All previously recognized CPU models (POWER7_v2.1, POWER7_v2.3,
POWER7+_v2.1 and POWER8_v1.0) are internally converted to the
corrisponding generation name so that existing guests don't stop
working.
Use multiple PVRs per CPU model to reduce the number of models we
need to keep track of.
Remove specific CPU models (eg. POWER7+_v2.1): the corresponding
generic CPU model (eg. POWER7) should be used instead to ensure
the guest can be booted on any compatible host.
Get rid of all the entries that did not match any of the CPU
models supported by QEMU, like power8 and power8e.
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1250977
This will allow us to perform PVR matching more broadly, eg. consider
both POWER8 and POWER8E CPUs to be the same even though they have
different PVR values.
This ensures comparison of two CPU definitions will be consistent
regardless of the fact that it is performed using cpuCompare() or
cpuGuestData(). The x86 driver uses the same exact code.
Limitations of the POWER architecture mean that you can't run
eg. a POWER7 guest on a POWER8 host when using KVM. This applies
to all guests, not just those using VIR_CPU_MATCH_STRICT in the
CPU definition; in fact, exact and strict CPU matching are
basically the same on ppc64.
This means, of course, that hosts using different CPUs have to be
considered incompatible as well.
Change ppc64Compute(), called by cpuGuestData(), to reflect this
fact and update test cases accordingly.
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1250977
ppc64Compute(), called by cpuNodeData(), is used not only to retrieve
the driver-specific data associated to a guest CPU definition, but
also to check whether said guest CPU is compatible with the host CPU.
If the user is not interested in the CPU data, it's perfectly fine
to pass a NULL pointer instead of a return location, and the
compatibility data returned should not be affected by this. One of
the checks, specifically the one on CPU model name, was however
only performed if the return location was non-NULL.
Use briefer checks, eg. (!model) instead of (model == NULL), and
avoid initializing to NULL a pointer that would be assigned in
the first line of the function anyway.
Also remove a pointless NULL assignment.
No functional changes.
Use the ppc64Driver prefix for all functions that are used to
fill in the cpuDriverPPC64 structure, ie. those that are going
to be called by the generic CPU code.
This makes it clear which functions are exported and which are
implementation details; it also gets rid of the ambiguity that
affected the ppc64DataFree() function which, despite what the
name suggested, was not related to ppc64DataCopy() and could
not be used to release the memory allocated for a
virCPUppc64Data* instance.
No functional changes.
Only the symbols exported by the driver have been updated;
the driver implementation itself still uses the old names
internally.
No functional changes.
The driver only supports VIR_ARCH_PPC64 and VIR_ARCH_PPC64LE.
Just shuffling files around and updating the build system
accordingly. No functional changes.
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Inheritance among CPU model is cool but it makes reviewing CPU model
definitions and comparing them to CPU models from QEMU rather hard and
unpleasant. Let's define all CPU models from scratch.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
QEMU 2.3 adds these new models to cover Haswell and Broadwell CPUs with
updated microcode. Luckily, they also reverted former the machine type
specific changes to existing models. And since these changes were never
released, we don't need to hack around them in libvirt.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Wikipedia's list of common misspellings [1] has a machine-readable
version. This patch fixes those misspellings mentioned in the list
which don't have multiple right variants (as e.g. "accension", which can
be both "accession" and "ascension"), such misspellings are left
untouched. The list of changes was manually re-checked for false
positives.
[1] https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
Signed-off-by: Martin Kletzander <mkletzan@redhat.com>
For historical reasons data regarding NUMA configuration were split
between the CPU definition and numatune. We cannot do anything about the
XML still being split, but we certainly can at least store the relevant
data in one place.
This patch moves the NUMA stuff to the right place.
Not all files we want to find using virFileFindResource{,Full} are
generated when libvirt is built, some of them (such as RNG schemas) are
distributed with sources. The current API was not able to find source
files if libvirt was built in VPATH.
Both RNG schemas and cpu_map.xml are distributed in source tarball.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The virCPUDefFormat* methods were relying on the VIR_DOMAIN_XML_*
flag definitions. It is not desirable for low level internal
functions to be coupled to flags for the public API, since they
may need to be called from several different contexts where the
flags would not be appropriate.