One of the main reasons for introducing host-model CPU definition in a
domain capabilities XML was the inability to express disabled features
in a host capabilities XML. That is, when a host CPU is, e.g., Haswell
without x2apic support, host capabilities XML will have to report it as
Westmere + a bunch of additional features., but we really want to use
Haswell - x2apic when creating a host-model CPU.
Unfortunately, I somehow forgot to do the last step and the code would
just copy the CPU definition found in the host capabilities XML. This
changed recently for new QEMU versions which allow us to query host CPU,
but any slightly older QEMU will not benefit from any change I did. This
patch makes sure the right CPU model is filled in the domain
capabilities even with old QEMU.
The issue was reported in
https://bugzilla.redhat.com/show_bug.cgi?id=1426456
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
bhyve supports 'gop' video device that allows clients to connect
to VMs using VNC clients. This commit adds support for that to
the bhyve driver:
- Introducr 'gop' video device type
- Add capabilities probing for the 'fbuf' device that's
responsible for graphics
- Update command builder routines to let users configure
domain's VNC via gop graphics.
Signed-off-by: Roman Bogorodskiy <bogorodskiy@gmail.com>
Add a new test to fchosttest in order to test creation of our vHBA
via the Storage Pool logic. Unlike the real code, we cannot yet use
the virVHBA* API's because they (currently) traverse the file system
in order to get the parent vport capable scsi_host. Besides there's
no "real" NPIV device here - so we have to take some liberties, at
least for now.
Instead, we'll follow the node device tests partially in order to
create and destroy the vHBA with the test node devices.
Signed-off-by: John Ferlan <jferlan@redhat.com>
This is a very historic artefact. Back in the old days of
830ba76c3e when we had macros to add arguments onto qemu command
line (!) we thought it was a good idea to let qemu write out the
PID file. So we passed -pidfile $stateDir/$domName onto the
command line. Thus, in order for tests to work we needed stable
stateDir in the qemu driver. Unfortunately, after 16efa11aa696
where stateDir is mkdtemp()-d, this approach lead to a leak of
temp dir.
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
Some of our tests (e.g. qemuhotplugtest) call
virDomainSaveConfig(). Now the problem is, qemuTestDriverInit()
creates a fake qemu driver and fills it with some fake
configuration. At least so we hoped. The truth is, it calls
regular virQEMUDriverConfigNew() and then fix couple of paths.
Literally. Therefore our tests see regular stateDir and configDir
for the user that is running the tests. Directories, where live
domain XMLs are stored. Let's just hope our test suite hasn't
mangled any of them.
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
After the system has been booted, it should not change.
Cache the return value of virSystemdHasMachined.
Allow starting and terminating machines with just one
DBus call, instead of three, reducing the chance of
the call timing out.
Also introduce a small function for resetting the cache
to be used in tests.
All existing Haswell CPUID data were gathered from CPUs with broken TSX.
Let's add new data for Haswell with correct TSX implementation.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
All Intel Haswell processors (except Xeon E7 v3 with stepping >= 4) have
TSX disabled by microcode update. As not all CPUs are guaranteed to be
patched with microcode updates we need to explicitly disable TSX on
affected CPUs to avoid its accidental usage.
https://bugzilla.redhat.com/show_bug.cgi?id=1406791
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The original test didn't use family/model numbers to make better
decisions about the CPU model and thus mis-detected the model in the two
cases which are modified in this commit. The detected CPU models now
match those obtained from raw CPUID data.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Converted by running the following command, renaming the files as
*.new, and committing only the *.new files.
(cd tests/cputestdata; ./cpu-convert.py *.json)
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Instantiating "host" CPU and querying it using qom-get has been the only
way of probing host CPU via QEMU until 2.9.0 implemented
query-cpu-model-expansion for x86_64. Even though libvirt never really
used the old way its result can be easily converted into the one
produced by query-cpu-model-expansion. Thus we can reuse the original
test data and possible get new data from hosts where QEMU does not
support the new QMP command.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The static CPU model expansion is designed to return only canonical
names of all CPU properties. To maintain backwards compatibility libvirt
is stuck with different spelling of some of the features, but we need to
use the full expansion to get the additional spellings. In addition to
returning all spelling variants for all properties the full expansion
will contain properties which are not guaranteed to be migration
compatible. Thus, we need to combine both expansions. First we need to
call the static expansion to limit the result to migratable properties.
Then we can use the result of the static expansion as an input to the
full expansion to get both canonical names and their aliases.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Querying "host" CPU model expansion only makes sense for KVM. QEMU 2.9.0
introduces a new "max" CPU model which can be used to ask QEMU what the
best CPU it can provide to a TCG domain is.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
While query-cpu-model-expansion returns only boolean features on s390,
but x86_64 reports some integer and string properties which we are
interested in.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
While reviewing a patch from Andrea that modified this test case, I
realized that although it was "properly failing" (it's a negative
test), that it was failing for the wrong reason (the MULTIFUNCTION cap
wasn't set in the test case, so it was saying that multifunction=on
wasn't supported by the QEMU binary; instead it should have been
complaining that it had run out of PCI slots of the appropriate type
and couldn't automatically add any more).
This improper failure had started when I added the patch to
automatically aggregate pcie-root-ports onto multiple functions of
each pcie-root slot, but I hadn't noticed it because the test still
failed.
This patch corrects the test case to 1) set the MULTIFUNCTION flag in
the caps, and 2) attempt to add 241 pcie-root-ports to a domain. Since
there are 30 slots available on a pcie-root (slot 0 is reserved, and
slot 31 is used by the integrated SATA controller), and a
pcie-root-port can only be placed on a function of a slot on
pcie-root, the maximum number of pcie-root-ports in any domain is 240.
virQEMUCapsHasPCIMultiBus() performs a version check on
the QEMU binary to figure out whether multiple buses are
supported, so to get the correct aliases assigned when
dealing with pSeries guests we need to spoof the version
accordingly in the test suite.
Due to the extra architecture-specific logic, it's already
necessary for users to call virQEMUCapsHasPCIMultiBus(),
so the capability itself is just a pointless distraction.
While "x86" is a CPU sub driver name, it is not a recognized name of any
architecture known to libvirt. Let's use "x86_64" prefix which can be
used with virArch APIs.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The new API is called virCPUDataFree. Individual CPU drivers are no
longer required to implement their own freeing function unless they need
to free architecture specific data from virCPUData.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Our documentation of the domain capabilities XML says that the fallback
attribute of a CPU model is used to indicate whether the CPU model was
detected by libvirt itself (fallback="allow") or by asking the
hypervisor (fallback="forbid"). We need to properly set
fallback="forbid" when CPU model comes from QEMU to match the
documentation.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Now that QEMU_CAPS_DEVICE_PCI_BRIDGE is no longer checked
unless a pci-bridge is really part of the configuration,
and most uses of the legacy PCI controller combo have been
dropped from tests that use PCIe machine types, we can
drop the corresponding capabilities from a lot of test
cases.