qemuMonitorGetGuestCPU can now optionally create CPU data from
filtered-features in addition to feature-words.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
We want pcie-root-ports to be used when available in QEMU,
but at the same time we need to ensure that hosts running
older QEMU releases keep working and that the user can
override the default at any time.
Add a comment for the original pcie-root-port test cases
to make it clear how these new test cases are different.
QEMU 2.9 introduces the pcie-root-port device, which is
a generic version of the existing ioh3420 device.
Make the new device available to libvirt users.
There were couple of reports on the list (e.g. [1]) that guests
with huge amounts of RAM are unable to start because libvirt
kills qemu in the initialization phase. The problem is that if
guest is configured to use hugepages kernel has to zero them all
out before handing over to qemu process. For instance, 402GiB
worth of 1GiB pages took around 105 seconds (~3.8GiB/s). Since we
do not want to make the timeout for connecting to monitor
configurable, we have to teach libvirt to count with this
fact. This commit implements "1s per each 1GiB of RAM" approach
as suggested here [2].
1: https://www.redhat.com/archives/libvir-list/2017-March/msg00373.html
2: https://www.redhat.com/archives/libvir-list/2017-March/msg00405.html
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
For NVDIMM devices it is optionally possible to specify the size
of internal storage for namespaces. Namespaces are a feature that
allows users to partition the NVDIMM for different uses.
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
Now that NVDIMM has found its way into libvirt, users might want
to fine tune some settings for each module separately. One such
setting is 'share=on|off' for the memory-backend-file object.
This setting - just like its name suggest already - enables
sharing the nvdimm module with other applications. Under the hood
it controls whether qemu mmaps() the file as MAP_PRIVATE or
MAP_SHARED.
Yet again, we have such config knob in domain XML, but it's just
an attribute to numa <cell/>. This does not give fine enough
tuning on per-memdevice basis so we need to have the attribute
for each device too.
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
So, majority of the code is just ready as-is. Well, with one
slight change: differentiate between dimm and nvdimm in places
like device alias generation, generating the command line and so
on.
Speaking of the command line, we also need to append 'nvdimm=on'
to the '-machine' argument so that the nvdimm feature is
advertised in the ACPI tables properly.
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
NVDIMM is new type of memory introduced into QEMU 2.6. The idea
is that we have a Non-Volatile memory module that keeps the data
persistent across domain reboots.
At the domain XML level, we already have some representation of
'dimm' modules. Long story short, NVDIMM will utilize the
existing <memory/> element that lives under <devices/> by adding
a new attribute 'nvdimm' to the existing @model and introduce a
new <path/> element for <source/> while reusing other fields. The
resulting XML would appear as:
<memory model='nvdimm'>
<source>
<path>/tmp/nvdimm</path>
</source>
<target>
<size unit='KiB'>523264</size>
<node>0</node>
</target>
<address type='dimm' slot='0'/>
</memory>
So far, this is just a XML parser/formatter extension. QEMU
driver implementation is in the next commit.
For more info on NVDIMM visit the following web page:
http://pmem.io/
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
One of the main reasons for introducing host-model CPU definition in a
domain capabilities XML was the inability to express disabled features
in a host capabilities XML. That is, when a host CPU is, e.g., Haswell
without x2apic support, host capabilities XML will have to report it as
Westmere + a bunch of additional features., but we really want to use
Haswell - x2apic when creating a host-model CPU.
Unfortunately, I somehow forgot to do the last step and the code would
just copy the CPU definition found in the host capabilities XML. This
changed recently for new QEMU versions which allow us to query host CPU,
but any slightly older QEMU will not benefit from any change I did. This
patch makes sure the right CPU model is filled in the domain
capabilities even with old QEMU.
The issue was reported in
https://bugzilla.redhat.com/show_bug.cgi?id=1426456
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
bhyve supports 'gop' video device that allows clients to connect
to VMs using VNC clients. This commit adds support for that to
the bhyve driver:
- Introducr 'gop' video device type
- Add capabilities probing for the 'fbuf' device that's
responsible for graphics
- Update command builder routines to let users configure
domain's VNC via gop graphics.
Signed-off-by: Roman Bogorodskiy <bogorodskiy@gmail.com>
Add a new test to fchosttest in order to test creation of our vHBA
via the Storage Pool logic. Unlike the real code, we cannot yet use
the virVHBA* API's because they (currently) traverse the file system
in order to get the parent vport capable scsi_host. Besides there's
no "real" NPIV device here - so we have to take some liberties, at
least for now.
Instead, we'll follow the node device tests partially in order to
create and destroy the vHBA with the test node devices.
Signed-off-by: John Ferlan <jferlan@redhat.com>
This is a very historic artefact. Back in the old days of
830ba76c3e when we had macros to add arguments onto qemu command
line (!) we thought it was a good idea to let qemu write out the
PID file. So we passed -pidfile $stateDir/$domName onto the
command line. Thus, in order for tests to work we needed stable
stateDir in the qemu driver. Unfortunately, after 16efa11aa696
where stateDir is mkdtemp()-d, this approach lead to a leak of
temp dir.
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
Some of our tests (e.g. qemuhotplugtest) call
virDomainSaveConfig(). Now the problem is, qemuTestDriverInit()
creates a fake qemu driver and fills it with some fake
configuration. At least so we hoped. The truth is, it calls
regular virQEMUDriverConfigNew() and then fix couple of paths.
Literally. Therefore our tests see regular stateDir and configDir
for the user that is running the tests. Directories, where live
domain XMLs are stored. Let's just hope our test suite hasn't
mangled any of them.
Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
After the system has been booted, it should not change.
Cache the return value of virSystemdHasMachined.
Allow starting and terminating machines with just one
DBus call, instead of three, reducing the chance of
the call timing out.
Also introduce a small function for resetting the cache
to be used in tests.
All existing Haswell CPUID data were gathered from CPUs with broken TSX.
Let's add new data for Haswell with correct TSX implementation.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
All Intel Haswell processors (except Xeon E7 v3 with stepping >= 4) have
TSX disabled by microcode update. As not all CPUs are guaranteed to be
patched with microcode updates we need to explicitly disable TSX on
affected CPUs to avoid its accidental usage.
https://bugzilla.redhat.com/show_bug.cgi?id=1406791
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The original test didn't use family/model numbers to make better
decisions about the CPU model and thus mis-detected the model in the two
cases which are modified in this commit. The detected CPU models now
match those obtained from raw CPUID data.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Converted by running the following command, renaming the files as
*.new, and committing only the *.new files.
(cd tests/cputestdata; ./cpu-convert.py *.json)
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Instantiating "host" CPU and querying it using qom-get has been the only
way of probing host CPU via QEMU until 2.9.0 implemented
query-cpu-model-expansion for x86_64. Even though libvirt never really
used the old way its result can be easily converted into the one
produced by query-cpu-model-expansion. Thus we can reuse the original
test data and possible get new data from hosts where QEMU does not
support the new QMP command.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The static CPU model expansion is designed to return only canonical
names of all CPU properties. To maintain backwards compatibility libvirt
is stuck with different spelling of some of the features, but we need to
use the full expansion to get the additional spellings. In addition to
returning all spelling variants for all properties the full expansion
will contain properties which are not guaranteed to be migration
compatible. Thus, we need to combine both expansions. First we need to
call the static expansion to limit the result to migratable properties.
Then we can use the result of the static expansion as an input to the
full expansion to get both canonical names and their aliases.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Querying "host" CPU model expansion only makes sense for KVM. QEMU 2.9.0
introduces a new "max" CPU model which can be used to ask QEMU what the
best CPU it can provide to a TCG domain is.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
While query-cpu-model-expansion returns only boolean features on s390,
but x86_64 reports some integer and string properties which we are
interested in.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>