libvirt/src/cpu/cpu.h

172 lines
4.5 KiB
C
Raw Normal View History

Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
/*
* cpu.h: internal functions for CPU manipulation
*
build: consistently use C99 varargs macros Prior to this patch, there was an inconsistent mix between GNU and C99. For consistency, and potential portability to other compilers, stick with the C99 vararg macro syntax. * src/conf/cpu_conf.c (virCPUReportError): Use C99 rather than GNU vararg macro syntax. * src/conf/domain_conf.c (virDomainReportError): Likewise. * src/conf/domain_event.c (eventReportError): Likewise. * src/conf/interface_conf.c (virInterfaceReportError): Likewise. * src/conf/network_conf.c (virNetworkReportError): Likewise. * src/conf/node_device_conf.h (virNodeDeviceReportError): Likewise. * src/conf/secret_conf.h (virSecretReportError): Likewise. * src/conf/storage_conf.h (virStorageReportError): Likewise. * src/esx/esx_device_monitor.c (ESX_ERROR): Use C99 rather than GNU vararg macro syntax. * src/esx/esx_driver.c (ESX_ERROR): Likewise. * src/esx/esx_interface_driver.c (ESX_ERROR): Likewise. * src/esx/esx_network_driver.c (ESX_ERROR): Likewise. * src/esx/esx_secret_driver.c (ESX_ERROR): Likewise. * src/esx/esx_storage_driver.c (ESX_ERROR): Likewise. * src/esx/esx_util.c (ESX_ERROR): Likewise. * src/esx/esx_vi.c (ESX_VI_ERROR): Likewise. * src/esx/esx_vi_methods.c (ESX_VI_ERROR): Likewise. * src/esx/esx_vi_types.c (ESX_VI_ERROR): Likewise. * src/esx/esx_vmx.c (ESX_ERROR): Likewise. * src/util/hostusb.c (usbReportError): Use C99 rather than GNU vararg macro syntax. * src/util/json.c (virJSONError): Likewise. * src/util/macvtap.c (ReportError): Likewise. * src/util/pci.c (pciReportError): Likewise. * src/util/stats_linux.c (virStatsError): Likewise. * src/util/util.c (virUtilError): Likewise. * src/util/xml.c (virXMLError): Likewise. * src/xen/proxy_internal.c (virProxyError): Use C99 rather than GNU vararg macro syntax. * src/xen/sexpr.c (virSexprError): Likewise. * src/xen/xen_driver.c (xenUnifiedError): Likewise. * src/xen/xen_hypervisor.c (virXenError): Likewise. * src/xen/xen_inotify.c (virXenInotifyError): Likewise. * src/xen/xend_internal.c (virXendError): Likewise. * src/xen/xm_internal.c (xenXMError): Likewise. * src/xen/xs_internal.c (virXenStoreError): Likewise. * src/cpu/cpu.h (virCPUReportError): Use C99 rather than GNU vararg macro syntax. * src/datatypes.c (virLibConnError): Likewise. * src/interface/netcf_driver.c (interfaceReportError): Likewise. * src/libvirt.c (virLibStreamError): Likewise. * src/lxc/lxc_conf.h (lxcError): Likewise. * src/network/bridge_driver.c (networkReportError): Likewise. * src/nodeinfo.c (nodeReportError): Likewise. * src/opennebula/one_conf.h (oneError): Likewise. * src/openvz/openvz_conf.h (openvzError): Likewise. * src/phyp/phyp_driver.c (PHYP_ERROR): Likewise. * src/qemu/qemu_conf.h (qemuReportError): Likewise. * src/remote/remote_driver.c (errorf): Likewise. * src/security/security_driver.h (virSecurityReportError): Likewise. * src/test/test_driver.c (testError): Likewise. * src/uml/uml_conf.h (umlReportError): Likewise. * src/vbox/vbox_driver.c (vboxError): Likewise. * src/vbox/vbox_tmpl.c (vboxError): Likewise.
2010-03-01 23:38:28 +00:00
* Copyright (C) 2009-2010 Red Hat, Inc.
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
*
* Authors:
* Jiri Denemark <jdenemar@redhat.com>
*/
#ifndef __VIR_CPU_H__
# define __VIR_CPU_H__
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
# include "virerror.h"
# include "datatypes.h"
# include "virarch.h"
# include "conf/cpu_conf.h"
# include "cpu_x86_data.h"
# include "cpu_ppc_data.h"
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
union cpuData {
struct cpuX86Data x86;
/* generic driver needs no data */
/* PowerPC driver need data*/
struct cpuPPCData ppc;
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
};
typedef virCPUCompareResult
(*cpuArchCompare) (virCPUDefPtr host,
virCPUDefPtr cpu);
typedef int
(*cpuArchDecode) (virCPUDefPtr cpu,
const union cpuData *data,
const char **models,
unsigned int nmodels,
const char *preferred);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
typedef int
(*cpuArchEncode) (const virCPUDefPtr cpu,
union cpuData **forced,
union cpuData **required,
union cpuData **optional,
union cpuData **disabled,
union cpuData **forbidden,
union cpuData **vendor);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
typedef void
(*cpuArchDataFree) (union cpuData *data);
typedef union cpuData *
(*cpuArchNodeData) (void);
typedef virCPUCompareResult
(*cpuArchGuestData) (virCPUDefPtr host,
virCPUDefPtr guest,
union cpuData **data,
char **message);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
typedef virCPUDefPtr
(*cpuArchBaseline) (virCPUDefPtr *cpus,
unsigned int ncpus,
const char **models,
unsigned int nmodels);
typedef int
(*cpuArchUpdate) (virCPUDefPtr guest,
const virCPUDefPtr host);
typedef int
(*cpuArchHasFeature) (const union cpuData *data,
const char *feature);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
struct cpuArchDriver {
const char *name;
const virArch *arch;
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
unsigned int narch;
cpuArchCompare compare;
cpuArchDecode decode;
cpuArchEncode encode;
cpuArchDataFree free;
cpuArchNodeData nodeData;
cpuArchGuestData guestData;
cpuArchBaseline baseline;
cpuArchUpdate update;
cpuArchHasFeature hasFeature;
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
};
extern virCPUCompareResult
cpuCompareXML(virCPUDefPtr host,
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
const char *xml);
extern virCPUCompareResult
cpuCompare (virCPUDefPtr host,
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
virCPUDefPtr cpu);
extern int
cpuDecode (virCPUDefPtr cpu,
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
const union cpuData *data,
const char **models,
unsigned int nmodels,
const char *preferred);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
extern int
cpuEncode (virArch arch,
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
const virCPUDefPtr cpu,
union cpuData **forced,
union cpuData **required,
union cpuData **optional,
union cpuData **disabled,
union cpuData **forbidden,
union cpuData **vendor);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
extern void
cpuDataFree (virArch arch,
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
union cpuData *data);
extern union cpuData *
cpuNodeData (virArch arch);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
extern virCPUCompareResult
cpuGuestData(virCPUDefPtr host,
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
virCPUDefPtr guest,
union cpuData **data,
char **msg);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
extern char *
cpuBaselineXML(const char **xmlCPUs,
unsigned int ncpus,
const char **models,
unsigned int nmodels);
extern virCPUDefPtr
cpuBaseline (virCPUDefPtr *cpus,
unsigned int ncpus,
const char **models,
unsigned int nmodels);
extern int
cpuUpdate (virCPUDefPtr guest,
const virCPUDefPtr host);
extern int
cpuHasFeature(virArch arch,
const union cpuData *data,
const char *feature);
bool
cpuModelIsAllowed(const char *model,
const char **models,
unsigned int nmodels);
Adds CPU selection infrastructure Each driver supporting CPU selection must fill in host CPU capabilities. When filling them, drivers for hypervisors running on the same node as libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers, such as VMware, need to implement their own way of getting such data. Raw data can be decoded into virCPUDefPtr using cpuDecode() function. When implementing virConnectCompareCPU(), a hypervisor driver can just call cpuCompareXML() function with host CPU capabilities. For each guest for which a driver supports selecting CPU models, it must set the appropriate feature in guest's capabilities: virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0) Actions needed when a domain is being created depend on whether the hypervisor understands raw CPU data (currently CPUID for i686, x86_64 architectures) or symbolic names has to be used. Typical use by hypervisors which prefer CPUID (such as VMware and Xen): - convert guest CPU configuration from domain's XML into a set of raw data structures each representing one of the feature policies: cpuEncode(conn, architecture, guest_cpu_config, &forced_data, &required_data, &optional_data, &disabled_data, &forbidden_data) - create a mask or whatever the hypervisor expects to see and pass it to the hypervisor Typical use by hypervisors with symbolic model names (such as QEMU): - get raw CPU data for a computed guest CPU: cpuGuestData(conn, host_cpu, guest_cpu_config, &data) - decode raw data into virCPUDefPtr with a possible restriction on allowed model names: cpuDecode(conn, guest, data, n_allowed_models, allowed_models) - pass guest->model and guest->features to the hypervisor * src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h * configure.in: check for CPUID instruction * src/Makefile.am: glue the new files in * src/libvirt_private.syms: add new private symbols * po/POTFILES.in: add new cpu files containing translatable strings
2009-12-18 15:02:11 +00:00
#endif /* __VIR_CPU_H__ */