Commit a4a39d90 added a check that checks for VFIO support with mediated
devices. The problem is that the hostdev preparing functions behave like
a fallthrough if device of that specific type doesn't exist. However,
the check for VFIO support was independent of the existence of a mdev
device which caused the guest to fail to start with any device to be
directly assigned if VFIO was disabled/unavailable in the kernel.
The proposed change first ensures that it makes sense to check for VFIO
support in the first place, and only then performs the VFIO support check
itself.
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1441291
Signed-off-by: Erik Skultety <eskultet@redhat.com>
==18591== 16 bytes in 1 blocks are definitely lost in loss record 41 of 183
==18591== at 0x4C2B934: calloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==18591== by 0x54EBB1C: virAllocN (viralloc.c:191)
==18591== by 0x1628CA: _vshMalloc (vsh.c:136)
==18591== by 0x1344C4: virshVcpuPinQuery (virsh-domain.c:6603)
==18591== by 0x1344C4: cmdVcpuPin (virsh-domain.c:6707)
==18591== by 0x1631BF: vshCommandRun (vsh.c:1312)
==18591== by 0x12DBB1: main (virsh.c:961)
Mostly code motion to move storageConnectList[Defined]StoragePools
and similar test driver code into virstorageobj.c and rename to
virStoragePoolObjGetNames.
Also includes a couple of variable name adjustments to keep code consistent
with other drivers.
Signed-off-by: John Ferlan <jferlan@redhat.com>
Unify the NumOf[Defined]StoragePools API into virstorageobj.c from
storage_driver and test_driver. The only real difference between the
two is the test driver doesn't call using the aclfilter API.
Signed-off-by: John Ferlan <jferlan@redhat.com>
Mostly code motion to move storagePoolListVolumes code into virstorageobj.c
and rename to virStoragePoolObjVolumeGetNames.
Also includes a couple of variable name adjustments to keep code consistent
with other drivers.
Signed-off-by: John Ferlan <jferlan@redhat.com>
Unify the NumOfVolumes API into virstorageobj.c from storage_driver and
test_driver. The only real difference between the two is the test driver
doesn't call using the aclfilter API.
Signed-off-by: John Ferlan <jferlan@redhat.com>
This removes the hacky extern global variable and modifies the
test code to properly create QEMU capabilities cache for QEMU
binaries used in our tests.
Signed-off-by: Pavel Hrdina <phrdina@redhat.com>
Our test data used a lot of different qemu binary paths and some
of them were based on downstream systems.
Note that there is one file where I had to add "accel=kvm" because
the qemuargv2xml code parses "/usr/bin/kvm" as virt type="kvm".
Signed-off-by: Pavel Hrdina <phrdina@redhat.com>
The virt type for QEMU can be modified by -machine attribute "accel"
so there is no need to have different QEMU binary paths.
Signed-off-by: Pavel Hrdina <phrdina@redhat.com>
All other architectures have separate functions to prepare guest
capabilities, do the same for i686 and x86_64 as well.
Signed-off-by: Pavel Hrdina <phrdina@redhat.com>
Most tests already use global driver variable that is initialized
before any test case is executed, convert these remaining tests to
the same concept.
Signed-off-by: Pavel Hrdina <phrdina@redhat.com>
Commit 252610f7dd1 switched to use hash to store servers.
Function virHashGetItems returns allocated array which needs
to be freed also for successful path, not only if there is
an error.
Signed-off-by: Pavel Hrdina <phrdina@redhat.com>
Commit 14319c81a0 introduced CPU host model in domain capabilities
and the *hostmodel* variable is always filled by virCPUDefCopy()
and needs to be freed.
Signed-off-by: Pavel Hrdina <phrdina@redhat.com>
For both virNodeDeviceObjNumOfDevices and virNodeDeviceObjGetNames, the
check should be if the aclfilter doesn't exist or if it does exist, then
it must pass
Use the return value of virObjectRef directly. This way, it's easier
for another reader to identify the reason why the additional reference
is required.
Signed-off-by: Marc Hartmayer <mhartmay@linux.vnet.ibm.com>
Reviewed-by: Bjoern Walk <bwalk@linux.vnet.ibm.com>
This attribute is not needed here, since @mon is in use.
Signed-off-by: Marc Hartmayer <mhartmay@linux.vnet.ibm.com>
Reviewed-by: Bjoern Walk <bwalk@linux.vnet.ibm.com>
Implement qemuMonitorRegister() as there is already a
qemuMonitorUnregister() function. This way it may be easier to
understand the code paths.
Signed-off-by: Marc Hartmayer <mhartmay@linux.vnet.ibm.com>
Reviewed-by: Bjoern Walk <bwalk@linux.vnet.ibm.com>
This way qemuDomainLogContextRef() and qemuDomainLogContextFree() is
no longer needed. The naming qemuDomainLogContextFree() was also
somewhat misleading. Additionally, it's easier to turn
qemuDomainLogContext in a self-locking object.
Signed-off-by: Marc Hartmayer <mhartmay@linux.vnet.ibm.com>
Reviewed-by: Bjoern Walk <bwalk@linux.vnet.ibm.com>
There were multiple race conditions that could lead to segmentation
faults. The first precondition for this is qemuProcessLaunch must fail
sometime shortly after starting the new QEMU process. The second
precondition for the segmentation faults is that the new QEMU process
dies - or to be more precise the QEMU monitor has to be closed
irregularly. If both happens during qemuProcessStart (starting a
domain) there are race windows between the thread with the event
loop (T1) and the thread that is starting the domain (T2).
First segmentation fault scenario:
If qemuProcessLaunch fails during qemuProcessStart the code branches
to the 'stop' path where 'qemuMonitorSetDomainLog(priv->mon, NULL,
NULL, NULL)' will set the log function of the monitor to NULL (done in
T2). In the meantime the event loop of T1 will wake up with an EOF
event for the QEMU monitor because the QEMU process has died. The
crash occurs if T1 has checked 'mon->logFunc != NULL' in qemuMonitorIO
just before the logFunc was set to NULL by T2. If this situation
occurs T1 will try to call mon->logFunc which leads to the
segmentation fault.
Solution:
Require the monitor lock for setting the log function.
Backtrace:
0 0x0000000000000000 in ?? ()
1 0x000003ffe9e45316 in qemuMonitorIO (watch=<optimized out>,
fd=<optimized out>, events=<optimized out>, opaque=0x3ffe08aa860) at
../../src/qemu/qemu_monitor.c:727
2 0x000003fffda2e1a4 in virEventPollDispatchHandles (nfds=<optimized
out>, fds=0x2aa000fd980) at ../../src/util/vireventpoll.c:508
3 0x000003fffda2e398 in virEventPollRunOnce () at
../../src/util/vireventpoll.c:657
4 0x000003fffda2ca10 in virEventRunDefaultImpl () at
../../src/util/virevent.c:314
5 0x000003fffdba9366 in virNetDaemonRun (dmn=0x2aa000cc550) at
../../src/rpc/virnetdaemon.c:818
6 0x000002aa00024668 in main (argc=<optimized out>, argv=<optimized
out>) at ../../daemon/libvirtd.c:1541
Second segmentation fault scenario:
If qemuProcessLaunch fails it will unref the log context and with
invoking qemuMonitorSetDomainLog(priv->mon, NULL, NULL, NULL)
qemuDomainLogContextFree() will be invoked. qemuDomainLogContextFree()
invokes virNetClientClose() to close the client and cleans everything
up (including unref of _virLogManager.client) when virNetClientClose()
returns. When T1 is now trying to report 'qemu unexpectedly closed the
monitor' libvirtd will crash because the client has already been
freed.
Solution:
As the critical section in qemuMonitorIO is protected with the monitor
lock we can use the same solution as proposed for the first
segmentation fault.
Backtrace:
0 virClassIsDerivedFrom (klass=0x3100979797979797,
parent=0x2aa000d92f0) at ../../src/util/virobject.c:169
1 0x000003fffda659e6 in virObjectIsClass (anyobj=<optimized out>,
klass=<optimized out>) at ../../src/util/virobject.c:365
2 0x000003fffda65a24 in virObjectLock (anyobj=0x3ffe08c1db0) at
../../src/util/virobject.c:317
3 0x000003fffdba4688 in
virNetClientIOEventLoop (client=client@entry=0x3ffe08c1db0,
thiscall=thiscall@entry=0x2aa000fbfa0) at
../../src/rpc/virnetclient.c:1668
4 0x000003fffdba4b4c in
virNetClientIO (client=client@entry=0x3ffe08c1db0,
thiscall=0x2aa000fbfa0) at ../../src/rpc/virnetclient.c:1944
5 0x000003fffdba4d42 in
virNetClientSendInternal (client=client@entry=0x3ffe08c1db0,
msg=msg@entry=0x2aa000cc710, expectReply=expectReply@entry=true,
nonBlock=nonBlock@entry=false) at ../../src/rpc/virnetclient.c:2116
6 0x000003fffdba6268 in
virNetClientSendWithReply (client=0x3ffe08c1db0, msg=0x2aa000cc710) at
../../src/rpc/virnetclient.c:2144
7 0x000003fffdba6e8e in virNetClientProgramCall (prog=0x3ffe08c1120,
client=<optimized out>, serial=<optimized out>, proc=<optimized out>,
noutfds=<optimized out>, outfds=0x0, ninfds=0x0, infds=0x0,
args_filter=0x3fffdb64440
<xdr_virLogManagerProtocolDomainReadLogFileArgs>, args=0x3ffffffe010,
ret_filter=0x3fffdb644c0
<xdr_virLogManagerProtocolDomainReadLogFileRet>, ret=0x3ffffffe008) at
../../src/rpc/virnetclientprogram.c:329
8 0x000003fffdb64042 in
virLogManagerDomainReadLogFile (mgr=<optimized out>, path=<optimized
out>, inode=<optimized out>, offset=<optimized out>, maxlen=<optimized
out>, flags=0) at ../../src/logging/log_manager.c:272
9 0x000003ffe9e0315c in qemuDomainLogContextRead (ctxt=0x3ffe08c2980,
msg=0x3ffffffe1c0) at ../../src/qemu/qemu_domain.c:4422
10 0x000003ffe9e280a8 in qemuProcessReadLog (logCtxt=<optimized out>,
msg=msg@entry=0x3ffffffe288) at ../../src/qemu/qemu_process.c:1800
11 0x000003ffe9e28206 in qemuProcessReportLogError (logCtxt=<optimized
out>, msgprefix=0x3ffe9ec276a "qemu unexpectedly closed the monitor")
at ../../src/qemu/qemu_process.c:1836
12 0x000003ffe9e28306 in
qemuProcessMonitorReportLogError (mon=mon@entry=0x3ffe085cf10,
msg=<optimized out>, opaque=<optimized out>) at
../../src/qemu/qemu_process.c:1856
13 0x000003ffe9e452b6 in qemuMonitorIO (watch=<optimized out>,
fd=<optimized out>, events=<optimized out>, opaque=0x3ffe085cf10) at
../../src/qemu/qemu_monitor.c:726
14 0x000003fffda2e1a4 in virEventPollDispatchHandles (nfds=<optimized
out>, fds=0x2aa000fd980) at ../../src/util/vireventpoll.c:508
15 0x000003fffda2e398 in virEventPollRunOnce () at
../../src/util/vireventpoll.c:657
16 0x000003fffda2ca10 in virEventRunDefaultImpl () at
../../src/util/virevent.c:314
17 0x000003fffdba9366 in virNetDaemonRun (dmn=0x2aa000cc550) at
../../src/rpc/virnetdaemon.c:818
18 0x000002aa00024668 in main (argc=<optimized out>, argv=<optimized
out>) at ../../daemon/libvirtd.c:1541
Other code parts where the same problem was possible to occur are
fixed as well (qemuMigrationFinish, qemuProcessStart, and
qemuDomainSaveImageStartVM).
Signed-off-by: Marc Hartmayer <mhartmay@linux.vnet.ibm.com>
Reported-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Unify the *ListDevice API into virnodedeviceobj.c from node_device_driver
and test_driver. The only real difference between the two is that the test
driver doesn't call the aclfilter API. The name of the new API follows that
of other drivers to "GetNames".
NB: Change some variable names to match what they really are - consistency
with other drivers. Also added a clear of the input names.
This also allows virNodeDeviceObjHasCap to be static to virnodedeviceobj
Signed-off-by: John Ferlan <jferlan@redhat.com>
Unify the NumOfDevices API into virnodedeviceobj.c from node_device_driver
and test_driver. The only real difference between the two is that the test
driver doesn't call the aclfilter API.
Signed-off-by: John Ferlan <jferlan@redhat.com>
Clean up the code to adhere to more of the standard two spaces between
functions, separate lines for type and function name, one argument per line.
Signed-off-by: John Ferlan <jferlan@redhat.com>
Unlike other drivers, this is a test driver only API. Still combining
the logic of testConnectListInterfaces and testConnectListDefinedInterfaces
makes things a bit easier in the long run.
Signed-off-by: John Ferlan <jferlan@redhat.com>
Unlike other drivers, this is a test driver only API. Still combining
the logic of testConnectNumOfInterfaces and testConnectNumOfDefinedInterfaces
makes things a bit easier in the long run.
Signed-off-by: John Ferlan <jferlan@redhat.com>
This patch reworks the Hyper-V driver structs and the code generator
to provide seamless support for both Hyper-V 2008 and 2012 or newer.
This does not implement any new libvirt APIs, it just adapts existing
2008-only driver to also handle 2012 and newer by sharing as much
driver code as possible (currently it's all of it :-)). This is needed
to set the foundation before we can move forward with implementing the
rest of the driver APIs.
With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI
classes. Those are largely the same as "v1" (used in 2008) but have some
new properties as well as need different wsman request URIs. To
accomodate those differences, most of work went into the code generator
so that it's "aware" of possibility of multiple versions of the same WMI
class and produce C code accordingly.
To accomplish this the following changes were made:
* the abstract hypervObject struct's data member was changed to a union
that has "common", "v1" and "v2" members. Those are structs that
represent WMI classes that we get back from wsman response. The
"common" struct has members that are present in both "v1" and "v2"
which the driver API callbacks can use to read the data from in
version-independent manner (if version-specific member needs to be
accessed the driver can check priv->wmiVersion and read from "v1" or
"v2" as needed). Those structs are guaranteed to be memory aligned
by the code generator (see the align_property_members implementation
that takes care of that)
* the generator produces *_WmiInfo for each WMI class "family" that
holds an array of hypervWmiClassInfoPtr each providing information
as to which request URI to use for each "version" of given WMI class
as well as XmlSerializerInfo struct needed to unserilize WS-MAN
responsed into the data structs. The driver uses those to make proper
WS-MAN request depending on which version it's connected to.
* the generator no longer produces "helper" functions such as
hypervGetMsvmComputerSystemList as those were originally just simple
wrappers around hypervEnumAndPull, instead those were hand-written
now (to keep driver changes minimal). The reason is that we'll have
more code coming implementing missing libvirt APIs and surely code
patterns will emerge that would warrant more useful "utility" functions
like that.
* a hypervInitConnection was added to the driver which "detects"
Hyper-V version by testing simple wsman request using v2 then falling
back to v1, obviously if both fail, the we're erroring out.
To express how the above translates in code:
void
hypervImplementSomeLibvirtApi(virConnectPtr conn, ...)
{
hypervPrivate *priv = conn->privateData;
virBuffer query = VIR_BUFFER_INITIALIZER;
hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER;
Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */
/* the WmiInfo struct has the data needed for wsman request and
* response handling for both v1 and v2 */
wqlQuery.info = Msvm_ComputerSystem_WmiInfo;
wqlQuery.query = &query;
virBufferAddLit(&query, "select * from Msvm_ComputerSystem");
if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) {
goto cleanup;
}
if (list == NULL) {
/* none found */
goto cleanup;
}
/* works with v1 and v2 */
char *vmName = list->data.common->Name;
/* access property that is in v2 only */
if (priv->wmiVersion == HYPERV_WMI_VERSION_V2)
char *foo = list->data.v2->V2Property;
else
char *foo = list->data.v1->V1Property;
cleanup:
hypervFreeObject(priv, (hypervObject *)list);
}
Currently named as hypervObjecUnified to keep code
compilable/functional until all bits are in place.
This struct is a result of unserializing WMI request response.
Therefore, it needs to be able to deal with different "versions" of the
same WMI class. To accomplish this, the "data" member was turned in to
a union which:
* has a "common" member that contains only WMI class fields that are
safe to access and are present in all "versions". This is ensured by
the code generator that takes care of proper struct memory alignment
between "common", "v1", "v2" etc members. This memeber is to be used
by the driver code wherever the API implementation can be shared for
all supported hyper-v versions.
* the "v1" and "v2" member can be used by the driver code to handle
version specific cases.
Example:
Msvm_ComputerSystem *vm = NULL;
...
hypervGetVirtualMachineList(priv, wqlQuery, *vm);
...
/* safe for "v1" and "v2" */
char *vmName = vm->data.common->Name;
/* or if one really needs special handling for "v2" */
if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) {
char *foo = vm->data.v2->SomeV2OnlyField;
}
In other words, driver should not concern itself with existence of "v1"
or "v2" of WMI class unless absolutely necessary.
This struct is to be used to carry all the information necessary to
issue wsman requests for given WMI class. Those will be defined by the
generator code (as lists) so that they are handy for the driver code to
"extract" needed info depending on which hyper-v we're connected to.
For example:
hypervWmiClassInfoListPtr Msvm_ComputerSystem_WmiInfo = {
.count = 2
{
{
.name = "Msvm_ComputerSystem",
.version = "v1",
.rootUri = "http://asdf.com",
...
},
{
.name = "Msvm_ComputerSystem",
.version = "v2",
.rootUri = "http://asdf.com/v2",
...
},
}
};
Then the driver code will grab either "v1" or "v2" to pass info wsman
API, depending on hypervPrivate->wmiVersion value.
Hyper-V 2012+ uses a new "v2" version of Msvm_* WMI classes so we will
store that info in hypervPrivate so that it is easily accessbile in the
driver API callbacks and handled accordingly.
https://bugzilla.redhat.com/show_bug.cgi?id=1439132
Add "bsd" to the list of format types to not checked during blkid
processing even though it supposedly knows the format - for some
(now unknown) reason it's returning partition table not found. So
let's just let PARTED handle "bsd" too.
Signed-off-by: John Ferlan <jferlan@redhat.com>
https://bugzilla.redhat.com/show_bug.cgi?id=1439132
Commit id 'a48c674fb' added a check for format types "dvh" and "pc98"
to use the parted print processing instead of using blkid processing
in order to validate the label on the disk was what is expected for
disk pool startup. However, commit id 'a4cb4a74f' really messed things
up by missing an else condition causing PARTEDFindLabel to always
return DIFFERENT.
Signed-off-by: John Ferlan <jferlan@redhat.com>
So far only QEMU_MONITOR_MIGRATION_CAPS_POSTCOPY was reset, but only in
a single code path leaving post-copy enabled in quite a few cases.
https://bugzilla.redhat.com/show_bug.cgi?id=1425003
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
It's only called from qemuMigrationReset now so it doesn't need to be
exported and {tls,sec}Alias are always NULL.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
This new API is supposed to reset all migration parameters to make sure
future migrations won't accidentally use them. This patch makes the
first step and moves qemuMigrationResetTLS call inside
qemuMigrationReset.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>