The following patches introduce CPU features read from MSR in addition
to those queried via CPUID instruction. Let's introduce a container
struct which will be able to describe either feature type.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
The function exports the functionality of x86DataToSignatureFull and
x86MakeSignature to the test suite.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
Require that all headers are guarded by a symbol named
LIBVIRT_$FILENAME
where $FILENAME is the uppercased filename, with all characters
outside a-z changed into '_'.
Note we do not use a leading __ because that is technically a
namespace reserved for the toolchain.
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
In many files there are header comments that contain an Author:
statement, supposedly reflecting who originally wrote the code.
In a large collaborative project like libvirt, any non-trivial
file will have been modified by a large number of different
contributors. IOW, the Author: comments are quickly out of date,
omitting people who have made significant contribitions.
In some places Author: lines have been added despite the person
merely being responsible for creating the file by moving existing
code out of another file. IOW, the Author: lines give an incorrect
record of authorship.
With this all in mind, the comments are useless as a means to identify
who to talk to about code in a particular file. Contributors will always
be better off using 'git log' and 'git blame' if they need to find the
author of a particular bit of code.
This commit thus deletes all Author: comments from the source and adds
a rule to prevent them reappearing.
The Copyright headers are similarly misleading and inaccurate, however,
we cannot delete these as they have legal meaning, despite being largely
inaccurate. In addition only the copyright holder is permitted to change
their respective copyright statement.
Reviewed-by: Erik Skultety <eskultet@redhat.com>
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Even though only family and model are used for matching CPUID data with
CPU models from cpu_map.xml, stepping is used by x86DataFilterTSX which
is supposed to disable TSX on CPU models with broken TSX support. Thus
we need to start parsing stepping from QEMU to make sure we don't
disable TSX on CPUs which provide working TSX implementation. See the
following patch for a real world example of such CPU.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: John Ferlan <jferlan@redhat.com>
The API is useful for creating virCPUData in a hypervisor driver from
data we got by querying the hypervisor.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The API is useful for creating virCPUData in a hypervisor driver from
data we got by querying the hypervisor.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The API is useful for creating virCPUData in a hypervisor driver from
data we got by querying the hypervisor.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The CPU driver provides APIs to create and free virCPUDataPtr. Thus all
APIs exported from the driver should work with that rather than
requiring the caller to pass a pointer to an internal part of the
structure.
In other words
virCPUx86DataAddCPUID(cpudata, &cpuid)
is much better than the original
virCPUx86DataAddCPUID(&cpudata->data.x86, &cpuid)
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
virCPUData, virCPUx86Feature, and virCPUx86Model all contained a pointer
to virCPUx86Data, which was not very nice since the real CPUID data were
accessible by yet another pointer from virCPUx86Data. Moreover, using
virCPUx86Data directly will make static definitions of internal CPU
features a bit easier.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
This makes virCPUx86DataAddCPUID, virCPUx86DataFree, and
virCPUx86MakeData available for direct usage outside of cpu driver in
tests and the new qemu monitor that will request the actual CPU
definition from a running qemu instance.
https://www.gnu.org/licenses/gpl-howto.html recommends that
the 'If not, see <url>.' phrase be a separate sentence.
* tests/securityselinuxhelper.c: Remove doubled line.
* tests/securityselinuxtest.c: Likewise.
* globally: s/; If/. If/
Per the FSF address could be changed from time to time, and GNU
recommends the following now: (http://www.gnu.org/licenses/gpl-howto.html)
You should have received a copy of the GNU General Public License
along with Foobar. If not, see <http://www.gnu.org/licenses/>.
This patch removes the explicit FSF address, and uses above instead
(of course, with inserting 'Lesser' before 'General').
Except a bunch of files for security driver, all others are changed
automatically, the copyright for securify files are not complete,
that's why to do it manually:
src/security/security_selinux.h
src/security/security_driver.h
src/security/security_selinux.c
src/security/security_apparmor.h
src/security/security_apparmor.c
src/security/security_driver.c
Each driver supporting CPU selection must fill in host CPU capabilities.
When filling them, drivers for hypervisors running on the same node as
libvirtd can use cpuNodeData() to obtain raw CPU data. Other drivers,
such as VMware, need to implement their own way of getting such data.
Raw data can be decoded into virCPUDefPtr using cpuDecode() function.
When implementing virConnectCompareCPU(), a hypervisor driver can just
call cpuCompareXML() function with host CPU capabilities.
For each guest for which a driver supports selecting CPU models, it must
set the appropriate feature in guest's capabilities:
virCapabilitiesAddGuestFeature(guest, "cpuselection", 1, 0)
Actions needed when a domain is being created depend on whether the
hypervisor understands raw CPU data (currently CPUID for i686, x86_64
architectures) or symbolic names has to be used.
Typical use by hypervisors which prefer CPUID (such as VMware and Xen):
- convert guest CPU configuration from domain's XML into a set of raw
data structures each representing one of the feature policies:
cpuEncode(conn, architecture, guest_cpu_config,
&forced_data, &required_data, &optional_data,
&disabled_data, &forbidden_data)
- create a mask or whatever the hypervisor expects to see and pass it
to the hypervisor
Typical use by hypervisors with symbolic model names (such as QEMU):
- get raw CPU data for a computed guest CPU:
cpuGuestData(conn, host_cpu, guest_cpu_config, &data)
- decode raw data into virCPUDefPtr with a possible restriction on
allowed model names:
cpuDecode(conn, guest, data, n_allowed_models, allowed_models)
- pass guest->model and guest->features to the hypervisor
* src/cpu/cpu.c src/cpu/cpu.h src/cpu/cpu_generic.c
src/cpu/cpu_generic.h src/cpu/cpu_map.c src/cpu/cpu_map.h
src/cpu/cpu_x86.c src/cpu/cpu_x86.h src/cpu/cpu_x86_data.h
* configure.in: check for CPUID instruction
* src/Makefile.am: glue the new files in
* src/libvirt_private.syms: add new private symbols
* po/POTFILES.in: add new cpu files containing translatable strings