Current implementation does not detect all incompatible configurations.
For example if we have in vzsdk bootorder "cdrom1, cdrom0" (that is
"hdb, hda" in case of ide cdroms) and cdroms do not have disk
images inserted. In this case boot order check code fails to
distiguish them at all as for both PrlVmDev_GetFriendlyName gives "".
Well the consequences are only missing warnings but as
we just have introduced all the necessary tools to face the problem -
let's fix it.
Signed-off-by: Nikolay Shirokovskiy <nshirokovskiy@virtuozzo.com>
Actually using disk PrlVmDev_GetFriendlyName as id on
detaching volumes is not a problem. We can only detach
hard disks and these can not have empty friendly names.
But upcoming update device functionality for cdroms
can not use disk source as id at all as update operation
typically change this same source value. Thus we will need
to use cdrom bus and cdrom target name as cdrom id. So in attempt
to use same id scheme for all purpuses lets fix hard disk
detach function to use new id.
Signed-off-by: Nikolay Shirokovskiy <nshirokovskiy@virtuozzo.com>
Our intention is to use disk bus and disk target name pair
as disk id instead of name returned by PrlVmDev_GetFriendlyName.
We already have the code that extracts this pair from vzsdk
data. Let's factor it out into a function.
Signed-off-by: Nikolay Shirokovskiy <nshirokovskiy@virtuozzo.com>
Prior to this patch we didn't make any attempt to prevent two entries
in the array of interfaces/PCI devices from pointing to the same
device.
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1002423
The common idiom in the driver API implementations is roughly:
- ACL check
- BeginJob (if needed)
- AgentAvailable (if needed)
- !IsActive
A few calls had an extra !IsActive before BeginJob, which doesn't
seem to serve much use. Drop them
It isn't implemented and does not work:
error: internal error: guest failed to start: /usr/lib/libvirt/libvirt_lxc: option '--veth' requires an argument
syntax: /usr/lib/libvirt/libvirt_lxc [OPTIONS] ...
We previously threw an explicit error, but this changed in
22cff52a2b8e06c913b1f97767e5d390fb17fc3b , which I suspect was
untested for LXC
So in glibc-2.23 sys/sysmacros.h is no longer included from sys/types.h
and we don't build because of the usage of major/minor/makedev macros.
Autoconf already has AC_HEADER_MAJOR macro that check where exactly
these functions/macros are defined, so let's use that.
Signed-off-by: Martin Kletzander <mkletzan@redhat.com>
These API already support VIR_DOMAIN_AFFECT_* flags. But the
documentation does not mention it. Eww.
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
Since threadpool increments the current number of threads according to current
load, i.e. how many jobs are waiting in the queue. The count however, is
constrained by max and min limits of workers. The logic of this new API works
like this:
1) setting the minimum
a) When the limit is increased, depending on the current number of
threads, new threads are possibly spawned if the current number of
threads is less than the new minimum limit
b) Decreasing the minimum limit has no possible effect on the current
number of threads
2) setting the maximum
a) Icreasing the maximum limit has no immediate effect on the current
number of threads, it only allows the threadpool to spawn more
threads when new jobs, that would otherwise end up queued, arrive.
b) Decreasing the maximum limit may affect the current number of
threads, if the current number of threads is less than the new
maximum limit. Since there may be some ongoing time-consuming jobs
that would effectively block this API from killing any threads.
Therefore, this API is asynchronous with best-effort execution,
i.e. the necessary number of workers will be terminated once they
finish their previous job, unless other workers had already
terminated, decreasing the limit to the requested value.
3) setting priority workers
- both increase and decrease in count of these workers have an
immediate impact on the current number of workers, new ones will be
spawned or some of them get terminated respectively.
Signed-off-by: Erik Skultety <eskultet@redhat.com>
New API to retrieve current server workerpool specs. Since it uses typed
parameters, more specs to retrieve can be further included in the pool of
supported ones.
Signed-off-by: Erik Skultety <eskultet@redhat.com>
In order for the client to see all thread counts and limits, current total
and free worker count getters need to be introduced. Client might also be
interested in the job queue length, so provide a getter for that too. As with
the other getters, preparing for the admin interface, mutual exclusion is used
within all getters.
Signed-off-by: Erik Skultety <eskultet@redhat.com>
So far, the values the affected getters retrieve are static, i.e. there's no
way of changing them during runtime. But admin interface will later enable
not only getting but changing them as well. So to prevent phenomenons like
torn reads or concurrent reads and writes of unaligned values, use mutual
exclusion when getting these values (writes do, understandably, use them
already).
Signed-off-by: Erik Skultety <eskultet@redhat.com>
When either creating a threadpool, or creating a new thread to accomplish a job
that had been placed into the jobqueue, every time thread-specific data need to
be allocated, threadpool needs to be (re)-allocated and thread count indicators
updated. Make the code clearer to read by compressing these operations into a
more complex one.
Signed-off-by: Erik Skultety <eskultet@redhat.com>
virTypedParamsValidate currently uses an index based check to find
duplicate parameters. This check does not work. Consider the following
simple example:
We have only 2 keys
A (multiples allowed)
B (multiples NOT allowed)
We are given the following list of parameters to check:
A
A
B
If you work through the validation loop you will see that our last iteration
through the loop has i=2 and j=1. In this case, i > j and keys[j].value.i will
indicate that multiples are not allowed. Both conditionals are satisfied so
an incorrect error will be given: "parameter '%s' occurs multiple times"
This patch replaces the index based check with code that remembers
the name of the last parameter seen and only triggers the error case if
the current parameter name equals the last one. This works because the
list is sorted and duplicate parameters will be grouped together.
In reality, we hit this bug while using selective block migration to migrate
a guest with 5 disks. 5 was apparently just the right number to push i > j
and hit this bug.
virsh migrate --live guestname --copy-storage-all
--migrate-disks vdb,vdc,vdd,vde,vdf
qemu+ssh://dsthost/system
Signed-off-by: Jason J. Herne <jjherne@linux.vnet.ibm.com>
Reviewed-by: Eric Farman <farman@linux.vnet.ibm.com>
Migration API allows to specify a destination domain configuration.
Offline domain has only inactive XML and it is replaced by configuration
specified using VIR_MIGRATE_PARAM_DEST_XML param. In case of live
migration VIR_MIGRATE_PARAM_DEST_XML param is applied for active XML.
This commit introduces the new VIR_MIGRATE_PARAM_PERSIST_XML param
that can be used within live migration to replace persistent/inactive
configuration.
Required for: https://bugzilla.redhat.com/show_bug.cgi?id=835300
By default, `zfs create -V ...` reserves space for the entire volsize,
plus some extra (which attempts to account for overhead).
If `zfs create -s -V ...` is used instead, zvols are (fully) sparse.
A middle ground (partial allocation) can be achieved with
`zfs create -s -o refreservation=... -V ...`. Both libvirt and ZFS
support this approach, so the ZFS storage backend should support it.
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Commit id '4b75237f' seems to have triggered Coverity into finding
at least one memory leak in xen_xl.c for error path for cleanup where
the listenAddr would be leaked. Reviewing other callers, it seems that
qemu_parse_command.c would have the same issue, so just it too.
To ensure the libvirt libxl driver will build with future versions
of Xen where the libxl API may change in incompatible ways,
explicitly use LIBXL_API_VERSION 0x040200. The libxl driver
does use new libxl APIs that have been added since Xen 4.2, but
currently it does not make use of any changes made to existing
APIs such as libxl_domain_create_restore or libxl_set_vcpuaffinity.
The version can be bumped if/when the libxl driver consumes the
changed APIs.
Further details can be found in the following discussion thread
https://www.redhat.com/archives/libvir-list/2016-April/msg00178.html
Signed-off-by: Jim Fehlig <jfehlig@suse.com>
When creating the master key, we used mode 0600 (which we should) but
because we were creating it as root, the file is not readable by any
qemu running as non-root. Fortunately, it's just a matter of labelling
the file. We are generating the file path few times already, so let's
label it in the same function that has access to the path already.
Signed-off-by: Martin Kletzander <mkletzan@redhat.com>
In a few places in libvirt we busy-wait for events, for example qemu
creating a monitor socket. This is problematic because:
- We need to choose a sufficiently small polling period so that
libvirt doesn't add unnecessary delays.
- We need to choose a sufficiently large polling period so that
the effect of busy-waiting doesn't affect the system.
The solution to this conflict is to use an exponential backoff.
This patch adds two functions to hide the details, and modifies a few
places where we currently busy-wait.
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
In case of ploop volume, target path of the volume is the path to the
directory that contains image file named root.hds and DiskDescriptor.xml.
While using uploadVol and downloadVol callbacks we need to open root.hds
itself.
Upload or download operations with ploop volume are only allowed when
images do not have snapshots. Otherwise operation fails.
Signed-off-by: Olga Krishtal <okrishtal@virtuozzo.com>
Signed-off-by: Ján Tomko <jtomko@redhat.com>
Refreshes meta-information such as allocation, capacity, format, etc.
Ploop volumes differ from other volume types. Path to volume is the path
to directory with image file root.hds and DiskDescriptor.xml.
https://openvz.org/Ploop/format
Due to this fact, operations of opening the volume have to be done once
again. get the information.
To decide whether the given volume is ploops one, it is necessary to check
the presence of root.hds and DiskDescriptor.xml files in volumes' directory.
Only in this case the volume can be manipulated as the ploops one.
Such strategy helps us to resolve problems that might occure, when we
upload some other volume type from ploop source.
Signed-off-by: Olga Krishtal <okrishtal@virtuozzo.com>
Signed-off-by: Ján Tomko <jtomko@redhat.com>
Recursively deletes whole directory of a ploop volume.
To delete ploop image it has to be unmounted.
Signed-off-by: Olga Krishtal <okrishtal@virtuozzo.com>
These callbacks let us to create ploop volumes in dir, fs and etc. pools.
If a ploop volume was created via buildVol callback, then this volume
is an empty ploop device with DiskDescriptor.xml.
If the volume was created via .buildFrom - then its content is similar to
input volume content.
Signed-off-by: Olga Krishtal <okrishtal@virtuozzo.com>
Signed-off-by: Ján Tomko <jtomko@redhat.com>
Ploop image consists of directory with two files: ploop image itself,
called root.hds and DiskDescriptor.xml that contains information about
ploop device: https://openvz.org/Ploop/format.
Such volume are difficult to manipulate in terms of existing volume types
because they are neither a single files nor a directory.
This patch introduces new volume type - ploop. This volume type is used
by ploop volume's exclusively.
Signed-off-by: Olga Krishtal <okrishtal@virtuozzo.com>
Signed-off-by: Ján Tomko <jtomko@redhat.com>
Rather than trying some magic calculations on our side query the monitor
for the current size of the memory balloon both on hotplug and
hotunplug.
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1220702
Now that there is just one format of the memory balloon command line
used the code can be merged into a single function.
Additionally with some tweaks to the control flow the code is easier to
read.
The change that made qemu not add the memballoon by default happened
prior to 0.12.0. Additionaly the comment was misleading due to the code
that was added below. Since we always need to add a balloon on the
commandline drop the comment.
The only caller of this code is:
for (i = 0; i < dom->def->ngraphics; i++) {
if (dom->def->graphics[i]->type == VIR_DOMAIN_GRAPHICS_TYPE_SPICE) {
if (!(mig->graphics =
qemuMigrationCookieGraphicsAlloc(driver, dom->def->graphics[i])))
return -1;
mig->flags |= QEMU_MIGRATION_COOKIE_GRAPHICS;
break;
}
}
So this is never triggered for VNC, and in fact VNC has no support for
seamless migration anyways so that seems correct. Drop the dead VNC
handling.
Since vz driver is now lives as a part of daemon we can benefit from
this fact and allow vz clients to use shared drivers API like storage,
network, nwfilter etc.
Signed-off-by: Maxim Nestratov <mnestratov@virtuozzo.com>
This is backed by the qemu device pxb-pcie, which will be available in
qemu 2.6.0.
As with pci-expander-bus (which uses qemu's pxb device), the busNr
attribute and <node> subelement of <target> are used to set the bus_nr
and numa_node options.
During post-parse we validate that the domain's machinetype is
q35-based (since the device shows up for 440fx-based machinetypes, but
is unusable), as well as checking that <node> specifies a node that is
actually configured on the guest.
This controller provides a single PCIe port on a new root. It is
similar to pci-expander-bus, intended to provide a bus that can be
associated with a guest-identifiable NUMA node, but is for
machinetypes with PCIe rather than PCI (e.g. q35-based machinetypes).
Aside from PCIe vs. PCI, the other main difference is that a
pci-expander-bus has a companion pci-bridge that is automatically
attached along with it, but pcie-expander-bus has only a single port,
and that port will only connect to a pcie-root-port, or to a
pcie-switch-upstream-port. In order for the bus to be of any use in
the guest, it must have either a pcie-root-port or a
pcie-switch-upstream-port attached (and one or more
pcie-switch-downstream-ports attached to the
pcie-switch-upstream-port).
The pxb device is a PCIe expander bus that can be added to any
Q35-based machinetype. A single PCIe port (*not* hotpluggable) is
provided; if more than one device is desired, or if hotplug
support is needed, either a pcie-root-port, or some combination of
pcie-switch-upstream-port and pcie-swith-downstream-ports must be
added to it. It can have a NUMA node number associated with it, as
well as a bus number.
This is backed by the qemu device "pxb".
The pxb device always includes a pci-bridge that is at the bus number
of the pxb + 1.
busNr and <node> from the <target> subelement are used to set the
bus_nr and numa_node options for pxb.
During post-parse we validate that the domain's machinetype is
440fx-based (since the pxb device only works on 440fx-based machines),
and <node> also gets a sanity check to assure that the NUMA node
specified for the pxb (if any - it's optional) actually exists on the
guest.
This is a standard PCI root bus (not a bridge) that can be added to a
440fx-based domain. Although it uses a PCI slot, this is *not* how it
is connected into the PCI bus hierarchy, but is only used for
control. Each pci-expander-bus provides 32 slots (0-31) that can
accept hotplug of standard PCI devices.
The usefulness of pci-expander-bus relative to a pci-bridge is that
the NUMA node of the bus can be specified with the <node> subelement
of <target>. This gives guest-side visibility to the NUMA node of
attached devices (presuming that management apps only assign a device
to a bus that has a NUMA node number matching the node number of the
device on the host).
Each pci-expander-bus also has a "busNr" attribute. The expander-bus
itself will take the busNr specified, and all buses that are connected
to this bus (including the pci-bridge that is automatically added to
any expander bus of model "pxb" (see the next commit)) will use
busNr+1, busNr+2, etc, and the pci-root (or the expander-bus with next
lower busNr) will use bus numbers lower than busNr.
The pxb device is a PCI expander bus that can be added to any
440fx-based machinetype. The PCI bus that is created has 32 standard
PCI slots (hotpluggable). It can have a NUMA node number associated
with it, as well as a bus number.