ptr() as u64;
let mem_slot = self
.memory_manager
.lock()
.unwrap()
.create_userspace_mapping(
cache_base, cache_size, host_addr, false, false, false,
)
.map_err(DeviceManagerError::MemoryManager)?;
let mut region_list = Vec::new();
region_list.push(VirtioSharedMemory {
offset: 0,
len: cache_size,
});
Some((
VirtioSharedMemoryList {
host_addr,
mem_slot,
addr: GuestAddress(cache_base),
len: cache_size as GuestUsize,
region_list,
},
mmap_region,
))
} else {
None
};
let virtio_fs_device = Arc::new(Mutex::new(
virtio_devices::vhost_user::Fs::new(
id.clone(),
fs_socket,
&fs_cfg.tag,
fs_cfg.num_queues,
fs_cfg.queue_size,
cache,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioFs)?,
));
// Update the device tree with the migratable device.
node.migratable = Some(Arc::clone(&virtio_fs_device) as Arc<Mutex<dyn Migratable>>);
self.device_tree.lock().unwrap().insert(id.clone(), node);
Ok((Arc::clone(&virtio_fs_device) as VirtioDeviceArc, false, id))
} else {
Err(DeviceManagerError::NoVirtioFsSock)
}
}
fn make_virtio_fs_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mut fs_devices = self.config.lock().unwrap().fs.clone();
if let Some(fs_list_cfg) = &mut fs_devices {
for fs_cfg in fs_list_cfg.iter_mut() {
devices.push(self.make_virtio_fs_device(fs_cfg)?);
}
}
self.config.lock().unwrap().fs = fs_devices;
Ok(devices)
}
fn make_virtio_pmem_device(
&mut self,
pmem_cfg: &mut PmemConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &pmem_cfg.id {
id.clone()
} else {
let id = self.next_device_name(PMEM_DEVICE_NAME_PREFIX)?;
pmem_cfg.id = Some(id.clone());
id
};
let mut node = device_node!(id);
// Look for the id in the device tree. If it can be found, that means
// the device is being restored, otherwise it's created from scratch.
let region_range = if let Some(node) = self.device_tree.lock().unwrap().get(&id) {
debug!("Restoring virtio-pmem {} resources", id);
let mut region_range: Option<(u64, u64)> = None;
for resource in node.resources.iter() {
match resource {
Resource::MmioAddressRange { base, size } => {
if region_range.is_some() {
return Err(DeviceManagerError::ResourceAlreadyExists);
}
region_range = Some((*base, *size));
}
_ => {
error!("Unexpected resource {:?} for {}", resource, id);
}
}
}
if region_range.is_none() {
return Err(DeviceManagerError::MissingVirtioFsResources);
}
region_range
} else {
None
};
let (custom_flags, set_len) = if pmem_cfg.file.is_dir() {
if pmem_cfg.size.is_none() {
return Err(DeviceManagerError::PmemWithDirectorySizeMissing);
}
(O_TMPFILE, true)
} else {
(0, false)
};
let mut file = OpenOptions::new()
.read(true)
.write(!pmem_cfg.discard_writes)
.custom_flags(custom_flags)
.open(&pmem_cfg.file)
.map_err(DeviceManagerError::PmemFileOpen)?;
let size = if let Some(size) = pmem_cfg.size {
if set_len {
file.set_len(size)
.map_err(DeviceManagerError::PmemFileSetLen)?;
}
size
} else {
file.seek(SeekFrom::End(0))
.map_err(DeviceManagerError::PmemFileSetLen)?
};
if size % 0x20_0000 != 0 {
return Err(DeviceManagerError::PmemSizeNotAligned);
}
let (region_base, region_size) = if let Some((base, size)) = region_range {
// The memory needs to be 2MiB aligned in order to support
// hugepages.
self.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(
Some(GuestAddress(base)),
size as GuestUsize,
Some(0x0020_0000),
)
.ok_or(DeviceManagerError::PmemRangeAllocation)?;
(base, size)
} else {
// The memory needs to be 2MiB aligned in order to support
// hugepages.
let base = self
.address_manager
.allocator
.lock()
.unwrap()
.allocate_mmio_addresses(None, size as GuestUsize, Some(0x0020_0000))
.ok_or(DeviceManagerError::PmemRangeAllocation)?;
(base.raw_value(), size)
};
let cloned_file = file.try_clone().map_err(DeviceManagerError::CloneFile)?;
let mmap_region = MmapRegion::build(
Some(FileOffset::new(cloned_file, 0)),
region_size as usize,
PROT_READ | PROT_WRITE,
MAP_NORESERVE
| if pmem_cfg.discard_writes {
MAP_PRIVATE
} else {
MAP_SHARED
},
)
.map_err(DeviceManagerError::NewMmapRegion)?;
let host_addr: u64 = mmap_region.as_ptr() as u64;
let mem_slot = self
.memory_manager
.lock()
.unwrap()
.create_userspace_mapping(
region_base,
region_size,
host_addr,
pmem_cfg.mergeable,
false,
false,
)
.map_err(DeviceManagerError::MemoryManager)?;
let mapping = virtio_devices::UserspaceMapping {
host_addr,
mem_slot,
addr: GuestAddress(region_base),
len: region_size,
mergeable: pmem_cfg.mergeable,
};
let virtio_pmem_device = Arc::new(Mutex::new(
virtio_devices::Pmem::new(
id.clone(),
file,
GuestAddress(region_base),
mapping,
mmap_region,
pmem_cfg.iommu,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioPmem)?,
));
// Update the device tree with correct resource information and with
// the migratable device.
node.resources.push(Resource::MmioAddressRange {
base: region_base,
size: region_size,
});
node.migratable = Some(Arc::clone(&virtio_pmem_device) as Arc<Mutex<dyn Migratable>>);
self.device_tree.lock().unwrap().insert(id.clone(), node);
Ok((
Arc::clone(&virtio_pmem_device) as VirtioDeviceArc,
pmem_cfg.iommu,
id,
))
}
fn make_virtio_pmem_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
// Add virtio-pmem if required
let mut pmem_devices = self.config.lock().unwrap().pmem.clone();
if let Some(pmem_list_cfg) = &mut pmem_devices {
for pmem_cfg in pmem_list_cfg.iter_mut() {
devices.push(self.make_virtio_pmem_device(pmem_cfg)?);
}
}
self.config.lock().unwrap().pmem = pmem_devices;
Ok(devices)
}
fn make_virtio_vsock_device(
&mut self,
vsock_cfg: &mut VsockConfig,
) -> DeviceManagerResult<(VirtioDeviceArc, bool, String)> {
let id = if let Some(id) = &vsock_cfg.id {
id.clone()
} else {
let id = self.next_device_name(VSOCK_DEVICE_NAME_PREFIX)?;
vsock_cfg.id = Some(id.clone());
id
};
let socket_path = vsock_cfg
.socket
.to_str()
.ok_or(DeviceManagerError::CreateVsockConvertPath)?;
let backend =
virtio_devices::vsock::VsockUnixBackend::new(vsock_cfg.cid, socket_path.to_string())
.map_err(DeviceManagerError::CreateVsockBackend)?;
let vsock_device = Arc::new(Mutex::new(
virtio_devices::Vsock::new(
id.clone(),
vsock_cfg.cid,
vsock_cfg.socket.clone(),
backend,
vsock_cfg.iommu,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioVsock)?,
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, vsock_device));
Ok((
Arc::clone(&vsock_device) as VirtioDeviceArc,
vsock_cfg.iommu,
id,
))
}
fn make_virtio_vsock_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mut vsock = self.config.lock().unwrap().vsock.clone();
if let Some(ref mut vsock_cfg) = &mut vsock {
devices.push(self.make_virtio_vsock_device(vsock_cfg)?);
}
self.config.lock().unwrap().vsock = vsock;
Ok(devices)
}
fn make_virtio_mem_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
let mm = self.memory_manager.clone();
let mm = mm.lock().unwrap();
for (_memory_zone_id, memory_zone) in mm.memory_zones().iter() {
if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() {
let id = self.next_device_name(MEM_DEVICE_NAME_PREFIX)?;
#[cfg(not(feature = "acpi"))]
let node_id: Option<u16> = None;
#[cfg(feature = "acpi")]
let node_id = numa_node_id_from_memory_zone_id(&self.numa_nodes, _memory_zone_id)
.map(|i| i as u16);
let virtio_mem_device = Arc::new(Mutex::new(
virtio_devices::Mem::new(
id.clone(),
virtio_mem_zone.region(),
virtio_mem_zone
.resize_handler()
.new_resize_sender()
.map_err(DeviceManagerError::CreateResizeSender)?,
self.seccomp_action.clone(),
node_id,
virtio_mem_zone.hotplugged_size(),
virtio_mem_zone.hugepages(),
)
.map_err(DeviceManagerError::CreateVirtioMem)?,
));
self.virtio_mem_devices.push(Arc::clone(&virtio_mem_device));
devices.push((
Arc::clone(&virtio_mem_device) as VirtioDeviceArc,
false,
id.clone(),
));
// Fill the device tree with a new node. In case of restore, we
// know there is nothing to do, so we can simply override the
// existing entry.
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_mem_device));
}
}
Ok(devices)
}
fn make_virtio_balloon_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
if let Some(balloon_config) = &self.config.lock().unwrap().balloon {
let id = String::from(BALLOON_DEVICE_NAME);
let virtio_balloon_device = Arc::new(Mutex::new(
virtio_devices::Balloon::new(
id.clone(),
balloon_config.size,
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioBalloon)?,
));
self.balloon = Some(virtio_balloon_device.clone());
devices.push((
Arc::clone(&virtio_balloon_device) as VirtioDeviceArc,
false,
id.clone(),
));
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_balloon_device));
}
Ok(devices)
}
fn make_virtio_watchdog_devices(
&mut self,
) -> DeviceManagerResult<Vec<(VirtioDeviceArc, bool, String)>> {
let mut devices = Vec::new();
if !self.config.lock().unwrap().watchdog {
return Ok(devices);
}
let id = String::from(WATCHDOG_DEVICE_NAME);
let virtio_watchdog_device = Arc::new(Mutex::new(
virtio_devices::Watchdog::new(
id.clone(),
self.reset_evt.try_clone().unwrap(),
self.seccomp_action.clone(),
)
.map_err(DeviceManagerError::CreateVirtioWatchdog)?,
));
devices.push((
Arc::clone(&virtio_watchdog_device) as VirtioDeviceArc,
false,
id.clone(),
));
self.device_tree
.lock()
.unwrap()
.insert(id.clone(), device_node!(id, virtio_watchdog_device));
Ok(devices)
}
fn next_device_name(&mut self, prefix: &str) -> DeviceManagerResult<String> {
let start_id = self.device_id_cnt;
loop {
// Generate the temporary name.
let name = format!("{}{}", prefix, self.device_id_cnt);
// Increment the counter.
self.device_id_cnt += Wrapping(1);
// Check if the name is already in use.
if !self.device_tree.lock().unwrap().contains_key(&name) {
return Ok(name);
}
if self.device_id_cnt == start_id {
// We went through a full loop and there's nothing else we can
// do.
break;
}
}
Err(DeviceManagerError::NoAvailableDeviceName)
}
#[cfg_attr(not(feature = "kvm"), allow(unused_variables))]
fn add_passthrough_device(
&mut self,
pci: &mut PciBus,
device_cfg: &mut DeviceConfig,
) -> DeviceManagerResult<(u32, String)> {
#[cfg(feature = "kvm")]
return self.add_vfio_device(pci, device_cfg);
#[cfg(not(feature = "kvm"))]
Err(DeviceManagerError::NoDevicePassthroughSupport)
}
#[cfg(feature = "kvm")]
fn add_vfio_device(
&mut self,
pci: &mut PciBus,
device_cfg: &mut DeviceConfig,
) -> DeviceManagerResult<(u32, String)> {
let passthrough_device = self
.passthrough_device
.as_ref()
.ok_or(DeviceManagerError::NoDevicePassthroughSupport)?;
// We need to shift the device id since the 3 first bits
// are dedicated to the PCI function, and we know we don't
// do multifunction. Also, because we only support one PCI
// bus, the bus 0, we don't need to add anything to the
// global device ID.
let pci_device_bdf = pci
.next_device_id()
.map_err(DeviceManagerError::NextPciDeviceId)?
<< 3;
let memory = self.memory_manager.lock().unwrap().guest_memory();
// Safe because we know the RawFd is valid.
//
// This dup() is mandatory to be able to give full ownership of the
// file descriptor to the DeviceFd::from_raw_fd() function later in
// the code.
//
// This is particularly needed so that VfioContainer will still have
// a valid file descriptor even if DeviceManager, and therefore the
// passthrough_device are dropped. In case of Drop, the file descriptor
// would be closed, but Linux would still have the duplicated file
// descriptor opened from DeviceFd, preventing from unexpected behavior
// where the VfioContainer would try to use a closed file descriptor.
let dup_device_fd = unsafe { libc::dup(passthrough_device.as_raw_fd()) };
// SAFETY the raw fd conversion here is safe because:
// 1. This function is only called on KVM, see the feature guard above.
// 2. When running on KVM, passthrough_device wraps around DeviceFd.
// 3. The conversion here extracts the raw fd and then turns the raw fd into a DeviceFd
// of the same (correct) type.
let vfio_container = Arc::new(
VfioContainer::new(Arc::new(unsafe { DeviceFd::from_raw_fd(dup_device_fd) }))
.map_err(DeviceManagerError::VfioCreate)?,
);
let vfio_device = VfioDevice::new(&device_cfg.path, Arc::clone(&vfio_container))
.map_err(DeviceManagerError::VfioCreate)?;
let vfio_mapping = Arc::new(VfioDmaMapping::new(
Arc::clone(&vfio_container),
Arc::new(memory),
));
if device_cfg.iommu {
if let Some(iommu) = &self.iommu_device {
iommu
.lock()
.unwrap()
.add_external_mapping(pci_device_bdf, vfio_mapping);
}
} else {
for virtio_mem_device in self.virtio_mem_devices.iter() {
virtio_mem_device
.lock()
.unwrap()
.add_dma_mapping_handler(pci_device_bdf, vfio_mapping.clone())
.map_err(DeviceManagerError::AddDmaMappingHandlerVirtioMem)?;
}
}
let legacy_interrupt_group = if let (Some(irq), Some(legacy_interrupt_manager)) = (
self.pci_device_irqs.get(&pci_device_bdf),
&self.legacy_interrupt_manager,
) {
Some(
legacy_interrupt_manager
.create_group(LegacyIrqGroupConfig {
irq: *irq as InterruptIndex,
})
.map_err(DeviceManagerError::CreateInterruptGroup)?,
)
} else {
None
};
let mut vfio_pci_device = VfioPciDevice::new(
&self.address_manager.vm,
vfio_device,
vfio_container,
&self.msi_interrupt_manager,
legacy_interrupt_group,
device_cfg.iommu,
)
.map_err(DeviceManagerError::VfioPciCreate)?;
let vfio_name = if let Some(id) = &device_cfg.id {
if self.device_tree.lock().unwrap().contains_key(id) {
return Err(DeviceManagerError::DeviceIdAlreadyInUse);
}
id.clone()
} else {
let id = self.next_device_name(VFIO_DEVICE_NAME_PREFIX)?;
device_cfg.id = Some(id.clone());
id
};
vfio_pci_device
.map_mmio_regions(&self.address_manager.vm, || {
self.memory_manager.lock().unwrap().allocate_memory_slot()
})
.map_err(DeviceManagerError::VfioMapRegion)?;
let mut node = device_node!(vfio_name);
for region in vfio_pci_device.mmio_regions() {
node.resources.push(Resource::MmioAddressRange {
base: region.start.0,
size: region.length as u64,
});
}
// Register DMA mapping in IOMMU.
// Do not register virtio-mem regions, as they are handled directly by
// virtio-mem device itself.
for (_, zone) in self.memory_manager.lock().unwrap().memory_zones().iter() {
for region in zone.regions() {
vfio_pci_device
.dma_map(
region.start_addr().raw_value(),
region.len() as u64,
region.as_ptr() as u64,
)
.map_err(DeviceManagerError::VfioDmaMap)?;
}
}
let vfio_pci_device = Arc::new(Mutex::new(vfio_pci_device));
self.add_pci_device(
pci,
vfio_pci_device.clone(),
vfio_pci_device.clone(),
PciDeviceHandle::Vfio(vfio_pci_device),
pci_device_bdf,
vfio_name.clone(),
)?;
self.device_tree
.lock()
.unwrap()
.insert(vfio_name.clone(), node);
Ok((pci_device_bdf, vfio_name))
}
fn add_pci_device(
&mut self,
pci_bus: &mut PciBus,
bus_device: Arc<Mutex<dyn BusDevice>>,
pci_device: Arc<Mutex<dyn PciDevice>>,
pci_device_handle: PciDeviceHandle,
bdf: u32,
device_id: String,
) -> DeviceManagerResult<Vec<(GuestAddress, GuestUsize, PciBarRegionType)>> {
let bars = pci_device
.lock()
.unwrap()
.allocate_bars(&mut self.address_manager.allocator.lock().unwrap())
.map_err(DeviceManagerError::AllocateBars)?;
pci_bus
.add_device(bdf, pci_device)
.map_err(DeviceManagerError::AddPciDevice)?;
self.pci_devices.insert(bdf, (device_id, pci_device_handle));
self.bus_devices.push(Arc::clone(&bus_device));
pci_bus
.register_mapping(
bus_device,
#[cfg(target_arch = "x86_64")]
self.address_manager.io_bus.as_ref(),
self.address_manager.mmio_bus.as_ref(),
bars.clone(),
)
.map_err(DeviceManagerError::AddPciDevice)?;
Ok(bars)
}
fn add_vfio_devices(&mut self, pci: &mut PciBus) -> DeviceManagerResult<Vec<u32>> {
let mut iommu_attached_device_ids = Vec::new();
let mut devices = self.config.lock().unwrap().devices.clone();
if let Some(device_list_cfg) = &mut devices {
if self.passthrough_device.is_none() {
// Create the passthrough device.
self.passthrough_device = Some(
self.address_manager
.vm
.create_passthrough_device()
.map_err(|e| DeviceManagerError::CreatePassthroughDevice(e.into()))?,
);
}
for device_cfg in device_list_cfg.iter_mut() {
let (device_id, _) = self.add_passthrough_device(pci, device_cfg)?;
if device_cfg.iommu && self.iommu_device.is_some() {
iommu_attached_device_ids.push(device_id);
}
}
}
// Update the list of devices
self.config.lock().unwrap().devices = devices;
Ok(iommu_attached_device_ids)
}
fn add_virtio_pci_device(
&mut self,
virtio_device: VirtioDeviceArc,
pci: &mut PciBus,
iommu_mapping: &Option<Arc<IommuMapping>>,
virtio_device_id: String,
) -> DeviceManagerResult<u32> {
let id = format!("{}-{}", VIRTIO_PCI_DEVICE_NAME_PREFIX, virtio_device_id);
// Add the new virtio-pci node to the device tree.
let mut node = device_node!(id);
node.children = vec![virtio_device_id.clone()];
// Look for the id in the device tree. If it can be found, that means
// the device is being restored, otherwise it's created from scratch.
let (pci_device_bdf, config_bar_addr) =
if let Some(node) = self.device_tree.lock().unwrap().get(&id) {
debug!("Restoring virtio-pci {} resources", id);
let pci_device_bdf = node
.pci_bdf
.ok_or(DeviceManagerError::MissingDeviceNodePciBdf)?;
pci.get_device_id((pci_device_bdf >> 3) as usize)
.map_err(DeviceManagerError::GetPciDeviceId)?;
if node.resources.is_empty() {
return Err(DeviceManagerError::MissingVirtioPciResources);
}
// We know the configuration BAR address is stored on the first
// resource in the list.
let config_bar_addr = match node.resources[0] {
Resource::MmioAddressRange { base, .. } => Some(base),
_ => {
error!("Unexpected resource {:?} for {}", node.resources[0], id);
return Err(DeviceManagerError::MissingVirtioPciResources);
}
};
(pci_device_bdf, config_bar_addr)
} else {
// We need to shift the device id since the 3 first bits are dedicated
// to the PCI function, and we know we don't do multifunction.
// Also, because we only support one PCI bus, the bus 0, we don't need
// to add anything to the global device ID.
let pci_device_bdf = pci
.next_device_id()
.map_err(DeviceManagerError::NextPciDeviceId)?
<< 3;
(pci_device_bdf, None)
};
// Update the existing virtio node by setting the parent.
if let Some(node) = self.device_tree.lock().unwrap().get_mut(&virtio_device_id) {
node.parent = Some(id.clone());
} else {
return Err(DeviceManagerError::MissingNode);
}
// Allows support for one MSI-X vector per queue. It also adds 1
// as we need to take into account the dedicated vector to notify
// about a virtio config change.
let msix_num = (virtio_device.lock().unwrap().queue_max_sizes().len() + 1) as u16;
// Create the callback from the implementation of the DmaRemapping
// trait. The point with the callback is to simplify the code as we
// know about the device ID from this point.
let iommu_mapping_cb: Option<Arc<VirtioIommuRemapping>> =
if let Some(mapping) = iommu_mapping {
let mapping_clone = mapping.clone();
Some(Arc::new(Box::new(move |addr: u64| {
mapping_clone.translate(pci_device_bdf, addr).map_err(|e| {
std::io::Error::new(
std::io::ErrorKind::Other,
format!(
"failed to translate addr 0x{:x} for device 00:{:02x}.0 {}",
addr, pci_device_bdf, e
),
)
})
}) as VirtioIommuRemapping))
} else {
None
};
let memory = self.memory_manager.lock().unwrap().guest_memory();
let mut virtio_pci_device = VirtioPciDevice::new(
id.clone(),
memory,
virtio_device,
msix_num,
iommu_mapping_cb,
&self.msi_interrupt_manager,
pci_device_bdf,
self.activate_evt
.try_clone()
.map_err(DeviceManagerError::EventFd)?,
)
.map_err(DeviceManagerError::VirtioDevice)?;
// This is important as this will set the BAR address if it exists,
// which is mandatory on the restore path.
if let Some(addr) = config_bar_addr {
virtio_pci_device.set_config_bar_addr(addr);
}
let virtio_pci_device = Arc::new(Mutex::new(virtio_pci_device));
let bars = self.add_pci_device(
pci,
virtio_pci_device.clone(),
virtio_pci_device.clone(),
PciDeviceHandle::Virtio(Arc::clone(&virtio_pci_device)),
pci_device_bdf,
virtio_device_id,
)?;
let bar_addr = virtio_pci_device.lock().unwrap().config_bar_addr();
for (event, addr) in virtio_pci_device.lock().unwrap().ioeventfds(bar_addr) {
let io_addr = IoEventAddress::Mmio(addr);
self.address_manager
.vm
.register_ioevent(event, &io_addr, None)
.map_err(|e| DeviceManagerError::RegisterIoevent(e.into()))?;
}
// Update the device tree with correct resource information.
for pci_bar in bars.iter() {
node.resources.push(Resource::MmioAddressRange {
base: pci_bar.0.raw_value(),
size: pci_bar.1 as u64,
});
}
node.migratable = Some(Arc::clone(&virtio_pci_device) as Arc<Mutex<dyn Migratable>>);
node.pci_bdf = Some(pci_device_bdf);
self.device_tree.lock().unwrap().insert(id, node);
Ok(pci_device_bdf)
}
#[cfg(target_arch = "x86_64")]
pub fn io_bus(&self) -> &Arc<Bus> {
&self.address_manager.io_bus
}
pub fn mmio_bus(&self) -> &Arc<Bus> {
&self.address_manager.mmio_bus
}
pub fn allocator(&self) -> &Arc<Mutex<SystemAllocator>> {
&self.address_manager.allocator
}
pub fn interrupt_controller(&self) -> Option<Arc<Mutex<dyn InterruptController>>> {
if let Some(interrupt_controller) = &self.interrupt_controller {
Some(interrupt_controller.clone() as Arc<Mutex<dyn InterruptController>>)
} else {
None
}
}
pub fn console(&self) -> &Arc<Console> {
&self.console
}
pub fn cmdline_additions(&self) -> &[String] {
self.cmdline_additions.as_slice()
}
pub fn update_memory(&self, new_region: &Arc<GuestRegionMmap>) -> DeviceManagerResult<()> {
for (virtio_device, _, _) in self.virtio_devices.iter() {
virtio_device
.lock()
.unwrap()
.add_memory_region(new_region)
.map_err(DeviceManagerError::UpdateMemoryForVirtioDevice)?;
}
// Take care of updating the memory for VFIO PCI devices.
#[cfg(feature = "kvm")]
for (_, (_, pci_device_handle)) in self.pci_devices.iter() {
if let PciDeviceHandle::Vfio(vfio_pci_device) = pci_device_handle {
vfio_pci_device
.lock()
.unwrap()
.dma_map(
new_region.start_addr().raw_value(),
new_region.len() as u64,
new_region.as_ptr() as u64,
)
.map_err(DeviceManagerError::UpdateMemoryForVfioPciDevice)?;
}
}
Ok(())
}
pub fn activate_virtio_devices(&self) -> DeviceManagerResult<()> {
// Find virtio pci devices and activate any pending ones
for (_, (_, pci_device_handle)) in self.pci_devices.iter() {
#[allow(irrefutable_let_patterns)]
if let PciDeviceHandle::Virtio(virtio_pci_device) = pci_device_handle {
virtio_pci_device.lock().unwrap().maybe_activate();
}
}
Ok(())
}
pub fn notify_hotplug(
&self,
_notification_type: AcpiNotificationFlags,
) -> DeviceManagerResult<()> {
#[cfg(feature = "acpi")]
return self
.ged_notification_device
.as_ref()
.unwrap()
.lock()
.unwrap()
.notify(_notification_type)
.map_err(DeviceManagerError::HotPlugNotification);
#[cfg(not(feature = "acpi"))]
return Ok(());
}
pub fn add_device(
&mut self,
device_cfg: &mut DeviceConfig,
) -> DeviceManagerResult<PciDeviceInfo> {
let pci = if let Some(pci_bus) = &self.pci_bus {
Arc::clone(&pci_bus)
} else {
return Err(DeviceManagerError::NoPciBus);
};
if self.passthrough_device.is_none() {
// If the passthrough device has not been created yet, it is created
// here and stored in the DeviceManager structure for future needs.
self.passthrough_device = Some(
self.address_manager
.vm
.create_passthrough_device()
.map_err(|e| DeviceManagerError::CreatePassthroughDevice(e.into()))?,
);
}
let (device_id, device_name) =
self.add_passthrough_device(&mut pci.lock().unwrap(), device_cfg)?;
// Update the PCIU bitmap
self.pci_devices_up |= 1 << (device_id >> 3);
Ok(PciDeviceInfo {
id: device_name,
bdf: device_id,
})
}
pub fn remove_device(&mut self, id: String) -> DeviceManagerResult<()> {
for (pci_device_bdf, (device_id, pci_device_handle)) in self.pci_devices.iter() {
if *device_id == id {
#[allow(irrefutable_let_patterns)]
if let PciDeviceHandle::Virtio(virtio_pci_device) = pci_device_handle {
let device_type = VirtioDeviceType::from(
virtio_pci_device
.lock()
.unwrap()
.virtio_device()
.lock()
.unwrap()
.device_type(),
);
match device_type {
VirtioDeviceType::TYPE_NET
| VirtioDeviceType::TYPE_BLOCK
| VirtioDeviceType::TYPE_PMEM
| VirtioDeviceType::TYPE_FS
| VirtioDeviceType::TYPE_VSOCK => {}
_ => return Err(DeviceManagerError::RemovalNotAllowed(device_type)),
}
}
// Update the PCID bitmap
self.pci_devices_down |= 1 << (*pci_device_bdf >> 3);
// Remove the device from the device tree along with its parent.
let mut device_tree = self.device_tree.lock().unwrap();
if let Some(node) = device_tree.remove(&id) {
if let Some(parent) = &node.parent {
device_tree.remove(parent);
}
}
return Ok(());
}
}
Err(DeviceManagerError::UnknownDeviceId(id))
}
pub fn eject_device(&mut self, device_id: u8) -> DeviceManagerResult<()> {
// Retrieve the PCI bus.
let pci = if let Some(pci_bus) = &self.pci_bus {
Arc::clone(&pci_bus)
} else {
return Err(DeviceManagerError::NoPciBus);
};
// Convert the device ID into the corresponding b/d/f.
let pci_device_bdf = (device_id as u32) << 3;
// Give the PCI device ID back to the PCI bus.
pci.lock()
.unwrap()
.put_device_id(device_id as usize)
.map_err(DeviceManagerError::PutPciDeviceId)?;
if let Some((_, pci_device_handle)) = self.pci_devices.remove(&pci_device_bdf) {
let (pci_device, bus_device, virtio_device) = match pci_device_handle {
#[cfg(feature = "kvm")]
PciDeviceHandle::Vfio(vfio_pci_device) => {
{
// Unregister DMA mapping in IOMMU.
// Do not unregister the virtio-mem region, as it is
// directly handled by the virtio-mem device.
let dev = vfio_pci_device.lock().unwrap();
for (_, zone) in self.memory_manager.lock().unwrap().memory_zones().iter() {
for region in zone.regions() {
dev.dma_unmap(region.start_addr().raw_value(), region.len() as u64)
.map_err(DeviceManagerError::VfioDmaUnmap)?;
}
}
// Unregister the VFIO mapping handler from all virtio-mem
// devices.
if !dev.iommu_attached() {
for virtio_mem_device in self.virtio_mem_devices.iter() {
virtio_mem_device
.lock()
.unwrap()
.remove_dma_mapping_handler(pci_device_bdf)
.map_err(
DeviceManagerError::RemoveDmaMappingHandlerVirtioMem,
)?;
}
}
}
(
Arc::clone(&vfio_pci_device) as Arc<Mutex<dyn PciDevice>>,
Arc::clone(&vfio_pci_device) as Arc<Mutex<dyn BusDevice>>,
None as Option<VirtioDeviceArc>,
)
}
PciDeviceHandle::Virtio(virtio_pci_device) => {
let bar_addr = virtio_pci_device.lock().unwrap().config_bar_addr();
for (event, addr) in virtio_pci_device.lock().unwrap().ioeventfds(bar_addr) {
let io_addr = IoEventAddress::Mmio(addr);
self.address_manager
.vm
.unregister_ioevent(event, &io_addr)
.map_err(|e| DeviceManagerError::UnRegisterIoevent(e.into()))?;
}
(
Arc::clone(&virtio_pci_device) as Arc<Mutex<dyn PciDevice>>,
Arc::clone(&virtio_pci_device) as Arc<Mutex<dyn BusDevice>>,
Some(virtio_pci_device.lock().unwrap().virtio_device()),
)
}
};
// Free the allocated BARs
pci_device
.lock()
.unwrap()
.free_bars(&mut self.address_manager.allocator.lock().unwrap())
.map_err(DeviceManagerError::FreePciBars)?;
// Remove the device from the PCI bus
pci.lock()
.unwrap()
.remove_by_device(&pci_device)
.map_err(DeviceManagerError::RemoveDeviceFromPciBus)?;
#[cfg(target_arch = "x86_64")]
// Remove the device from the IO bus
self.io_bus()
.remove_by_device(&bus_device)
.map_err(DeviceManagerError::RemoveDeviceFromIoBus)?;
// Remove the device from the MMIO bus
self.mmio_bus()
.remove_by_device(&bus_device)
.map_err(DeviceManagerError::RemoveDeviceFromMmioBus)?;
// Remove the device from the list of BusDevice held by the
// DeviceManager.
self.bus_devices
.retain(|dev| !Arc::ptr_eq(dev, &bus_device));
// Shutdown and remove the underlying virtio-device if present
if let Some(virtio_device) = virtio_device {
for mapping in virtio_device.lock().unwrap().userspace_mappings() {
self.memory_manager
.lock()
.unwrap()
.remove_userspace_mapping(
mapping.addr.raw_value(),
mapping.len,
mapping.host_addr,
mapping.mergeable,
mapping.mem_slot,
)
.map_err(DeviceManagerError::MemoryManager)?;
}
virtio_device.lock().unwrap().shutdown();
self.virtio_devices
.retain(|(d, _, _)| !Arc::ptr_eq(d, &virtio_device));
}
// At this point, the device has been removed from all the list and
// buses where it was stored. At the end of this function, after
// any_device, bus_device and pci_device are released, the actual
// device will be dropped.
Ok(())
} else {
Err(DeviceManagerError::MissingPciDevice)
}
}
fn hotplug_virtio_pci_device(
&mut self,
device: VirtioDeviceArc,
iommu_attached: bool,
id: String,
) -> DeviceManagerResult<PciDeviceInfo> {
if iommu_attached {
warn!("Placing device behind vIOMMU is not available for hotplugged devices");
}
let pci = if let Some(pci_bus) = &self.pci_bus {
Arc::clone(&pci_bus)
} else {
return Err(DeviceManagerError::NoPciBus);
};
// Add the virtio device to the device manager list. This is important
// as the list is used to notify virtio devices about memory updates
// for instance.
self.virtio_devices
.push((device.clone(), iommu_attached, id.clone()));
let device_id =
self.add_virtio_pci_device(device, &mut pci.lock().unwrap(), &None, id.clone())?;
// Update the PCIU bitmap
self.pci_devices_up |= 1 << (device_id >> 3);
Ok(PciDeviceInfo { id, bdf: device_id })
}
pub fn add_disk(&mut self, disk_cfg: &mut DiskConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_block_device(disk_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn add_fs(&mut self, fs_cfg: &mut FsConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_fs_device(fs_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn add_pmem(&mut self, pmem_cfg: &mut PmemConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_pmem_device(pmem_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn add_net(&mut self, net_cfg: &mut NetConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_net_device(net_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn add_vsock(&mut self, vsock_cfg: &mut VsockConfig) -> DeviceManagerResult<PciDeviceInfo> {
let (device, iommu_attached, id) = self.make_virtio_vsock_device(vsock_cfg)?;
self.hotplug_virtio_pci_device(device, iommu_attached, id)
}
pub fn counters(&self) -> HashMap<String, HashMap<&'static str, Wrapping<u64>>> {
let mut counters = HashMap::new();
for (virtio_device, _, id) in &self.virtio_devices {
let virtio_device = virtio_device.lock().unwrap();
if let Some(device_counters) = virtio_device.counters() {
counters.insert(id.clone(), device_counters.clone());
}
}
counters
}
pub fn resize_balloon(&mut self, size: u64) -> DeviceManagerResult<()> {
if let Some(balloon) = &self.balloon {
return balloon
.lock()
.unwrap()
.resize(size)
.map_err(DeviceManagerError::VirtioBalloonResize);
}
warn!("No balloon setup: Can't resize the balloon");
Err(DeviceManagerError::MissingVirtioBalloon)
}
pub fn balloon_size(&self) -> u64 {
if let Some(balloon) = &self.balloon {
return balloon.lock().unwrap().get_actual();
}
0
}
pub fn device_tree(&self) -> Arc<Mutex<DeviceTree>> {
self.device_tree.clone()
}
#[cfg(feature = "acpi")]
#[cfg(target_arch = "x86_64")]
pub fn notify_power_button(&self) -> DeviceManagerResult<()> {
self.ged_notification_device
.as_ref()
.unwrap()
.lock()
.unwrap()
.notify(AcpiNotificationFlags::POWER_BUTTON_CHANGED)
.map_err(DeviceManagerError::PowerButtonNotification)
}
#[cfg(target_arch = "aarch64")]
pub fn notify_power_button(&self) -> DeviceManagerResult<()> {
self.gpio_device
.as_ref()
.unwrap()
.lock()
.unwrap()
.trigger_key(3)
.map_err(DeviceManagerError::AArch64PowerButtonNotification)
}
}
#[cfg(feature = "acpi")]
fn numa_node_id_from_memory_zone_id(numa_nodes: &NumaNodes, memory_zone_id: &str) -> Option<u32> {
for (numa_node_id, numa_node) in numa_nodes.iter() {
if numa_node
.memory_zones()
.contains(&memory_zone_id.to_owned())
{
return Some(*numa_node_id);
}
}
None
}
#[cfg(feature = "acpi")]
struct PciDevSlot {
device_id: u8,
}
#[cfg(feature = "acpi")]
impl Aml for PciDevSlot {
fn to_aml_bytes(&self) -> Vec<u8> {
let sun = self.device_id;
let adr: u32 = (self.device_id as u32) << 16;
aml::Device::new(
format!("S{:03}", self.device_id).as_str().into(),
vec![
&aml::Name::new("_SUN".into(), &sun),
&aml::Name::new("_ADR".into(), &adr),
&aml::Method::new(
"_EJ0".into(),
1,
true,
vec![&aml::MethodCall::new(
"\\_SB_.PHPR.PCEJ".into(),
vec![&aml::Path::new("_SUN")],
)],
),
],
)
.to_aml_bytes()
}
}
#[cfg(feature = "acpi")]
struct PciDevSlotNotify {
device_id: u8,
}
#[cfg(feature = "acpi")]
impl Aml for PciDevSlotNotify {
fn to_aml_bytes(&self) -> Vec<u8> {
let device_id_mask: u32 = 1 << self.device_id;
let object = aml::Path::new(&format!("S{:03}", self.device_id));
let mut bytes = aml::And::new(&aml::Local(0), &aml::Arg(0), &device_id_mask).to_aml_bytes();
bytes.extend_from_slice(
&aml::If::new(
&aml::Equal::new(&aml::Local(0), &device_id_mask),
vec![&aml::Notify::new(&object, &aml::Arg(1))],
)
.to_aml_bytes(),
);
bytes
}
}
#[cfg(feature = "acpi")]
struct PciDevSlotMethods {}
#[cfg(feature = "acpi")]
impl Aml for PciDevSlotMethods {
fn to_aml_bytes(&self) -> Vec<u8> {
let mut device_notifies = Vec::new();
for device_id in 0..32 {
device_notifies.push(PciDevSlotNotify { device_id });
}
let mut device_notifies_refs: Vec<&dyn aml::Aml> = Vec::new();
for device_notify in device_notifies.iter() {
device_notifies_refs.push(device_notify);
}
let mut bytes =
aml::Method::new("DVNT".into(), 2, true, device_notifies_refs).to_aml_bytes();
bytes.extend_from_slice(
&aml::Method::new(
"PCNT".into(),
0,
true,
vec![
&aml::MethodCall::new(
"DVNT".into(),
vec![&aml::Path::new("\\_SB_.PHPR.PCIU"), &aml::ONE],
),
&aml::MethodCall::new(
"DVNT".into(),
vec![&aml::Path::new("\\_SB_.PHPR.PCID"), &3usize],
),
],
)
.to_aml_bytes(),
);
bytes
}
}
#[cfg(feature = "acpi")]
impl Aml for DeviceManager {
fn to_aml_bytes(&self) -> Vec<u8> {
let mut bytes = Vec::new();
// PCI hotplug controller
bytes.extend_from_slice(
&aml::Device::new(
"_SB_.PHPR".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")),
&aml::Name::new("_STA".into(), &0x0bu8),
&aml::Name::new("_UID".into(), &"PCI Hotplug Controller"),
&aml::Mutex::new("BLCK".into(), 0),
&aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
self.acpi_address.0 as u64,
self.acpi_address.0 + DEVICE_MANAGER_ACPI_SIZE as u64 - 1,
)]),
),
// OpRegion and Fields map MMIO range into individual field values
&aml::OpRegion::new(
"PCST".into(),
aml::OpRegionSpace::SystemMemory,
self.acpi_address.0 as usize,
DEVICE_MANAGER_ACPI_SIZE,
),
&aml::Field::new(
"PCST".into(),
aml::FieldAccessType::DWord,
aml::FieldUpdateRule::WriteAsZeroes,
vec![
aml::FieldEntry::Named(*b"PCIU", 32),
aml::FieldEntry::Named(*b"PCID", 32),
aml::FieldEntry::Named(*b"B0EJ", 32),
],
),
&aml::Method::new(
"PCEJ".into(),
1,
true,
vec![
// Take lock defined above
&aml::Acquire::new("BLCK".into(), 0xffff),
// Write PCI bus number (in first argument) to I/O port via field
&aml::ShiftLeft::new(&aml::Path::new("B0EJ"), &aml::ONE, &aml::Arg(0)),
// Release lock
&aml::Release::new("BLCK".into()),
// Return 0
&aml::Return::new(&aml::ZERO),
],
),
],
)
.to_aml_bytes(),
);
let start_of_device_area = self.memory_manager.lock().unwrap().start_of_device_area().0;
let end_of_device_area = self.memory_manager.lock().unwrap().end_of_device_area().0;
let mut pci_dsdt_inner_data: Vec<&dyn aml::Aml> = Vec::new();
let hid = aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A08"));
pci_dsdt_inner_data.push(&hid);
let cid = aml::Name::new("_CID".into(), &aml::EISAName::new("PNP0A03"));
pci_dsdt_inner_data.push(&cid);
let adr = aml::Name::new("_ADR".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&adr);
let seg = aml::Name::new("_SEG".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&seg);
let uid = aml::Name::new("_UID".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&uid);
let supp = aml::Name::new("SUPP".into(), &aml::ZERO);
pci_dsdt_inner_data.push(&supp);
let crs = aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![
&aml::AddressSpace::new_bus_number(0x0u16, 0xffu16),
&aml::IO::new(0xcf8, 0xcf8, 1, 0x8),
&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
layout::MEM_32BIT_DEVICES_START.0 as u32,
(layout::MEM_32BIT_DEVICES_START.0 + layout::MEM_32BIT_DEVICES_SIZE - 1) as u32,
),
&aml::AddressSpace::new_memory(
aml::AddressSpaceCachable::NotCacheable,
true,
start_of_device_area,
end_of_device_area,
),
]),
);
pci_dsdt_inner_data.push(&crs);
let mut pci_devices = Vec::new();
for device_id in 0..32 {
let pci_device = PciDevSlot { device_id };
pci_devices.push(pci_device);
}
for pci_device in pci_devices.iter() {
pci_dsdt_inner_data.push(pci_device);
}
let pci_device_methods = PciDevSlotMethods {};
pci_dsdt_inner_data.push(&pci_device_methods);
// Build PCI routing table, listing IRQs assigned to PCI devices.
let prt_package_list: Vec<(u32, u32)> = self
.pci_device_irqs
.iter()
.map(|(bdf, irq)| (((((*bdf >> 3) & 0x1fu32) << 16) | 0xffffu32), *irq))
.collect();
let prt_package_list: Vec<aml::Package> = prt_package_list
.iter()
.map(|(bdf, irq)| aml::Package::new(vec![bdf, &0u8, &0u8, irq]))
.collect();
let prt_package_list: Vec<&dyn Aml> = prt_package_list
.iter()
.map(|item| item as &dyn Aml)
.collect();
let prt = aml::Name::new("_PRT".into(), &aml::Package::new(prt_package_list));
pci_dsdt_inner_data.push(&prt);
let pci_dsdt_data =
aml::Device::new("_SB_.PCI0".into(), pci_dsdt_inner_data).to_aml_bytes();
let mbrd_dsdt_data = aml::Device::new(
"_SB_.MBRD".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0C02")),
&aml::Name::new("_UID".into(), &aml::ZERO),
&aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![&aml::Memory32Fixed::new(
true,
layout::PCI_MMCONFIG_START.0 as u32,
layout::PCI_MMCONFIG_SIZE as u32,
)]),
),
],
)
.to_aml_bytes();
let com1_dsdt_data = aml::Device::new(
"_SB_.COM1".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0501")),
&aml::Name::new("_UID".into(), &aml::ZERO),
&aml::Name::new(
"_CRS".into(),
&aml::ResourceTemplate::new(vec![
&aml::Interrupt::new(true, true, false, false, 4),
&aml::IO::new(0x3f8, 0x3f8, 0, 0x8),
]),
),
],
)
.to_aml_bytes();
let s5_sleep_data =
aml::Name::new("_S5_".into(), &aml::Package::new(vec![&5u8])).to_aml_bytes();
let power_button_dsdt_data = aml::Device::new(
"_SB_.PWRB".into(),
vec![
&aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0C0C")),
&aml::Name::new("_UID".into(), &aml::ZERO),
],
)
.to_aml_bytes();
let ged_data = self
.ged_notification_device
.as_ref()
.unwrap()
.lock()
.unwrap()
.to_aml_bytes();
bytes.extend_from_slice(pci_dsdt_data.as_slice());
bytes.extend_from_slice(mbrd_dsdt_data.as_slice());
if self.config.lock().unwrap().serial.mode != ConsoleOutputMode::Off {
bytes.extend_from_slice(com1_dsdt_data.as_slice());
}
bytes.extend_from_slice(s5_sleep_data.as_slice());
bytes.extend_from_slice(power_button_dsdt_data.as_slice());
bytes.extend_from_slice(ged_data.as_slice());
bytes
}
}
impl Pausable for DeviceManager {
fn pause(&mut self) -> result::Result<(), MigratableError> {
for (_, device_node) in self.device_tree.lock().unwrap().iter() {
if let Some(migratable) = &device_node.migratable {
migratable.lock().unwrap().pause()?;
}
}
Ok(())
}
fn resume(&mut self) -> result::Result<(), MigratableError> {
for (_, device_node) in self.device_tree.lock().unwrap().iter() {
if let Some(migratable) = &device_node.migratable {
migratable.lock().unwrap().resume()?;
}
}
Ok(())
}
}
impl Snapshottable for DeviceManager {
fn id(&self) -> String {
DEVICE_MANAGER_SNAPSHOT_ID.to_string()
}
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
let mut snapshot = Snapshot::new(DEVICE_MANAGER_SNAPSHOT_ID);
// We aggregate all devices snapshots.
for (_, device_node) in self.device_tree.lock().unwrap().iter() {
if let Some(migratable) = &device_node.migratable {
let device_snapshot = migratable.lock().unwrap().snapshot()?;
snapshot.add_snapshot(device_snapshot);
}
}
// Then we store the DeviceManager state.
snapshot.add_data_section(SnapshotDataSection {
id: format!("{}-section", DEVICE_MANAGER_SNAPSHOT_ID),
snapshot: serde_json::to_vec(&self.state())
.map_err(|e| MigratableError::Snapshot(e.into()))?,
});
Ok(snapshot)
}
fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> {
// Let's first restore the DeviceManager.
if let Some(device_manager_section) = snapshot
.snapshot_data
.get(&format!("{}-section", DEVICE_MANAGER_SNAPSHOT_ID))
{
let device_manager_state = serde_json::from_slice(&device_manager_section.snapshot)
.map_err(|e| {
MigratableError::Restore(anyhow!("Could not deserialize DeviceManager {}", e))
})?;
self.set_state(&device_manager_state);
} else {
return Err(MigratableError::Restore(anyhow!(
"Could not find DeviceManager snapshot section"
)));
}
// Now that DeviceManager is updated with the right states, it's time
// to create the devices based on the configuration.
self.create_devices(None, None)
.map_err(|e| MigratableError::Restore(anyhow!("Could not create devices {:?}", e)))?;
// Finally, restore all devices associated with the DeviceManager.
// It's important to restore devices in the right order, that's why
// the device tree is the right way to ensure we restore a child before
// its parent node.
for node in self
.device_tree
.lock()
.unwrap()
.breadth_first_traversal()
.rev()
{
// Restore the node
if let Some(migratable) = &node.migratable {
debug!("Restoring {} from DeviceManager", node.id);
if let Some(snapshot) = snapshot.snapshots.get(&node.id) {
migratable.lock().unwrap().pause()?;
migratable.lock().unwrap().restore(*snapshot.clone())?;
} else {
return Err(MigratableError::Restore(anyhow!(
"Missing device {}",
node.id
)));
}
}
}
Ok(())
}
}
impl Transportable for DeviceManager {}
impl Migratable for DeviceManager {}
const PCIU_FIELD_OFFSET: u64 = 0;
const PCID_FIELD_OFFSET: u64 = 4;
const B0EJ_FIELD_OFFSET: u64 = 8;
const PCIU_FIELD_SIZE: usize = 4;
const PCID_FIELD_SIZE: usize = 4;
const B0EJ_FIELD_SIZE: usize = 4;
impl BusDevice for DeviceManager {
fn read(&mut self, base: u64, offset: u64, data: &mut [u8]) {
match offset {
PCIU_FIELD_OFFSET => {
assert!(data.len() == PCIU_FIELD_SIZE);
data.copy_from_slice(&self.pci_devices_up.to_le_bytes());
// Clear the PCIU bitmap
self.pci_devices_up = 0;
}
PCID_FIELD_OFFSET => {
assert!(data.len() == PCID_FIELD_SIZE);
data.copy_from_slice(&self.pci_devices_down.to_le_bytes());
// Clear the PCID bitmap
self.pci_devices_down = 0;
}
_ => error!(
"Accessing unknown location at base 0x{:x}, offset 0x{:x}",
base, offset
),
}
debug!(
"PCI_HP_REG_R: base 0x{:x}, offset 0x{:x}, data {:?}",
base, offset, data
)
}
fn write(&mut self, base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
match offset {
B0EJ_FIELD_OFFSET => {
assert!(data.len() == B0EJ_FIELD_SIZE);
let mut data_array: [u8; 4] = [0, 0, 0, 0];
data_array.copy_from_slice(&data[..]);
let device_bitmap = u32::from_le_bytes(data_array);
for device_id in 0..32 {
let mask = 1u32 << device_id;
if (device_bitmap & mask) == mask {
if let Err(e) = self.eject_device(device_id as u8) {
error!("Failed ejecting device {}: {:?}", device_id, e);
}
}
}
}
_ => error!(
"Accessing unknown location at base 0x{:x}, offset 0x{:x}",
base, offset
),
}
debug!(
"PCI_HP_REG_W: base 0x{:x}, offset 0x{:x}, data {:?}",
base, offset, data
);
None
}
}
impl Drop for DeviceManager {
fn drop(&mut self) {
for (device, _, _) in self.virtio_devices.drain(..) {
device.lock().unwrap().shutdown();
}
}
}