libvirt/src/nwfilter/nwfilter_learnipaddr.h

70 lines
2.4 KiB
C
Raw Normal View History

nwfilter: Support for learning a VM's IP address This patch implements support for learning a VM's IP address. It uses the pcap library to listen on the VM's backend network interface (tap) or the physical ethernet device (macvtap) and tries to capture packets with source or destination MAC address of the VM and learn from DHCP Offers, ARP traffic, or first-sent IPv4 packet what the IP address of the VM's interface is. This then allows to instantiate the network traffic filtering rules without the user having to provide the IP parameter somewhere in the filter description or in the interface description as a parameter. This only supports to detect the parameter IP, which is for the assumed single IPv4 address of a VM. There is not support for interfaces that may have multiple IP addresses (IP aliasing) or IPv6 that may then require more than one valid IP address to be detected. A VM can have multiple independent interfaces that each uses a different IP address and in that case it will be attempted to detect each one of the address independently. So, when for example an interface description in the domain XML has looked like this up to now: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'> <parameter name='IP' value='10.2.3.4'/> </filterref> </interface> you may omit the IP parameter: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'/> </interface> Internally I am walking the 'tree' of a VM's referenced network filters and determine with the given variables which variables are missing. Now, the above IP parameter may be missing and this causes a libvirt-internal thread to be started that uses the pcap library's API to listen to the backend interface (in case of macvtap to the physical interface) in an attempt to determine the missing IP parameter. If the backend interface disappears the thread terminates assuming the VM was brought down. In case of a macvtap device a timeout is being used to wait for packets from the given VM (filtering by VM's interface MAC address). If the VM's macvtap device disappeared the thread also terminates. In all other cases it tries to determine the IP address of the VM and will then apply the rules late on the given interface, which would have happened immediately if the IP parameter had been explicitly given. In case an error happens while the firewall rules are applied, the VM's backend interface is 'down'ed preventing it to communicate. Reasons for failure for applying the network firewall rules may that an ebtables/iptables command failes or OOM errors. Essentially the same failure reasons may occur as when the firewall rules are applied immediately on VM start, except that due to the late application of the filtering rules the VM now is already running and cannot be hindered anymore from starting. Bringing down the whole VM would probably be considered too drastic. While a VM's IP address is attempted to be determined only limited updates to network filters are allowed. In particular it is prevented that filters are modified in such a way that they would introduce new variables. A caveat: The algorithm does not know which one is the appropriate IP address of a VM. If the VM spoofs an IP address in its first ARP traffic or IPv4 packets its filtering rules will be instantiated for this IP address, thus 'locking' it to the found IP address. So, it's still 'safer' to explicitly provide the IP address of a VM's interface in the filter description if it is known beforehand. * configure.ac: detect libpcap * libvirt.spec.in: require libpcap[-devel] if qemu is built * src/internal.h: add the new ATTRIBUTE_PACKED define * src/Makefile.am src/libvirt_private.syms: add the new modules and symbols * src/nwfilter/nwfilter_learnipaddr.[ch]: new module being added * src/nwfilter/nwfilter_driver.c src/conf/nwfilter_conf.[ch] src/nwfilter/nwfilter_ebiptables_driver.[ch] src/nwfilter/nwfilter_gentech_driver.[ch]: plu the new functionality in * tests/nwfilterxml2xmltest: extend testing
2010-04-07 21:02:18 +00:00
/*
* nwfilter_learnipaddr.h: support for learning IP address used by a VM
* on an interface
*
* Copyright (C) 2010 IBM Corp.
* Copyright (C) 2010 Stefan Berger
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Stefan Berger <stefanb@us.ibm.com>
*/
#ifndef __NWFILTER_LEARNIPADDR_H
# define __NWFILTER_LEARNIPADDR_H
enum howDetect {
DETECT_DHCP = 1,
DETECT_STATIC = 2,
};
typedef struct _virNWFilterIPAddrLearnReq virNWFilterIPAddrLearnReq;
typedef virNWFilterIPAddrLearnReq *virNWFilterIPAddrLearnReqPtr;
struct _virNWFilterIPAddrLearnReq {
virNWFilterTechDriverPtr techdriver;
nwfilter: Support for learning a VM's IP address This patch implements support for learning a VM's IP address. It uses the pcap library to listen on the VM's backend network interface (tap) or the physical ethernet device (macvtap) and tries to capture packets with source or destination MAC address of the VM and learn from DHCP Offers, ARP traffic, or first-sent IPv4 packet what the IP address of the VM's interface is. This then allows to instantiate the network traffic filtering rules without the user having to provide the IP parameter somewhere in the filter description or in the interface description as a parameter. This only supports to detect the parameter IP, which is for the assumed single IPv4 address of a VM. There is not support for interfaces that may have multiple IP addresses (IP aliasing) or IPv6 that may then require more than one valid IP address to be detected. A VM can have multiple independent interfaces that each uses a different IP address and in that case it will be attempted to detect each one of the address independently. So, when for example an interface description in the domain XML has looked like this up to now: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'> <parameter name='IP' value='10.2.3.4'/> </filterref> </interface> you may omit the IP parameter: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'/> </interface> Internally I am walking the 'tree' of a VM's referenced network filters and determine with the given variables which variables are missing. Now, the above IP parameter may be missing and this causes a libvirt-internal thread to be started that uses the pcap library's API to listen to the backend interface (in case of macvtap to the physical interface) in an attempt to determine the missing IP parameter. If the backend interface disappears the thread terminates assuming the VM was brought down. In case of a macvtap device a timeout is being used to wait for packets from the given VM (filtering by VM's interface MAC address). If the VM's macvtap device disappeared the thread also terminates. In all other cases it tries to determine the IP address of the VM and will then apply the rules late on the given interface, which would have happened immediately if the IP parameter had been explicitly given. In case an error happens while the firewall rules are applied, the VM's backend interface is 'down'ed preventing it to communicate. Reasons for failure for applying the network firewall rules may that an ebtables/iptables command failes or OOM errors. Essentially the same failure reasons may occur as when the firewall rules are applied immediately on VM start, except that due to the late application of the filtering rules the VM now is already running and cannot be hindered anymore from starting. Bringing down the whole VM would probably be considered too drastic. While a VM's IP address is attempted to be determined only limited updates to network filters are allowed. In particular it is prevented that filters are modified in such a way that they would introduce new variables. A caveat: The algorithm does not know which one is the appropriate IP address of a VM. If the VM spoofs an IP address in its first ARP traffic or IPv4 packets its filtering rules will be instantiated for this IP address, thus 'locking' it to the found IP address. So, it's still 'safer' to explicitly provide the IP address of a VM's interface in the filter description if it is known beforehand. * configure.ac: detect libpcap * libvirt.spec.in: require libpcap[-devel] if qemu is built * src/internal.h: add the new ATTRIBUTE_PACKED define * src/Makefile.am src/libvirt_private.syms: add the new modules and symbols * src/nwfilter/nwfilter_learnipaddr.[ch]: new module being added * src/nwfilter/nwfilter_driver.c src/conf/nwfilter_conf.[ch] src/nwfilter/nwfilter_ebiptables_driver.[ch] src/nwfilter/nwfilter_gentech_driver.[ch]: plu the new functionality in * tests/nwfilterxml2xmltest: extend testing
2010-04-07 21:02:18 +00:00
char ifname[IF_NAMESIZE];
char linkdev[IF_NAMESIZE];
enum virDomainNetType nettype;
unsigned char macaddr[VIR_MAC_BUFLEN];
char *filtername;
virNWFilterHashTablePtr filterparams;
virNWFilterDriverStatePtr driver;
enum howDetect howDetect;
int status;
pthread_t thread;
};
int virNWFilterLearnIPAddress(virNWFilterTechDriverPtr techdriver,
const char *ifname,
nwfilter: Support for learning a VM's IP address This patch implements support for learning a VM's IP address. It uses the pcap library to listen on the VM's backend network interface (tap) or the physical ethernet device (macvtap) and tries to capture packets with source or destination MAC address of the VM and learn from DHCP Offers, ARP traffic, or first-sent IPv4 packet what the IP address of the VM's interface is. This then allows to instantiate the network traffic filtering rules without the user having to provide the IP parameter somewhere in the filter description or in the interface description as a parameter. This only supports to detect the parameter IP, which is for the assumed single IPv4 address of a VM. There is not support for interfaces that may have multiple IP addresses (IP aliasing) or IPv6 that may then require more than one valid IP address to be detected. A VM can have multiple independent interfaces that each uses a different IP address and in that case it will be attempted to detect each one of the address independently. So, when for example an interface description in the domain XML has looked like this up to now: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'> <parameter name='IP' value='10.2.3.4'/> </filterref> </interface> you may omit the IP parameter: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'/> </interface> Internally I am walking the 'tree' of a VM's referenced network filters and determine with the given variables which variables are missing. Now, the above IP parameter may be missing and this causes a libvirt-internal thread to be started that uses the pcap library's API to listen to the backend interface (in case of macvtap to the physical interface) in an attempt to determine the missing IP parameter. If the backend interface disappears the thread terminates assuming the VM was brought down. In case of a macvtap device a timeout is being used to wait for packets from the given VM (filtering by VM's interface MAC address). If the VM's macvtap device disappeared the thread also terminates. In all other cases it tries to determine the IP address of the VM and will then apply the rules late on the given interface, which would have happened immediately if the IP parameter had been explicitly given. In case an error happens while the firewall rules are applied, the VM's backend interface is 'down'ed preventing it to communicate. Reasons for failure for applying the network firewall rules may that an ebtables/iptables command failes or OOM errors. Essentially the same failure reasons may occur as when the firewall rules are applied immediately on VM start, except that due to the late application of the filtering rules the VM now is already running and cannot be hindered anymore from starting. Bringing down the whole VM would probably be considered too drastic. While a VM's IP address is attempted to be determined only limited updates to network filters are allowed. In particular it is prevented that filters are modified in such a way that they would introduce new variables. A caveat: The algorithm does not know which one is the appropriate IP address of a VM. If the VM spoofs an IP address in its first ARP traffic or IPv4 packets its filtering rules will be instantiated for this IP address, thus 'locking' it to the found IP address. So, it's still 'safer' to explicitly provide the IP address of a VM's interface in the filter description if it is known beforehand. * configure.ac: detect libpcap * libvirt.spec.in: require libpcap[-devel] if qemu is built * src/internal.h: add the new ATTRIBUTE_PACKED define * src/Makefile.am src/libvirt_private.syms: add the new modules and symbols * src/nwfilter/nwfilter_learnipaddr.[ch]: new module being added * src/nwfilter/nwfilter_driver.c src/conf/nwfilter_conf.[ch] src/nwfilter/nwfilter_ebiptables_driver.[ch] src/nwfilter/nwfilter_gentech_driver.[ch]: plu the new functionality in * tests/nwfilterxml2xmltest: extend testing
2010-04-07 21:02:18 +00:00
const char *linkdev,
enum virDomainNetType nettype,
const unsigned char *macaddr,
const char *filtername,
virNWFilterHashTablePtr filterparams,
virNWFilterDriverStatePtr driver,
enum howDetect howDetect);
virNWFilterIPAddrLearnReqPtr virNWFilterLookupLearnReq(const char *ifname);
void virNWFilterDelIpAddrForIfname(const char *ifname);
const char *virNWFilterGetIpAddrForIfname(const char *ifname);
int virNWFilterLearnInit(void);
void virNWFilterLearnShutdown(void);
#endif /* __NWFILTER_LEARNIPADDR_H */