cloud-hypervisor/devices/src/ioapic.rs
Rob Bradford f643ba6111 devices: Simplify device state to support Versionize
In order to support using Versionize for state structures it is necessary
to use simpler, primitive, data types in the state definitions used for
snapshot restore.

Signed-off-by: Rob Bradford <robert.bradford@intel.com>
2021-04-23 14:24:16 +01:00

426 lines
14 KiB
Rust

// Copyright 2019 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//
// Implementation of an intel 82093AA Input/Output Advanced Programmable Interrupt Controller
// See https://pdos.csail.mit.edu/6.828/2016/readings/ia32/ioapic.pdf for a specification.
use super::interrupt_controller::{Error, InterruptController};
use anyhow::anyhow;
use byteorder::{ByteOrder, LittleEndian};
use std::result;
use std::sync::{Arc, Barrier};
use vm_device::interrupt::{
InterruptIndex, InterruptManager, InterruptSourceConfig, InterruptSourceGroup,
MsiIrqGroupConfig, MsiIrqSourceConfig,
};
use vm_device::BusDevice;
use vm_memory::GuestAddress;
use vm_migration::{Migratable, MigratableError, Pausable, Snapshot, Snapshottable, Transportable};
use vmm_sys_util::eventfd::EventFd;
type Result<T> = result::Result<T, Error>;
// I/O REDIRECTION TABLE REGISTER
//
// There are 24 I/O Redirection Table entry registers. Each register is a
// dedicated entry for each interrupt input signal. Each register is 64 bits
// split between two 32 bits registers as follow:
//
// 63-56: Destination Field - R/W
// 55-17: Reserved
// 16: Interrupt Mask - R/W
// 15: Trigger Mode - R/W
// 14: Remote IRR - RO
// 13: Interrupt Input Pin Polarity - R/W
// 12: Delivery Status - RO
// 11: Destination Mode - R/W
// 10-8: Delivery Mode - R/W
// 7-0: Interrupt Vector - R/W
pub type RedirectionTableEntry = u64;
fn vector(entry: RedirectionTableEntry) -> u8 {
(entry & 0xffu64) as u8
}
fn delivery_mode(entry: RedirectionTableEntry) -> u8 {
((entry >> 8) & 0x7u64) as u8
}
fn destination_mode(entry: RedirectionTableEntry) -> u8 {
((entry >> 11) & 0x1u64) as u8
}
fn remote_irr(entry: RedirectionTableEntry) -> u8 {
((entry >> 14) & 0x1u64) as u8
}
fn trigger_mode(entry: RedirectionTableEntry) -> u8 {
((entry >> 15) & 0x1u64) as u8
}
fn interrupt_mask(entry: RedirectionTableEntry) -> u8 {
((entry >> 16) & 0x1u64) as u8
}
fn destination_field(entry: RedirectionTableEntry) -> u8 {
// When the destination mode is physical, the destination field should only
// be defined through bits 56-59, as defined in the IOAPIC specification.
// But from the APIC specification, the APIC ID is always defined on 8 bits
// no matter which destination mode is selected. That's why we always
// retrieve the destination field based on bits 56-63.
((entry >> 56) & 0xffu64) as u8
}
fn set_delivery_status(entry: &mut RedirectionTableEntry, val: u8) {
// Clear bit 12
*entry &= 0xffff_ffff_ffff_efff;
// Set it with the expected value
*entry |= u64::from(val & 0x1) << 12;
}
fn set_remote_irr(entry: &mut RedirectionTableEntry, val: u8) {
// Clear bit 14
*entry &= 0xffff_ffff_ffff_bfff;
// Set it with the expected value
*entry |= u64::from(val & 0x1) << 14;
}
pub const NUM_IOAPIC_PINS: usize = 24;
const IOAPIC_VERSION_ID: u32 = 0x0017_0011;
// Constants for IOAPIC direct register offset
const IOAPIC_REG_ID: u8 = 0x00;
const IOAPIC_REG_VERSION: u8 = 0x01;
const IOAPIC_REG_ARBITRATION_ID: u8 = 0x02;
// Register offsets
const IOREGSEL_OFF: u8 = 0x0;
const IOWIN_OFF: u8 = 0x10;
const IOWIN_SCALE: u8 = 0x2;
const REG_MAX_OFFSET: u8 = IOWIN_OFF + (NUM_IOAPIC_PINS as u8 * 2) - 1;
#[repr(u8)]
enum TriggerMode {
Edge = 0,
Level = 1,
}
#[repr(u8)]
enum DeliveryMode {
Fixed = 0b000,
Lowest = 0b001,
Smi = 0b010, // System management interrupt
RemoteRead = 0b011, // This is no longer supported by intel.
Nmi = 0b100, // Non maskable interrupt
Init = 0b101,
Startup = 0b110,
External = 0b111,
}
/// Given an offset that was read from/written to, return a tuple of the relevant IRQ and whether
/// the offset refers to the high bits of that register.
fn decode_irq_from_selector(selector: u8) -> (usize, bool) {
(
((selector - IOWIN_OFF) / IOWIN_SCALE) as usize,
selector & 1 != 0,
)
}
pub struct Ioapic {
id: String,
id_reg: u32,
reg_sel: u32,
reg_entries: [RedirectionTableEntry; NUM_IOAPIC_PINS],
used_entries: [bool; NUM_IOAPIC_PINS],
apic_address: GuestAddress,
interrupt_source_group: Arc<Box<dyn InterruptSourceGroup>>,
}
#[derive(Serialize, Deserialize)]
pub struct IoapicState {
id_reg: u32,
reg_sel: u32,
reg_entries: [RedirectionTableEntry; NUM_IOAPIC_PINS],
used_entries: [bool; NUM_IOAPIC_PINS],
apic_address: u64,
}
impl BusDevice for Ioapic {
fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) {
assert!(data.len() == 4);
debug!("IOAPIC_R @ offset 0x{:x}", offset);
let value: u32 = match offset as u8 {
IOREGSEL_OFF => self.reg_sel,
IOWIN_OFF => self.ioapic_read(),
_ => {
error!("IOAPIC: failed reading at offset {}", offset);
return;
}
};
LittleEndian::write_u32(data, value);
}
fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
assert!(data.len() == 4);
debug!("IOAPIC_W @ offset 0x{:x}", offset);
let value = LittleEndian::read_u32(data);
match offset as u8 {
IOREGSEL_OFF => self.reg_sel = value,
IOWIN_OFF => self.ioapic_write(value),
_ => {
error!("IOAPIC: failed writing at offset {}", offset);
}
}
None
}
}
impl Ioapic {
pub fn new(
id: String,
apic_address: GuestAddress,
interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
) -> Result<Ioapic> {
let interrupt_source_group = interrupt_manager
.create_group(MsiIrqGroupConfig {
base: 0,
count: NUM_IOAPIC_PINS as InterruptIndex,
})
.map_err(Error::CreateInterruptSourceGroup)?;
// The IOAPIC is created with entries already masked. The guest will be
// in charge of unmasking them if/when necessary.
Ok(Ioapic {
id,
id_reg: 0,
reg_sel: 0,
reg_entries: [0x10000; NUM_IOAPIC_PINS],
used_entries: [false; NUM_IOAPIC_PINS],
apic_address,
interrupt_source_group,
})
}
fn ioapic_write(&mut self, val: u32) {
debug!("IOAPIC_W reg 0x{:x}, val 0x{:x}", self.reg_sel, val);
match self.reg_sel as u8 {
IOAPIC_REG_VERSION => {
if val == 0 {
// Windows writes zero here (see #1791)
} else {
error!(
"IOAPIC: invalid write to version register (0x{:x}): 0x{:x}",
self.reg_sel, val
);
}
}
IOAPIC_REG_ID => self.id_reg = (val >> 24) & 0xf,
IOWIN_OFF..=REG_MAX_OFFSET => {
let (index, is_high_bits) = decode_irq_from_selector(self.reg_sel as u8);
if is_high_bits {
self.reg_entries[index] &= 0xffff_ffff;
self.reg_entries[index] |= u64::from(val) << 32;
} else {
// Ensure not to override read-only bits:
// - Delivery Status (bit 12)
// - Remote IRR (bit 14)
self.reg_entries[index] &= 0xffff_ffff_0000_5000;
self.reg_entries[index] |= u64::from(val) & 0xffff_afff;
}
// The entry must be updated through the interrupt source
// group.
if let Err(e) = self.update_entry(index) {
error!("Failed updating IOAPIC entry: {:?}", e);
}
// Store the information this IRQ is now being used.
self.used_entries[index] = true;
}
_ => error!(
"IOAPIC: invalid write to register offset 0x{:x}",
self.reg_sel
),
}
}
fn ioapic_read(&self) -> u32 {
debug!("IOAPIC_R reg 0x{:x}", self.reg_sel);
match self.reg_sel as u8 {
IOAPIC_REG_VERSION => IOAPIC_VERSION_ID,
IOAPIC_REG_ID | IOAPIC_REG_ARBITRATION_ID => (self.id_reg & 0xf) << 24,
IOWIN_OFF..=REG_MAX_OFFSET => {
let (index, is_high_bits) = decode_irq_from_selector(self.reg_sel as u8);
if is_high_bits {
(self.reg_entries[index] >> 32) as u32
} else {
(self.reg_entries[index] & 0xffff_ffff) as u32
}
}
_ => {
error!(
"IOAPIC: invalid read from register offset 0x{:x}",
self.reg_sel
);
0
}
}
}
fn state(&self) -> IoapicState {
IoapicState {
id_reg: self.id_reg,
reg_sel: self.reg_sel,
reg_entries: self.reg_entries,
used_entries: self.used_entries,
apic_address: self.apic_address.0,
}
}
fn set_state(&mut self, state: &IoapicState) -> Result<()> {
self.id_reg = state.id_reg;
self.reg_sel = state.reg_sel;
self.reg_entries = state.reg_entries;
self.used_entries = state.used_entries;
self.apic_address = GuestAddress(state.apic_address);
for (irq, entry) in self.used_entries.iter().enumerate() {
if *entry {
self.update_entry(irq)?;
}
}
Ok(())
}
fn update_entry(&self, irq: usize) -> Result<()> {
let entry = self.reg_entries[irq];
// Validate Destination Mode value, and retrieve Destination ID
let destination_mode = destination_mode(entry);
let destination_id = destination_field(entry);
// When this bit is set, the message is directed to the processor with
// the lowest interrupt priority among processors that can receive the
// interrupt.
let redirection_hint: u8 = 1;
// Generate MSI message address
let low_addr: u32 = self.apic_address.0 as u32
| u32::from(destination_id) << 12
| u32::from(redirection_hint) << 3
| u32::from(destination_mode) << 2;
// Validate Trigger Mode value
let trigger_mode = trigger_mode(entry);
match trigger_mode {
x if (x == TriggerMode::Edge as u8) || (x == TriggerMode::Level as u8) => {}
_ => return Err(Error::InvalidTriggerMode),
}
// Validate Delivery Mode value
let delivery_mode = delivery_mode(entry);
match delivery_mode {
x if (x == DeliveryMode::Fixed as u8)
|| (x == DeliveryMode::Lowest as u8)
|| (x == DeliveryMode::Smi as u8)
|| (x == DeliveryMode::RemoteRead as u8)
|| (x == DeliveryMode::Nmi as u8)
|| (x == DeliveryMode::Init as u8)
|| (x == DeliveryMode::Startup as u8)
|| (x == DeliveryMode::External as u8) => {}
_ => return Err(Error::InvalidDeliveryMode),
}
// Generate MSI message data
let data: u32 = u32::from(trigger_mode) << 15
| u32::from(remote_irr(entry)) << 14
| u32::from(delivery_mode) << 8
| u32::from(vector(entry));
let config = MsiIrqSourceConfig {
high_addr: 0x0,
low_addr,
data,
devid: 0,
};
self.interrupt_source_group
.update(irq as InterruptIndex, InterruptSourceConfig::MsiIrq(config))
.map_err(Error::UpdateInterrupt)?;
if interrupt_mask(entry) == 1 {
self.interrupt_source_group
.mask(irq as InterruptIndex)
.map_err(Error::MaskInterrupt)?;
} else {
self.interrupt_source_group
.unmask(irq as InterruptIndex)
.map_err(Error::UnmaskInterrupt)?;
}
Ok(())
}
}
impl InterruptController for Ioapic {
// The ioapic must be informed about EOIs in order to deassert interrupts
// already sent.
fn end_of_interrupt(&mut self, vec: u8) {
for i in 0..NUM_IOAPIC_PINS {
let entry = &mut self.reg_entries[i];
// Clear Remote IRR bit
if vector(*entry) == vec && trigger_mode(*entry) == 1 {
set_remote_irr(entry, 0);
}
}
}
// This should be called anytime an interrupt needs to be injected into the
// running guest.
fn service_irq(&mut self, irq: usize) -> Result<()> {
let entry = &mut self.reg_entries[irq];
self.interrupt_source_group
.trigger(irq as InterruptIndex)
.map_err(Error::TriggerInterrupt)?;
debug!("Interrupt successfully delivered");
// If trigger mode is level sensitive, set the Remote IRR bit.
// It will be cleared when the EOI is received.
if trigger_mode(*entry) == 1 {
set_remote_irr(entry, 1);
}
// Clear the Delivery Status bit
set_delivery_status(entry, 0);
Ok(())
}
fn notifier(&self, irq: usize) -> Option<EventFd> {
self.interrupt_source_group.notifier(irq as InterruptIndex)
}
}
impl Snapshottable for Ioapic {
fn id(&self) -> String {
self.id.clone()
}
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
Snapshot::new_from_state(&self.id, &self.state())
}
fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> {
self.set_state(&snapshot.to_state(&self.id)?).map_err(|e| {
MigratableError::Restore(anyhow!("Could not restore state for {}: {:?}", self.id, e))
})
}
}
impl Pausable for Ioapic {}
impl Transportable for Ioapic {}
impl Migratable for Ioapic {}