This section describes the XML format used to represent domains, there are variations on the format based on the kind of domains run and the options used to launch them. For hypervisor specific details consult the driver docs
The root element required for all virtual machines is
named domain
. It has two attributes, the
type
specifies the hypervisor used for running
the domain. The allowed values are driver specific, but
include "xen", "kvm", "qemu", "lxc" and "kqemu". The
second attribute is id
which is a unique
integer identifier for the running guest machine. Inactive
machines have no id value.
<domain type='xen' id='3'> <name>fv0</name> <uuid>4dea22b31d52d8f32516782e98ab3fa0</uuid> <description>Some human readable description</description> ...
name
name
element provides
a short name for the virtual machine. This name should
consist only of alpha-numeric characters and is required
to be unique within the scope of a single host. It is
often used to form the filename for storing the persistent
configuration file. Since 0.0.1uuid
uuid
element provides
a globally unique identifier for the virtual machine.
The format must be RFC 4122 compliant, eg 3e3fce45-4f53-4fa7-bb32-11f34168b82b
.
If omitted when defining/creating a new machine, a random
UUID is generated. Since 0.0.1description
description
element provides a
human readable description of the virtual machine. This data is not
used by libvirt in any way, it can contain any information the user
wants. Since 0.7.2There are a number of different ways to boot virtual machines each with their own pros and cons.
Booting via the BIOS is available for hypervisors supporting full virtualization. In this case the BIOS has a boot order priority (floppy, harddisk, cdrom, network) determining where to obtain/find the boot image.
... <os> <type>hvm</type> <loader>/usr/lib/xen/boot/hvmloader</loader> <boot dev='hd'/> </os> ...
type
type
element specifies the
type of operating system to be booted in the virtual machine.
hvm
indicates that the OS is one designed to run
on bare metal, so requires full virtualization. linux
(badly named!) refers to an OS that supports the Xen 3 hypervisor
guest ABI. There are also two optional attributes, arch
specifying the CPU architecture to virtualization, and machine
referring to the machine type. The Capabilities XML
provides details on allowed values for these. Since 0.0.1loader
loader
tag refers to a firmware blob
used to assist the domain creation process. At this time, it is
only needed by Xen fully virtualized domains. Since 0.1.0boot
dev
attribute takes one of the values "fd", "hd",
"cdrom" or "network" and is used to specify the next boot device
to consider. The boot
element can be repeated multiple
times to setup a priority list of boot devices to try in turn.
Since 0.1.3
Hypervisors employing paravirtualization do not usually emulate
a BIOS, and instead the host is responsible to kicking off the
operating system boot. This may use a pseudo-bootloader in the
host to provide an interface to choose a kernel for the guest.
An example is pygrub
with Xen.
... <bootloader>/usr/bin/pygrub</bootloader> <bootloader_args>--append single</bootloader_args> ...
bootloader
bootloader
element provides
a fully qualified path to the bootloader executable in the
host OS. This bootloader will be run to choose which kernel
to boot. The required output of the bootloader is dependent
on the hypervisor in use. Since 0.1.0bootloader_args
bootloader_args
element allows
command line arguments to be passed to the bootloader.
Since 0.2.3
When installing a new guest OS it is often useful to boot directly from a kernel and initrd stored in the host OS, allowing command line arguments to be passed directly to the installer. This capability is usually available for both para and full virtualized guests.
... <os> <type>hvm</type> <loader>/usr/lib/xen/boot/hvmloader</loader> <kernel>/root/f8-i386-vmlinuz</kernel> <initrd>/root/f8-i386-initrd</initrd> <cmdline>console=ttyS0 ks=http://example.com/f8-i386/os/</cmdline> </os> ...
type
loader
kernel
initrd
cmdline
... <memory>524288</memory> <currentMemory>524288</currentMemory> <memoryBacking> <hugepages/> </memoryBacking> <vcpu>1</vcpu> ...
memory
currentMemory
memory element
memoryBacking
memoryBacking
element, may have an
hugepages
element set within it. This tells the
hypervisor that the guest should have its memory allocated using
hugepages instead of the normal native page size.vcpu
Requirements for CPU model, its features and topology can be specified using the following collection of elements. Since 0.7.5
... <cpu match='exact'> <model>core2duo</model> <topology sockets='1' cores='2' threads='1'/> <feature policy='disable' name='lahf_lm'/> </cpu> ...
In case no restrictions need to be put on CPU model and its features, a
simpler cpu
element can be used.
Since 0.7.6
... <cpu> <topology sockets='1' cores='2' threads='1'/> </cpu> ...
cpu
cpu
element is the main container for describing
guest CPU requirements. Its match
attribute specified how
strictly has the virtual CPU provided to the guest match these
requirements. Since 0.7.6 the
match
attribute can be omitted if topology
is the only element within cpu
. Possible values for the
match
attribute are:
minimum
exact
strict
model
model
element specifies CPU model
requested by the guest. The list of available CPU models and their
definition can be found in cpu_map.xml
file installed
in libvirt's data directory.topology
topology
element specifies requested topology of
virtual CPU provided to the guest. Three non-zero values have to be
given for sockets
, cores
, and
threads
: total number of CPU sockets, number of cores per
socket, and number of threads per core, respectively.feature
cpu
element can contain zero or more
elements
used to fine-tune features provided by the
selected CPU model. The list of known feature names can be found in
the same file as CPU models. The meaning of each feature
element depends on its policy
attribute, which has to be
set to one of the following values:
force
require
optional
disable
forbid
It is sometimes necessary to override the default actions taken when a guest OS triggers a lifecycle operation. The following collections of elements allow the actions to be specified. A common use case is to force a reboot to be treated as a poweroff when doing the initial OS installation. This allows the VM to be re-configured for the first post-install bootup.
... <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> ...
on_poweroff
on_reboot
on_crash
Each of these states allow for the same four possible actions.
destroy
restart
preserve
rename-restart
Hypervisors may allow certain CPU / machine features to be toggled on/off.
... <features> <pae/> <acpi/> <apic/> </features> ...
All features are listed within the features
element, omitting a togglable feature tag turns it off.
The available features can be found by asking
for the capabilities XML,
but a common set for fully virtualized domains are:
pae
acpi
The guest clock is typically initialized from the host clock. Most operating systems expect the hardware clock to be kept in UTC, and this is the default. Windows, however, expects it to be in so called 'localtime'.
... <clock offset="localtime"/> ...
clock
The offset
attribute takes three possible
values, allowing fine grained control over how the guest
clock is synchronized to the host. NB, not all hypervisors
support all modes.
utc
localtime
timezone
timezone
attribute.
variable
adjustment
attribute.
The guest is free to adjust the RTC over time an expect
that it will be honoured at next reboot. This is in
contrast to 'utc' mode, where the RTC adjustments are
lost at each reboot.
NB, at time of writing, only QEMU supports the variable clock mode, or custom timezones.
The final set of XML elements are all used to describe devices
provided to the guest domain. All devices occur as children
of the main devices
element.
Since 0.1.3
... <devices> <emulator>/usr/lib/xen/bin/qemu-dm</emulator> </devices> ...
emulator
emulator
element specify
the fully qualified path to the device model emulator binary.
The capabilities XML specifies
the recommended default emulator to use for each particular
domain type / architecture combination.
Any device that looks like a disk, be it a floppy, harddisk,
cdrom, or paravirtualized driver is specified via the disk
element.
... <devices> <disk type='file'> <driver name="tap" type="aio" cache="default"> <source file='/var/lib/xen/images/fv0'/> <target dev='hda' bus='ide'/> <encryption type='...'> ... </encryption> <shareable/> </disk> </devices> ...
disk
disk
element is the main container for describing
disks. The type
attribute is either "file" or "block"
and refers to the underlying source for the disk. The optional
device
attribute indicates how the disk is to be exposed
to the guest OS. Possible values for this attribute are "floppy", "disk"
and "cdrom", defaulting to "disk".
Since 0.0.3; "device" attribute since 0.1.4source
type
is "file", then the file
attribute
specifies the fully-qualified path to the file holding the disk. If the disk
type
is "block", then the dev
attribute specifies
the path to the host device to serve as the disk. Since 0.0.3target
target
element controls the bus / device under which the
disk is exposed to the guest OS. The dev
attribute indicates
the "logical" device name. The actual device name specified is not guaranteed to map to
the device name in the guest OS. Treat it as a device ordering hint.
The optional bus
attribute specifies the type of disk device
to emulate; possible values are driver specific, with typical values being
"ide", "scsi", "virtio", "xen" or "usb". If omitted, the bus type is
inferred from the style of the device name. eg, a device named 'sda'
will typically be exported using a SCSI bus.
Since 0.0.3; bus
attribute since 0.4.3;
"usb" attribute value since after 0.4.4driver
driver
element allows them to be selected. The name
attribute is the primary backend driver name, while the optional type
attribute provides the sub-type. The optional cache
attribute
controls the cache mechanism, possible values are "default", "none",
"writethrough" and "writeback". Since 0.1.8
encryption
shareable
USB and PCI devices attached to the host can be passed through to the guest using
the hostdev
element. since after
0.4.4 for USB and 0.6.0 for PCI (KVM only):
... <devices> <hostdev mode='subsystem' type='usb'> <source> <vendor id='0x1234'/> <product id='0xbeef'/> </source> </hostdev> </devices> ...
or:
... <devices> <hostdev mode='subsystem' type='pci'> <source> <address bus='0x06' slot='0x02' function='0x0'/> </source> </hostdev> </devices> ...
hostdev
hostdev
element is the main container for describing
host devices. For usb device passthrough mode
is always
"subsystem" and type
is "usb" for an USB device and "pci"
for a PCI device..
source
vendor
and product
elements or by the device's
address on the hosts using the address
element.
PCI devices on the other hand can only be described by their
address
vendor
, product
vendor
and product
elements each have an
id
attribute that specifies the USB vendor and product id.
The ids can be given in decimal, hexadecimal (starting with 0x) or
octal (starting with 0) form.address
address
element for USB devices has a
bus
and device
attribute to specify the
USB bus and device number the device appears at on the host.
The values of these attributes can be given in decimal, hexadecimal
(starting with 0x) or octal (starting with 0) form.
For PCI devices the element carries 3 attributes allowing to designate
the device as can be found with the lspci
or
with virsh nodedev-list
. The
bus
attribute allows the hexadecimal values 0 to ff, the
slot
attribute allows the hexadecimal values 0 to 1f, and
the function
attribute allows the hexadecimal values 0 to
7. There is also an optional domain
attribute for the
PCI domain, with hexadecimal values 0 to ffff, but it is currently
not used by qemu.... <devices> <interface type='bridge'> <source bridge='xenbr0'/> <mac address='00:16:3e:5d:c7:9e'/> <script path='vif-bridge'/> </interface> </devices> ...
This is the recommended config for general guest connectivity on hosts with dynamic / wireless networking configs
Provides a virtual network using a bridge device in the host.
Depending on the virtual network configuration, the network may be
totally isolated, NAT'ing to an explicit network device, or NAT'ing to
the default route. DHCP and DNS are provided on the virtual network in
all cases and the IP range can be determined by examining the virtual
network config with 'virsh net-dumpxml [networkname]
'.
There is one virtual network called 'default' setup out
of the box which does NAT'ing to the default route and has an IP range of
192.168.22.0/255.255.255.0
. Each guest will have an
associated tun device created with a name of vnetN, which can also be
overridden with the <target> element (see
overriding the target element).
... <devices> <interface type='network'> <source network='default'/> </interface> ... <interface type='network'> <source network='default'/> <target dev='vnet7'/> <mac address="00:11:22:33:44:55"/> </interface> </devices> ...
This is the recommended config for general guest connectivity on hosts with static wired networking configs
Provides a bridge from the VM directly onto the LAN. This assumes there is a bridge device on the host which has one or more of the hosts physical NICs enslaved. The guest VM will have an associated tun device created with a name of vnetN, which can also be overridden with the <target> element (see overriding the target element). The tun device will be enslaved to the bridge. The IP range / network configuration is whatever is used on the LAN. This provides the guest VM full incoming & outgoing net access just like a physical machine.
... <devices> <interface type='bridge'> <source bridge='br0'/> </interface> ... <interface type='bridge'> <source bridge='br0'/> <target dev='vnet7'/> <mac address="00:11:22:33:44:55"/> </interface> </devices> ...
Provides a virtual LAN with NAT to the outside world. The virtual
network has DHCP & DNS services and will give the guest VM addresses
starting from 10.0.2.15
. The default router will be
10.0.2.2
and the DNS server will be 10.0.2.3
.
This networking is the only option for unprivileged users who need their
VMs to have outgoing access.
... <devices> <interface type='user'/> ... <interface type='user'> <mac address="00:11:22:33:44:55"/> </interface> </devices> ...
Provides a means for the administrator to execute an arbitrary script to connect the guest's network to the LAN. The guest will have a tun device created with a name of vnetN, which can also be overridden with the <target> element. After creating the tun device a shell script will be run which is expected to do whatever host network integration is required. By default this script is called /etc/qemu-ifup but can be overridden.
... <devices> <interface type='ethernet'/> ... <interface type='ethernet'> <target dev='vnet7'/> <script path='/etc/qemu-ifup-mynet'/> </interface> </devices> ...
Provides direct attachment of the virtual machine's NIC to the given
physial interface of the host.
Since 0.7.7 (QEMU and KVM only)
This setup requires the Linux macvtap
driver to be available. (Since Linux 2.6.34.)
One of the modes 'vepa'
(
'Virtual Ethernet Port Aggregator'), 'bridge' or 'private'
can be chosen for the operation mode of the macvtap device, 'vepa'
being the default mode. The individual modes cause the delivery of
packets to behave as follows:
vepa
bridge
vepa
mode,
a VEPA capable bridge is required.
private
private
mode.... <devices> <interface type='direct'/> ... <interface type='direct'> <source dev='eth0' mode='vepa'/> </interface> </devices> ...
A multicast group is setup to represent a virtual network. Any VMs whose network devices are in the same multicast group can talk to each other even across hosts. This mode is also available to unprivileged users. There is no default DNS or DHCP support and no outgoing network access. To provide outgoing network access, one of the VMs should have a 2nd NIC which is connected to one of the first 4 network types and do the appropriate routing. The multicast protocol is compatible with that used by user mode linux guests too. The source address used must be from the multicast address block.
... <devices> <interface type='mcast'> <source address='230.0.0.1' port='5558'/> </interface> </devices> ...
A TCP client/server architecture provides a virtual network. One VM provides the server end of the network, all other VMS are configured as clients. All network traffic is routed between the VMs via the server. This mode is also available to unprivileged users. There is no default DNS or DHCP support and no outgoing network access. To provide outgoing network access, one of the VMs should have a 2nd NIC which is connected to one of the first 4 network types and do the appropriate routing.
... <devices> <interface type='server'> <source address='192.168.0.1' port='5558'/> </interface> ... <interface type='client'> <source address='192.168.0.1' port='5558'/> </interface> </devices> ...
... <devices> <interface type='network'> <source network='default'/> <target dev='vnet1'/> <model type='ne2k_pci'/> </interface> </devices> ...
For hypervisors which support this, you can set the model of emulated network interface card.
The values for type
aren't defined specifically by
libvirt, but by what the underlying hypervisor supports (if
any). For QEMU and KVM you can get a list of supported models
with these commands:
qemu -net nic,model=? /dev/null qemu-kvm -net nic,model=? /dev/null
Typical values for QEMU and KVM include: ne2k_isa i82551 i82557b i82559er ne2k_pci pcnet rtl8139 e1000 virtio
... <devices> <interface type='network'> <source network='default'/> <target dev='vnet1'/> </interface> </devices> ...
If no target is specified, certain hypervisors will automatically generate a name for the created tun device. This name can be manually specifed, however the name must not start with either 'vnet' or 'vif', which are prefixes reserved by libvirt and certain hypervisors. Manually specified targets using these prefixes will be ignored.
Input devices allow interaction with the graphical framebuffer in the guest virtual machine. When enabling the framebuffer, an input device is automatically provided. It may be possible to add additional devices explicitly, for example, to provide a graphics tablet for absolute cursor movement.
... <devices> <input type='mouse' bus='usb'/> </devices> ...
input
input
element has one mandatory attribute, the type
whose value can be either 'mouse' or 'tablet'. The latter provides absolute
cursor movement, while the former uses relative movement. The optional
bus
attribute can be used to refine the exact device type.
It takes values "xen" (paravirtualized), "ps2" and "usb".A graphics device allows for graphical interaction with the guest OS. A guest will typically have either a framebuffer or a text console configured to allow interaction with the admin.
... <devices> <graphics type='sdl' display=':0.0'/> <graphics type='vnc' port='5904'/> <graphics type='rdp' autoport='yes' multiUser='yes' /> <graphics type='desktop' fullscreen='yes'/> </devices> ...
graphics
graphics
element has a mandatory type
attribute which takes the value "sdl", "vnc", "rdp" or "desktop":
"sdl"
display
attribute for the display to use, an xauth
attribute for the authentication identifier, and an optional fullscreen
attribute accepting values 'yes' or 'no'.
"vnc"
port
attribute specifies the TCP
port number (with -1 as legacy syntax indicating that it should be
auto-allocated). The autoport
attribute is the new
preferred syntax for indicating autoallocation of the TCP port to use.
The listen
attribute is an IP address for the server to
listen on. The passwd
attribute provides a VNC password
in clear text. The keymap
attribute specifies the keymap
to use.
"rdp"
port
attribute
specifies the TCP port number (with -1 as legacy syntax indicating
that it should be auto-allocated). The autoport
attribute
is the new preferred syntax for indicating autoallocation of the TCP
port to use. The replaceUser
attribute is a boolean deciding
whether multiple simultaneous connections to the VM are permitted.
The multiUser
whether the existing connection must be dropped
and a new connection must be established by the VRDP server, when a new
client connects in single connection mode.
"desktop"
display
and fullscreen
.
A video device.
... <devices> <video> <model type='vga' vram='8192' heads='1'> <acceleration accel3d='yes' accel3d='yes'/> </model> </video> </devices> ...
video
video
element is the a container for describing
video devices.
model
model
element has a mandatory type
attribute which takes the value "vga", "cirrus", "vmvga", "xen" or "vbox".
You can also provide the amount of video memory in kilobytes using
vram
and the number of screen with heads
.
acceleration
accel3d
and accel2d
attributes in the
acceleration
element.
A character device provides a way to interact with the virtual machine. Paravirtualized consoles, serial ports, parallel ports and channels are all classed as character devices and so represented using the same syntax.
... <devices> <parallel type='pty'> <source path='/dev/pts/2'/> <target port='0'/> </parallel> <serial type='pty'> <source path='/dev/pts/3'/> <target port='0'/> </serial> <console type='pty'> <source path='/dev/pts/4'/> <target port='0'/> </console> <channel type='unix'> <source mode='bind' path='/tmp/guestfwd'/> <target type='guestfwd' address='10.0.2.1' port='4600'/> </channel> </devices> ...
In each of these directives, the top-level element name (parallel, serial,
console, channel) describes how the device is presented to the guest. The
guest interface is configured by the target
element.
The interface presented to the host is given in the type
attribute of the top-level element. The host interface is
configured by the source
element.
A character device presents itself to the guest as one of the following types.
... <devices> <parallel type='pty'> <source path='/dev/pts/2'/> <target port='0'/> </parallel> </devices> ...
target
can have a port
attribute, which
specifies the port number. Ports are numbered starting from 1. There are
usually 0, 1 or 2 parallel ports.
... <devices> <serial type='pty'> <source path='/dev/pts/3'/> <target port='0'/> </serial> </devices> ...
target
can have a port
attribute, which
specifies the port number. Ports are numbered starting from 1. There are
usually 0, 1 or 2 serial ports.
This represents the primary console. This can be the paravirtualized console with Xen guests, or duplicates the primary serial port for fully virtualized guests without a paravirtualized console.
... <devices> <console type='pty'> <source path='/dev/pts/4'/> <target port='0'/> </console> </devices> ...
If the console is presented as a serial port, the target
element has the same attributes as for a serial port. There is usually
only 1 console.
This represents a private communication channel between the host and the guest.
... <devices> <channel type='unix'> <source mode='bind' path='/tmp/guestfwd'/> <target type='guestfwd' address='10.0.2.1' port='4600'/> </channel> </devices> ...
This can be implemented in a variety of ways. The specific type of
channel is given in the type
attribute of the
target
element. Different channel types have different
target
attributes.
guestfwd
target
element must have address
and port
attributes.
Since 0.7.3A character device presents itself to the host as one of the following types.
This disables all input on the character device, and sends output into the virtual machine's logfile
... <devices> <console type='stdio'> <target port='1'> </console> </devices> ...
A file is opened and all data sent to the character device is written to the file.
... <devices> <serial type="file"> <source path="/var/log/vm/vm-serial.log"/> <target port="1"/> </serial> </devices> ...
Connects the character device to the graphical framebuffer in a virtual console. This is typically accessed via a special hotkey sequence such as "ctrl+alt+3"
... <devices> <serial type='vc'> <target port="1"/> </serial> </devices> ...
Connects the character device to the void. No data is ever provided to the input. All data written is discarded.
... <devices> <serial type='null'> <target port="1"/> </serial> </devices> ...
A Pseudo TTY is allocated using /dev/ptmx. A suitable client such as 'virsh console' can connect to interact with the serial port locally.
... <devices> <serial type="pty"> <source path="/dev/pts/3"/> <target port="1"/> </serial> </devices> ...
NB special case if <console type='pty'>, then the TTY path is also duplicated as an attribute tty='/dev/pts/3' on the top level <console> tag. This provides compat with existing syntax for <console> tags.
The character device is passed through to the underlying physical character device. The device types must match, eg the emulated serial port should only be connected to a host serial port - don't connect a serial port to a parallel port.
... <devices> <serial type="dev"> <source path="/dev/ttyS0"/> <target port="1"/> </serial> </devices> ...
The character device writes output to a named pipe. See pipe(7) for more info.
... <devices> <serial type="pipe"> <source path="/tmp/mypipe"/> <target port="1"/> </serial> </devices> ...
The character device acts as a TCP client connecting to a remote server.
... <devices> <serial type="tcp"> <source mode="connect" host="0.0.0.0" service="2445"/> <protocol type="raw"/> <target port="1"/> </serial> </devices> ...
Or as a TCP server waiting for a client connection.
... <devices> <serial type="tcp"> <source mode="bind" host="127.0.0.1" service="2445"/> <protocol type="raw"/> <target port="1"/> </serial> </devices> ...
Alternatively you can use telnet instead of raw TCP.
... <devices> <serial type="tcp"> <source mode="connect" host="0.0.0.0" service="2445"/> <protocol type="telnet"/> <target port="1"/> </serial> ... <serial type="tcp"> <source mode="bind" host="127.0.0.1" service="2445"/> <protocol type="telnet"/> <target port="1"/> </serial> </devices> ...
The character device acts as a UDP netconsole service, sending and receiving packets. This is a lossy service.
... <devices> <serial type="udp"> <source mode="bind" host="0.0.0.0" service="2445"/> <source mode="connect" host="0.0.0.0" service="2445"/> <target port="1"/> </serial> </devices> ...
The character device acts as a UNIX domain socket server, accepting connections from local clients.
... <devices> <serial type="unix"> <source mode="bind" path="/tmp/foo"/> <target port="1"/> </serial> </devices> ...
A virtual sound card can be attached to the host via the
sound
element. Since 0.4.3
... <devices> <sound model='es1370'/> </devices> ...
sound
sound
element has one mandatory attribute,
model
, which specifies what real sound device is emulated.
Valid values are specific to the underlying hypervisor, though typical
choices are 'es1370', 'sb16', and 'ac97'
('ac97' only since 0.6.0)
A virtual hardware watchdog device can be added to the guest via
the watchdog
element.
Since 0.7.3, QEMU and KVM only
The watchdog device requires an additional driver and management daemon in the guest. Just enabling the watchdog in the libvirt configuration does not do anything useful on its own.
Currently libvirt does not support notification when the watchdog fires. This feature is planned for a future version of libvirt.
... <devices> <watchdog model='i6300esb'/> </devices> ...
... <devices> <watchdog model='i6300esb' action='poweroff'/> </devices> </domain>
model
The required model
attribute specifies what real
watchdog device is emulated. Valid values are specific to the
underlying hypervisor.
QEMU and KVM support:
action
The optional action
attribute describes what
action to take when the watchdog expires. Valid values are
specific to the underlying hypervisor.
QEMU and KVM support:
Note that the 'shutdown' action requires that the guest is responsive to ACPI signals. In the sort of situations where the watchdog has expired, guests are usually unable to respond to ACPI signals. Therefore using 'shutdown' is not recommended.
Example configurations for each driver are provide on the driver specific pages listed below