This section describes the XML format used to represent domains, there are variations on the format based on the kind of domains run and the options used to launch them. For hypervisor specific details consult the driver docs
The root element required for all virtual machines is
named domain
. It has two attributes, the
type
specifies the hypervisor used for running
the domain. The allowed values are driver specific, but
include "xen", "kvm", "qemu", "lxc" and "kqemu". The
second attribute is id
which is a unique
integer identifier for the running guest machine. Inactive
machines have no id value.
<domain type='xen' id='3'> <name>fv0</name> <uuid>4dea22b31d52d8f32516782e98ab3fa0</uuid> <description>Some human readable description</description> ...
name
name
element provides
a short name for the virtual machine. This name should
consist only of alpha-numeric characters and is required
to be unique within the scope of a single host. It is
often used to form the filename for storing the persistent
configuration file. Since 0.0.1uuid
uuid
element provides
a globally unique identifier for the virtual machine.
The format must be RFC 4122 compliant, eg 3e3fce45-4f53-4fa7-bb32-11f34168b82b
.
If omitted when defining/creating a new machine, a random
UUID is generated. It is also possible to provide the UUID
via a sysinfo
specification. Since 0.0.1, sysinfo
since 0.8.7description
description
element provides a
human readable description of the virtual machine. This data is not
used by libvirt in any way, it can contain any information the user
wants. Since 0.7.2There are a number of different ways to boot virtual machines each with their own pros and cons.
Booting via the BIOS is available for hypervisors supporting full virtualization. In this case the BIOS has a boot order priority (floppy, harddisk, cdrom, network) determining where to obtain/find the boot image.
... <os> <type>hvm</type> <loader>/usr/lib/xen/boot/hvmloader</loader> <boot dev='hd'/> <boot dev='cdrom'/> <bootmenu enable='yes'/> <smbios mode='sysinfo'/> </os> ...
type
type
element specifies the
type of operating system to be booted in the virtual machine.
hvm
indicates that the OS is one designed to run
on bare metal, so requires full virtualization. linux
(badly named!) refers to an OS that supports the Xen 3 hypervisor
guest ABI. There are also two optional attributes, arch
specifying the CPU architecture to virtualization, and machine
referring to the machine type. The Capabilities XML
provides details on allowed values for these. Since 0.0.1loader
loader
tag refers to a firmware blob
used to assist the domain creation process. At this time, it is
only needed by Xen fully virtualized domains. Since 0.1.0boot
dev
attribute takes one of the values "fd", "hd",
"cdrom" or "network" and is used to specify the next boot device
to consider. The boot
element can be repeated multiple
times to setup a priority list of boot devices to try in turn. The
boot
element cannot be used if per-device boot elements
are used (see disks,
network interfaces, and
USB and PCI devices sections below).
Since 0.1.3, per-device boot since 0.8.8
bootmenu
enable
attribute can be either "yes" or "no".
If not specified, the hypervisor default is used.
Since 0.8.3
smbios
mode
attribute must be specified, and is either
"emulate" (let the hypervisor generate all values), "host" (copy
all of Block 0 and Block 1, except for the UUID, from the host's
SMBIOS values;
the
virConnectGetSysinfo
call can be
used to see what values are copied), or "sysinfo" (use the values in
the sysinfo element). If not
specified, the hypervisor default is used.
Since 0.8.7
Hypervisors employing paravirtualization do not usually emulate
a BIOS, and instead the host is responsible to kicking off the
operating system boot. This may use a pseudo-bootloader in the
host to provide an interface to choose a kernel for the guest.
An example is pygrub
with Xen.
... <bootloader>/usr/bin/pygrub</bootloader> <bootloader_args>--append single</bootloader_args> ...
bootloader
bootloader
element provides
a fully qualified path to the bootloader executable in the
host OS. This bootloader will be run to choose which kernel
to boot. The required output of the bootloader is dependent
on the hypervisor in use. Since 0.1.0bootloader_args
bootloader_args
element allows
command line arguments to be passed to the bootloader.
Since 0.2.3
When installing a new guest OS it is often useful to boot directly from a kernel and initrd stored in the host OS, allowing command line arguments to be passed directly to the installer. This capability is usually available for both para and full virtualized guests.
... <os> <type>hvm</type> <loader>/usr/lib/xen/boot/hvmloader</loader> <kernel>/root/f8-i386-vmlinuz</kernel> <initrd>/root/f8-i386-initrd</initrd> <cmdline>console=ttyS0 ks=http://example.com/f8-i386/os/</cmdline> </os> ...
type
loader
kernel
initrd
cmdline
Some hypervisors allow control over what system information is
presented to the guest (for example, SMBIOS fields can be
populated by a hypervisor and inspected via
the dmidecode
command in the guest). The
optional sysinfo
element covers all such categories
of information. Since 0.8.7
... <os> <smbios mode='sysinfo'/> ... </os> <sysinfo type='smbios'> <bios> <entry name='vendor'>LENOVO</entry> </bios> <system> <entry name='manufacturer'>Fedora</entry> <entry name='vendor'>Virt-Manager</entry> </system> </sysinfo> ...
The sysinfo
element has a mandatory
attribute type
that determine the layout of
sub-elements, with supported values of:
smbios
smbios
sub-element of
the os
element. Each
sub-element of sysinfo
names a SMBIOS block, and
within those elements can be a list of entry
elements that describe a field within the block. The following
blocks and entries are recognized:
bios
system
uuid
element, the two values must match.
... <memory>524288</memory> <currentMemory>524288</currentMemory> <memoryBacking> <hugepages/> </memoryBacking> <blkiotune> <weight>800</weight> </blkiotune> <memtune> <hard_limit>1048576</hard_limit> <soft_limit>131072</soft_limit> <swap_hard_limit>2097152</swap_hard_limit> <min_guarantee>65536</min_guarantee> </memtune> <vcpu cpuset="1-4,^3,6" current="1">2</vcpu> <cputune> <vcpupin vcpu="0" cpuset="1-4,^2"/> <vcpupin vcpu="1" cpuset="0,1"/> <vcpupin vcpu="2" cpuset="2,3"/> <vcpupin vcpu="3" cpuset="0,4"/> <shares>2048</shares> </cputune> <numatune> <memory mode="strict" nodeset="1-4,^3"/> </numatune> ...
memory
currentMemory
memory
elementmemoryBacking
memoryBacking
element, may have an
hugepages
element set within it. This tells the
hypervisor that the guest should have its memory allocated using
hugepages instead of the normal native page size.blkiotune
blkiotune
element provides the ability
to tune Blkio cgroup tunable parameters for the domain. If this is
omitted, it defaults to the OS provided defaults.weight
weight
element is the I/O weight of the
guest. The value should be in range [100, 1000].memtune
memtune
element provides details
regarding the memory tunable parameters for the domain. If this is
omitted, it defaults to the OS provided defaults. For QEMU/KVM, the
parameters are applied to the QEMU process as a whole. Thus, when
counting them, one needs to add up guest RAM, guest video RAM, and
some memory overhead of QEMU itself. The last piece is hard to
determine so one needs guess and try.hard_limit
hard_limit
element is the maximum memory
the guest can use. The units for this value are kilobytes (i.e. blocks
of 1024 bytes)soft_limit
soft_limit
element is the memory limit to
enforce during memory contention. The units for this value are
kilobytes (i.e. blocks of 1024 bytes)swap_hard_limit
swap_hard_limit
element is the maximum
memory plus swap the guest can use. The units for this value are
kilobytes (i.e. blocks of 1024 bytes). This has to be more than
hard_limit value providedmin_guarantee
min_guarantee
element is the guaranteed
minimum memory allocation for the guest. The units for this value are
kilobytes (i.e. blocks of 1024 bytes)vcpu
cpuset
attribute, which is a comma-separated
list of physical CPU numbers that virtual CPUs can be pinned
to. Each element in that list is either a single CPU number,
a range of CPU numbers, or a caret followed by a CPU number to
be excluded from a previous range. Since
0.8.5, the optional attribute current
can
be used to specify whether fewer than the maximum number of
virtual CPUs should be enabled.
cputune
cputune
element provides details
regarding the cpu tunable parameters for the domain.
Since 0.9.0
vcpupin
vcpupin
element specifies which of host
physical CPUS the domain VCPU will be pinned to. If this is ommited,
each VCPU pinned to all the physical CPUS by default. It contains two
required attributes, the attribute vcpu
specifies vcpu id,
and the attribute cpuset
is same as attribute cpuset
of element vcpu
. (NB: Only qemu driver support)
Since 0.9.0
shares
shares
element specifies the proportional
weighted share for the domain. If this is ommited, it defaults to
the OS provided defaults. NB, There is no unit for the value, it's a relative
measure based on the setting of other VM, e.g. A VM configured with value
2048 will get twice as much CPU time as a VM configured with value 1024.
Since 0.9.0
numatune
numatune
element provides details of
how to tune the performance of a NUMA host via controlling NUMA policy
for domain process. NB, only supported by QEMU driver.
Since 0.9.3
memory
memory
element specify how to allocate memory
for the domain process on a NUMA host. It contains two attributes,
attribute mode
is either 'interleave', 'strict', or 'preferred',
attribute nodeset
specifies the NUMA nodes, it leads same
syntax with attribute cpuset
of element vcpu
.
Since 0.9.3
Requirements for CPU model, its features and topology can be specified using the following collection of elements. Since 0.7.5
... <cpu match='exact'> <model>core2duo</model> <vendor>Intel</vendor> <topology sockets='1' cores='2' threads='1'/> <feature policy='disable' name='lahf_lm'/> </cpu> ...
In case no restrictions need to be put on CPU model and its features, a
simpler cpu
element can be used.
Since 0.7.6
... <cpu> <topology sockets='1' cores='2' threads='1'/> </cpu> ...
cpu
cpu
element is the main container for describing
guest CPU requirements. Its match
attribute specified how
strictly has the virtual CPU provided to the guest match these
requirements. Since 0.7.6 the
match
attribute can be omitted if topology
is the only element within cpu
. Possible values for the
match
attribute are:
minimum
exact
strict
match
attribute can be omitted and will default to exact
.
model
model
element specifies CPU model
requested by the guest. The list of available CPU models and their
definition can be found in cpu_map.xml
file installed
in libvirt's data directory.vendor
vendor
element specifies CPU vendor requested by the
guest. If this element is missing, the guest can be run on a CPU
matching given features regardless on its vendor. The list of
supported vendors can be found in cpu_map.xml
.topology
topology
element specifies requested topology of
virtual CPU provided to the guest. Three non-zero values have to be
given for sockets
, cores
, and
threads
: total number of CPU sockets, number of cores per
socket, and number of threads per core, respectively.feature
cpu
element can contain zero or more
elements
used to fine-tune features provided by the
selected CPU model. The list of known feature names can be found in
the same file as CPU models. The meaning of each feature
element depends on its policy
attribute, which has to be
set to one of the following values:
force
require
optional
disable
forbid
policy
attribute can be omitted and will default to require
.
It is sometimes necessary to override the default actions taken when a guest OS triggers a lifecycle operation. The following collections of elements allow the actions to be specified. A common use case is to force a reboot to be treated as a poweroff when doing the initial OS installation. This allows the VM to be re-configured for the first post-install bootup.
... <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> ...
on_poweroff
on_reboot
on_crash
Each of these states allow for the same four possible actions.
destroy
restart
preserve
rename-restart
on_crash supports these additional actions since 0.8.4.
coredump-destroy
coredump-restart
Hypervisors may allow certain CPU / machine features to be toggled on/off.
... <features> <pae/> <acpi/> <apic/> <hap/> </features> ...
All features are listed within the features
element, omitting a togglable feature tag turns it off.
The available features can be found by asking
for the capabilities XML,
but a common set for fully virtualized domains are:
pae
acpi
hap
The guest clock is typically initialized from the host clock. Most operating systems expect the hardware clock to be kept in UTC, and this is the default. Windows, however, expects it to be in so called 'localtime'.
... <clock offset="localtime"> <timer name="rtc" tickpolicy="catchup" track="guest"> <catchup threshold=123 slew=120 limit=10000/> </timer> <timer name="pit" tickpolicy="none"/> </clock> ...
clock
The offset
attribute takes four possible
values, allowing fine grained control over how the guest
clock is synchronized to the host. NB, not all hypervisors
support all modes.
utc
localtime
timezone
timezone
attribute.
Since 0.7.7
variable
adjustment
attribute.
The guest is free to adjust the RTC over time an expect
that it will be honoured at next reboot. This is in
contrast to 'utc' mode, where the RTC adjustments are
lost at each reboot. Since 0.7.7
A clock
may have zero or more
timer
sub-elements. Since
0.8.0
timer
Each timer element requires a name
attribute,
and has other optional attributes that depend on
the name
specified. Various hypervisors
support different combinations of attributes.
name
name
attribute selects which timer is
being modified, and can be one of "platform", "pit",
"rtc", "hpet", or "tsc".
track
track
attribute specifies what the timer
tracks, and can be "boot", "guest", or "wall".
Only valid for name="rtc"
or name="platform"
.
tickpolicy
tickpolicy
attribute determines how
missed ticks in the guest are handled, and can be "delay",
"catchup", "merge", or "discard". If the policy is
"catchup", there can be further details in
the catchup
sub-element.
catchup
catchup
element has three optional
attributes, each a positive integer. The attributes
are threshold
, slew
,
and limit
.
frequency
frequency
attribute is an unsigned
integer specifying the frequency at
which name="tsc"
runs.
mode
mode
attribute controls how
the name="tsc"
timer is managed, and can be
"auto", "native", "emulate", "paravirt", or "smpsafe".
Other timers are always emulated.
present
present
attribute can be "yes" or "no" to
specify whether a particular timer is available to the guest.
The final set of XML elements are all used to describe devices
provided to the guest domain. All devices occur as children
of the main devices
element.
Since 0.1.3
... <devices> <emulator>/usr/lib/xen/bin/qemu-dm</emulator> </devices> ...
emulator
emulator
element specify
the fully qualified path to the device model emulator binary.
The capabilities XML specifies
the recommended default emulator to use for each particular
domain type / architecture combination.
Any device that looks like a disk, be it a floppy, harddisk,
cdrom, or paravirtualized driver is specified via the disk
element.
... <devices> <disk type='file'> <driver name="tap" type="aio" cache="default"/> <source file='/var/lib/xen/images/fv0'/> <target dev='hda' bus='ide'/> <boot order='2'/> <encryption type='...'> ... </encryption> <shareable/> <serial> ... </serial> </disk> ... <disk type='network'> <driver name="qemu" type="raw" io="threads" ioeventfd="on"/> <source protocol="sheepdog" name="image_name"> <host name="hostname" port="7000"/> </source> <target dev="hdb" bus="ide"/> <boot order='1'/> <address type='drive' controller='0' bus='1' unit='0'/> </disk> </devices> ...
disk
disk
element is the main container for describing
disks. The type
attribute is either "file",
"block", "dir", or "network"
and refers to the underlying source for the disk. The optional
device
attribute indicates how the disk is to be exposed
to the guest OS. Possible values for this attribute are "floppy", "disk"
and "cdrom", defaulting to "disk".
Since 0.0.3; "device" attribute since 0.1.4;
"network" attribute since 0.8.7source
type
is "file", then
the file
attribute specifies the fully-qualified
path to the file holding the disk. If the disk
type
is "block", then the dev
attribute specifies the path to the host device to serve as
the disk. If the disk type
is "network", then
the protocol
attribute specifies the protocol to
access to the requested image; possible values are "nbd",
"rbd", and "sheepdog". If the protocol
attribute
is "rbd" or "sheepdog", an additional
attribute name
is mandatory to specify which
image to be used. When the disk type
is
"network", the source
may have zero or
more host
sub-elements used to specify the hosts
to connect.
Since 0.0.3target
target
element controls the bus / device under which the
disk is exposed to the guest OS. The dev
attribute indicates
the "logical" device name. The actual device name specified is not guaranteed to map to
the device name in the guest OS. Treat it as a device ordering hint.
The optional bus
attribute specifies the type of disk device
to emulate; possible values are driver specific, with typical values being
"ide", "scsi", "virtio", "xen" or "usb". If omitted, the bus type is
inferred from the style of the device name. eg, a device named 'sda'
will typically be exported using a SCSI bus.
Since 0.0.3; bus
attribute since 0.4.3;
"usb" attribute value since after 0.4.4driver
name
attribute selects the primary
backend driver name, while the optional type
attribute provides the sub-type. For example, xen
supports a name of "tap", "tap2", "phy", or "file", with a
type of "aio", while qemu only supports a name of "qemu",
but multiple types including "raw", "bochs", "qcow2", and
"qed".
cache
attribute controls the
cache mechanism, possible values are "default", "none",
"writethrough" and "writeback".
Since 0.6.0
error_policy
attribute controls
how the hypervisor will behave on an error, possible
values are "stop", "ignore", and "enospace".
Since 0.8.0
io
attribute controls specific
policies on I/O; qemu guests support "threads" and
"native". Since 0.8.8
ioeventfd
attribute allows users to
set
domain I/O asynchronous handling for disk device.
The default is left to the discretion of the hypervisor.
Accepted values are "on" and "off". Enabling this allows
qemu to execute VM while a separate thread handles I/O.
Typically guests experiencing high system CPU utilization
during I/O will benefit from this. On the other hand,
on overloaded host it could increase guest I/O latency.
Since 0.9.3 (QEMU and KVM only)
In general you should leave this option alone, unless you
are very certain you know what you are doing.
boot
order
attribute determines the order in which devices will be tried during
boot sequence. The per-device boot
elements cannot be
used together with general boot elements in
BIOS bootloader section.
Since 0.8.8
encryption
shareable
serial
<serial>WD-WMAP9A966149</serial>
.
Since 0.7.1
host
host
element has two attributes "name" and "port",
which specify the hostname and the port number. The meaning of this
element and the number of the elements depend on the protocol attribute.
Protocol | Meaning | Number of hosts |
---|---|---|
nbd | a server running nbd-server | only one |
rbd | monitor servers of RBD | one or more |
sheepdog | one of the sheepdog servers (default is localhost:7000) | zero or one |
address
address
element ties the disk
to a given slot of a controller (the
actual <controller>
device can often be
inferred by libvirt, although it can
be explicitly specified).
The type
attribute is mandatory, and is typically
"pci" or "drive". For a "pci" controller, additional
attributes for bus
, slot
,
and function
must be present, as well as an
optional domain
. For a "drive" controller,
additional attributes controller
, bus
,
and unit
are available, each defaulting to 0.
A directory on the host that can be accessed directly from the guest. since 0.3.3, since 0.8.5 for QEMU/KVM
... <devices> <filesystem type='template'> <source name='my-vm-template'/> <target dir='/'/> </filesystem> <filesystem type='mount' accessmode='passthrough'> <source dir='/export/to/guest'/> <target dir='/import/from/host'/> <readonly/> </filesystem> ... </devices> ...
filesystem
type
specifies the type of the
source
. The possible values are:
type='mount'
type
if one is not specified.
type='template'
type='file'
type='block'
accessmode
which specifies the security mode for accessing the source
(since 0.8.5). Currently this only works
with type='mount'
for the QEMU/KVM driver. The possible
values are:
accessmode='passthrough'
source
is accessed with the permissions of the
user inside the guest. This is the default accessmode
if
one is not specified.
More info
accessmode='mapped'
source
is accessed with the permissions of the
hypervisor (QEMU process).
More info
accessmode='squash'
source
name
attribute must be used with
type='template'
, and the dir
attribute must
be used with type='mount'
target
source
can be accessed in the guest. For
most drivers this is an automatic mount point, but for QEMU/KVM
this is merely an arbitrary string tag that is exported to the
guest as a hint for where to mount.
readonly
readonly
attribute is available but currently
unused.
Many devices that have an <address>
sub-element are designed to work with a controller to manage
related devices. Normally, libvirt can automatically infer such
controllers without requiring explicit XML markup, but sometimes
it is necessary to provide an explicit controller element.
... <devices> <controller type='ide' index='0'/> <controller type='virtio-serial' index='0' ports='16' vectors='4'/> <controller type='virtio-serial' index='1'> <address type='pci' domain='0x0000' bus='0x00' slot='0x0a' function='0x0'/> </controller> ... </devices> ...
Each controller has a mandatory attribute type
,
which must be one of "ide", "fdc", "scsi", "sata", "ccid", or
"virtio-serial", and a mandatory attribute index
which is the decimal integer describing in which order the bus
controller is encountered (for use in controller
attributes of <address>
elements). The
"virtio-serial" controller has two additional optional
attributes ports
and vectors
, which
control how many devices can be connected through the
controller. A "scsi" controller has an optional
attribute model
, which is one of "auto",
"buslogic", "lsilogic", "lsias1068", or "vmpvscsi".
For controllers that are themselves devices on a PCI or USB bus,
an optional sub-element <address>
can specify
the exact relationship of the controller to its master bus, with
semantics like any other device's address
sub-element.
When using a lock manager, it may be desirable to record device leases against a VM. The lock manager will ensure the VM won't start unless the leases can be acquired.
... <devices> ... <lease> <lockspace>somearea</lockspace> <key>somekey</key> <target path='/some/lease/path' offset='1024'/> </lease> ... </devices> ...
USB and PCI devices attached to the host can be passed through to the guest using
the hostdev
element. since after
0.4.4 for USB and 0.6.0 for PCI (KVM only):
... <devices> <hostdev mode='subsystem' type='usb'> <source> <vendor id='0x1234'/> <product id='0xbeef'/> </source> <boot order='2'/> </hostdev> </devices> ...
or:
... <devices> <hostdev mode='subsystem' type='pci' managed='yes'> <source> <address bus='0x06' slot='0x02' function='0x0'/> </source> <boot order='1'/> </hostdev> </devices> ...
hostdev
hostdev
element is the main container for describing
host devices. For usb device passthrough mode
is always
"subsystem" and type
is "usb" for a USB device and "pci"
for a PCI device. When managed
is "yes" for a PCI
device, it is detached from the host before being passed on to
the guest.source
vendor
and product
elements or by the device's
address on the hosts using the address
element.
PCI devices on the other hand can only be described by their
address
vendor
, product
vendor
and product
elements each have an
id
attribute that specifies the USB vendor and product id.
The ids can be given in decimal, hexadecimal (starting with 0x) or
octal (starting with 0) form.boot
order
attribute determines the order in which devices will be tried during
boot sequence. The per-device boot
elements cannot be
used together with general boot elements in
BIOS bootloader section.
Since 0.8.8address
address
element for USB devices has a
bus
and device
attribute to specify the
USB bus and device number the device appears at on the host.
The values of these attributes can be given in decimal, hexadecimal
(starting with 0x) or octal (starting with 0) form.
For PCI devices the element carries 3 attributes allowing to designate
the device as can be found with the lspci
or
with virsh nodedev-list
. The
bus
attribute allows the hexadecimal values 0 to ff, the
slot
attribute allows the hexadecimal values 0 to 1f, and
the function
attribute allows the hexadecimal values 0 to
7. There is also an optional domain
attribute for the
PCI domain, with hexadecimal values 0 to ffff, but it is currently
not used by qemu.
A virtual smartcard device can be supplied to the guest via the
smartcard
element. A USB smartcard reader device on
the host cannot be used on a guest with simple device
passthrough, since it will then not be available on the host,
possibly locking the host computer when it is "removed".
Therefore, some hypervisors provide a specialized virtual device
that can present a smartcard interface to the guest, with
several modes for describing how credentials are obtained from
the host or even a from a channel created to a third-party
smartcard provider. Since 0.8.8
... <devices> <smartcard mode='host'/> <smartcard mode='host-certificates'> <certificate>cert1</certificate> <certificate>cert2</certificate> <certificate>cert3</certificate> <database>/etc/pki/nssdb/</database> </smartcard> <smartcard mode='passthrough' type='tcp'> <source mode='bind' host='127.0.0.1' service='2001'/> <protocol type='raw'/> <address type='ccid' controller='0' slot='0'/> </smartcard> <smartcard mode='passthrough' type='spicevmc'/> </devices> ...
The <smartcard>
element has a mandatory
attribute mode
. The following modes are supported;
in each mode, the guest sees a device on its USB bus that
behaves like a physical USB CCID (Chip/Smart Card Interface
Device) card.
mode='host'
<address>
sub-element.mode='host-certificates'
certutil -d /etc/pki/nssdb -x -t
CT,CT,CT -S -s CN=cert1 -n cert1
, and the resulting three
certificate names must be supplied as the content of each of
three <certificate>
sub-elements. An
additional sub-element <database>
can specify
the absolute path to an alternate directory (matching
the -d
option of the certutil
command
when creating the certificates); if not present, it defaults to
/etc/pki/nssdb.mode='passthrough'
type
is required, matching one of the
supported serial device types, to
describe the host side of the tunnel; type='tcp'
or type='spicevmc'
(which uses the smartcard
channel of a SPICE graphics
device) are typical. Further sub-elements, such
as <source>
, may be required according to the
given type, although a <target>
sub-element
is not required (since the consumer of the character device is
the hypervisor itself, rather than a device visible in the
guest).
Each mode supports an optional
sub-element <address>
, which fine-tunes the
correlation between the smartcard and a ccid bus controller.
If present, the element must have an attribute
of type='ccid'
as well as a bus
attribute listing the index of the bus that the smartcard
utilizes. An optional slot
attribute lists which
slot within the bus. For now, qemu only supports at most one
smartcard, with an address of bus=0 slot=0.
... <devices> <interface type='bridge'> <source bridge='xenbr0'/> <mac address='00:16:3e:5d:c7:9e'/> <script path='vif-bridge'/> <boot order='1'/> </interface> </devices> ...
There are several possibilities for specifying a network
interface visible to the guest. Each subsection below provides
more details about common setup options. Additionally,
each <interface>
element has an
optional <address>
sub-element that can tie
the interface to a particular pci slot, with
attribute type='pci'
and additional
attributes domain
, bus
, slot
,
and function
as appropriate.
This is the recommended config for general guest connectivity on hosts with dynamic / wireless networking configs
Provides a virtual network using a bridge device in the host.
Depending on the virtual network configuration, the network may be
totally isolated, NAT'ing to an explicit network device, or NAT'ing to
the default route. DHCP and DNS are provided on the virtual network in
all cases and the IP range can be determined by examining the virtual
network config with 'virsh net-dumpxml [networkname]
'.
There is one virtual network called 'default' setup out
of the box which does NAT'ing to the default route and has an IP range of
192.168.122.0/255.255.255.0
. Each guest will have an
associated tun device created with a name of vnetN, which can also be
overridden with the <target> element (see
overriding the target element).
... <devices> <interface type='network'> <source network='default'/> </interface> ... <interface type='network'> <source network='default'/> <target dev='vnet7'/> <mac address="00:11:22:33:44:55"/> </interface> </devices> ...
This is the recommended config for general guest connectivity on hosts with static wired networking configs
Provides a bridge from the VM directly onto the LAN. This assumes there is a bridge device on the host which has one or more of the hosts physical NICs enslaved. The guest VM will have an associated tun device created with a name of vnetN, which can also be overridden with the <target> element (see overriding the target element). The tun device will be enslaved to the bridge. The IP range / network configuration is whatever is used on the LAN. This provides the guest VM full incoming & outgoing net access just like a physical machine.
... <devices> <interface type='bridge'> <source bridge='br0'/> </interface> ... <interface type='bridge'> <source bridge='br0'/> <target dev='vnet7'/> <mac address="00:11:22:33:44:55"/> </interface> </devices> ...
Provides a virtual LAN with NAT to the outside world. The virtual
network has DHCP & DNS services and will give the guest VM addresses
starting from 10.0.2.15
. The default router will be
10.0.2.2
and the DNS server will be 10.0.2.3
.
This networking is the only option for unprivileged users who need their
VMs to have outgoing access.
... <devices> <interface type='user'/> ... <interface type='user'> <mac address="00:11:22:33:44:55"/> </interface> </devices> ...
Provides a means for the administrator to execute an arbitrary script to connect the guest's network to the LAN. The guest will have a tun device created with a name of vnetN, which can also be overridden with the <target> element. After creating the tun device a shell script will be run which is expected to do whatever host network integration is required. By default this script is called /etc/qemu-ifup but can be overridden.
... <devices> <interface type='ethernet'/> ... <interface type='ethernet'> <target dev='vnet7'/> <script path='/etc/qemu-ifup-mynet'/> </interface> </devices> ...
Provides direct attachment of the virtual machine's NIC to the given
physial interface of the host.
Since 0.7.7 (QEMU and KVM only)
This setup requires the Linux macvtap
driver to be available. (Since Linux 2.6.34.)
One of the modes 'vepa'
(
'Virtual Ethernet Port Aggregator'), 'bridge' or 'private'
can be chosen for the operation mode of the macvtap device, 'vepa'
being the default mode. The individual modes cause the delivery of
packets to behave as follows:
vepa
bridge
vepa
mode,
a VEPA capable bridge is required.private
private
mode.passthrough
... <devices> <interface type='direct'/> ... <interface type='direct'> <source dev='eth0' mode='vepa'/> </interface> </devices> ...
The network access of direct attached virtual machines can be managed by the hardware switch to which the physical interface of the host machine is connected to.
The interface can have additional parameters as shown below, if the switch is conforming to the IEEE 802.1Qbg standard. The parameters of the virtualport element are documented in more detail in the IEEE 802.1Qbg standard. The values are network specific and should be provided by the network administrator. In 802.1Qbg terms, the Virtual Station Interface (VSI) represents the virtual interface of a virtual machine. Since 0.8.2
Please note that IEEE 802.1Qbg requires a non-zero value for the VLAN ID.
managerid
typeid
typeidversion
instanceid
... <devices> <interface type='direct'/> ... <interface type='direct'> <source dev='eth0.2' mode='vepa'/> <virtualport type="802.1Qbg"> <parameters managerid="11" typeid="1193047" typeidversion="2" instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"/> </virtualport> </interface> </devices> ...
The interface can have additional parameters as shown below if the switch is conforming to the IEEE 802.1Qbh standard. The values are network specific and should be provided by the network administrator. Since 0.8.2
profileid
... <devices> <interface type='direct'/> ... <interface type='direct'> <source dev='eth0' mode='private'/> <virtualport type='802.1Qbh'> <parameters profileid='finance'/> </virtualport> </interface> </devices> ...
A multicast group is setup to represent a virtual network. Any VMs whose network devices are in the same multicast group can talk to each other even across hosts. This mode is also available to unprivileged users. There is no default DNS or DHCP support and no outgoing network access. To provide outgoing network access, one of the VMs should have a 2nd NIC which is connected to one of the first 4 network types and do the appropriate routing. The multicast protocol is compatible with that used by user mode linux guests too. The source address used must be from the multicast address block.
... <devices> <interface type='mcast'> <source address='230.0.0.1' port='5558'/> </interface> </devices> ...
A TCP client/server architecture provides a virtual network. One VM provides the server end of the network, all other VMS are configured as clients. All network traffic is routed between the VMs via the server. This mode is also available to unprivileged users. There is no default DNS or DHCP support and no outgoing network access. To provide outgoing network access, one of the VMs should have a 2nd NIC which is connected to one of the first 4 network types and do the appropriate routing.
... <devices> <interface type='server'> <source address='192.168.0.1' port='5558'/> </interface> ... <interface type='client'> <source address='192.168.0.1' port='5558'/> </interface> </devices> ...
... <devices> <interface type='network'> <source network='default'/> <target dev='vnet1'/> <model type='ne2k_pci'/> </interface> </devices> ...
For hypervisors which support this, you can set the model of emulated network interface card.
The values for type
aren't defined specifically by
libvirt, but by what the underlying hypervisor supports (if
any). For QEMU and KVM you can get a list of supported models
with these commands:
qemu -net nic,model=? /dev/null qemu-kvm -net nic,model=? /dev/null
Typical values for QEMU and KVM include: ne2k_isa i82551 i82557b i82559er ne2k_pci pcnet rtl8139 e1000 virtio
... <devices> <interface type='network'> <source network='default'/> <target dev='vnet1'/> <model type='virtio'/> <driver name='vhost' txmode='iothread' ioeventfd='on'/> </interface> </devices> ...
Some NICs may have tunable driver-specific options. These are
set as attributes of the driver
sub-element of the
interface definition. Currently the following attributes are
available for the "virtio"
NIC driver:
name
name
attribute forces which type of
backend driver to use. The value can be either 'qemu' (a
user-space backend) or 'vhost' (a kernel backend, which
requires the vhost module to be provided by the kernel); an
attempt to require the vhost driver without kernel support
will be rejected. If this attribute is not present, then the
domain defaults to 'vhost' if present, but silently falls back
to 'qemu' without error.
Since 0.8.8 (QEMU and KVM only)
txmode
txmode
attribute specifies how to handle
transmission of packets when the transmit buffer is full. The
value can be either 'iothread' or 'timer'.
Since 0.8.8 (QEMU and KVM only)ioeventfd
... <devices> <interface type='network'> <source network='default'/> <target dev='vnet1'/> </interface> </devices> ...
If no target is specified, certain hypervisors will automatically generate a name for the created tun device. This name can be manually specifed, however the name must not start with either 'vnet' or 'vif', which are prefixes reserved by libvirt and certain hypervisors. Manually specified targets using these prefixes will be ignored.
... <devices> <interface type='network'> <source network='default'/> <target dev='vnet1'/> <boot order='1'/> </interface> </devices> ...
For hypervisors which support this, you can set exact NIC which should
be used for network boot. The order
attribute determines
the order in which devices will be tried during boot sequence. The
per-device boot
elements cannot be used together with
general boot elements in
BIOS bootloader section.
Since 0.8.8
Input devices allow interaction with the graphical framebuffer in the guest virtual machine. When enabling the framebuffer, an input device is automatically provided. It may be possible to add additional devices explicitly, for example, to provide a graphics tablet for absolute cursor movement.
... <devices> <input type='mouse' bus='usb'/> </devices> ...
input
input
element has one mandatory attribute, the type
whose value can be either 'mouse' or 'tablet'. The latter provides absolute
cursor movement, while the former uses relative movement. The optional
bus
attribute can be used to refine the exact device type.
It takes values "xen" (paravirtualized), "ps2" and "usb".
The input
element has an optional
sub-element <address>
which can tie the
device to a particular PCI slot.
A graphics device allows for graphical interaction with the guest OS. A guest will typically have either a framebuffer or a text console configured to allow interaction with the admin.
... <devices> <graphics type='sdl' display=':0.0'/> <graphics type='vnc' port='5904'/> <graphics type='rdp' autoport='yes' multiUser='yes' /> <graphics type='desktop' fullscreen='yes'/> </devices> ...
graphics
graphics
element has a mandatory type
attribute which takes the value "sdl", "vnc", "rdp" or "desktop":
"sdl"
display
attribute for the display to use, an xauth
attribute for the authentication identifier, and an optional fullscreen
attribute accepting values 'yes' or 'no'.
"vnc"
port
attribute specifies the TCP
port number (with -1 as legacy syntax indicating that it should be
auto-allocated). The autoport
attribute is the new
preferred syntax for indicating autoallocation of the TCP port to use.
The listen
attribute is an IP address for the server to
listen on. The passwd
attribute provides a VNC password
in clear text. The keymap
attribute specifies the keymap
to use. It is possible to set a limit on the validity of the password
be giving an timestamp passwdValidTo='2010-04-09T15:51:00'
assumed to be in UTC. NB, this may not be supported by all hypervisors.socket
attribute for listening on a unix domain socket path.
Since 0.8.8
"spice"
Starts a SPICE server. The port
attribute specifies the TCP
port number (with -1 as legacy syntax indicating that it should be
auto-allocated), while tlsPort
gives an alternative
secure port number. The autoport
attribute is the new
preferred syntax for indicating autoallocation of both port numbers.
The listen
attribute is an IP address for the server to
listen on. The passwd
attribute provides a SPICE password
in clear text. The keymap
attribute specifies the keymap
to use. It is possible to set a limit on the validity of the password
be giving an timestamp passwdValidTo='2010-04-09T15:51:00'
assumed to be in UTC. NB, this may not be supported by all hypervisors.
"spice" since 0.8.6.
When SPICE has both a normal and TLS secured TCP port configured, it
can be desirable to restrict what channels can be run on each port.
This is achieved by adding one or more <channel> elements inside
the main <graphics> element. Valid channel names include
main
, display
, inputs
,
cursor
, playback
, record
;
and since 0.8.8: smartcard
.
<graphics type='spice' port='-1' tlsPort='-1' autoport='yes'> <channel name='main' mode='secure'/> <channel name='record' mode='insecure'/> <image compression='auto_glz'/> <streaming mode='filter'/> <clipboard copypaste='no'/> </graphics>
Spice supports variable compression settings for audio,
images and streaming, since
0.9.1. These settings are accessible via
the compression
attribute in all following
elements: image
to set image compression
(accepts auto_glz
, auto_lz
,
quic
, glz
, lz
,
off
), jpeg
for JPEG
compression for images over wan
(accepts auto
, never
,
always
), zlib
for configuring
wan image compression (accepts auto
,
never
, always
)
and playback
for enabling audio stream
compression (accepts on
or off
).
Streaming mode is set by the streaming
element, settings it's mode
attribute to one
of filter
, all
or off
, since 0.9.2.
Copy & Paste functionality (via Spice agent) is set
by the clipboard
element. It is enabled by
default, and can be disabled by setting
the copypaste
property
to no
, since
0.9.3.
>
"rdp"
port
attribute
specifies the TCP port number (with -1 as legacy syntax indicating
that it should be auto-allocated). The autoport
attribute
is the new preferred syntax for indicating autoallocation of the TCP
port to use. The replaceUser
attribute is a boolean deciding
whether multiple simultaneous connections to the VM are permitted.
The multiUser
whether the existing connection must be dropped
and a new connection must be established by the VRDP server, when a new
client connects in single connection mode.
"desktop"
display
and fullscreen
.
A video device.
... <devices> <video> <model type='vga' vram='8192' heads='1'> <acceleration accel3d='yes' accel3d='yes'/> </model> </video> </devices> ...
video
video
element is the a container for describing
video devices. For backwards compatability, if no video
is set but there is a graphics
in domain xml, then libvirt
will add a default video
according to the guest type.
For a guest of type "kvm", the default video
for it is:
type
with value "cirrus", vram
with value
"9216", and heads
with value "1".
model
model
element has a mandatory type
attribute which takes the value "vga", "cirrus", "vmvga", "xen",
"vbox", or "qxl" (since 0.8.6)
depending on the hypervisor features available.
You can also provide the amount of video memory in kilobytes using
vram
and the number of screen with heads
.
acceleration
accel3d
and accel2d
attributes in the
acceleration
element.
address
address
sub-element can be used to
tie the video device to a particular PCI slot.
A character device provides a way to interact with the virtual machine. Paravirtualized consoles, serial ports, parallel ports and channels are all classed as character devices and so represented using the same syntax.
... <devices> <parallel type='pty'> <source path='/dev/pts/2'/> <target port='0'/> </parallel> <serial type='pty'> <source path='/dev/pts/3'/> <target port='0'/> </serial> <console type='pty'> <source path='/dev/pts/4'/> <target port='0'/> </console> <channel type='unix'> <source mode='bind' path='/tmp/guestfwd'/> <target type='guestfwd' address='10.0.2.1' port='4600'/> </channel> </devices> ...
In each of these directives, the top-level element name (parallel, serial,
console, channel) describes how the device is presented to the guest. The
guest interface is configured by the target
element.
The interface presented to the host is given in the type
attribute of the top-level element. The host interface is
configured by the source
element.
Each character device element has an optional
sub-element <address>
which can tie the
device to a
particular controller or PCI
slot.
A character device presents itself to the guest as one of the following types.
... <devices> <parallel type='pty'> <source path='/dev/pts/2'/> <target port='0'/> </parallel> </devices> ...
target
can have a port
attribute, which
specifies the port number. Ports are numbered starting from 0. There are
usually 0, 1 or 2 parallel ports.
... <devices> <serial type='pty'> <source path='/dev/pts/3'/> <target port='0'/> </serial> </devices> ...
target
can have a port
attribute, which
specifies the port number. Ports are numbered starting from 0. There are
usually 0, 1 or 2 serial ports.
This represents the primary console. This can be the paravirtualized console with Xen guests, virtio console for QEMU/KVM, or duplicates the primary serial port for fully virtualized guests without a paravirtualized console.
A virtio console device is exposed in the guest as /dev/hvc[0-7] (for more information, see http://fedoraproject.org/wiki/Features/VirtioSerial) Since 0.8.3
... <devices> <console type='pty'> <source path='/dev/pts/4'/> <target port='0'/> </console> <!-- KVM virtio console --> <console type='pty'> <source path='/dev/pts/5'/> <target type='virtio' port='0'/> </console> </devices> ...
If the console is presented as a serial port, the target
element has the same attributes as for a serial port. There is usually
only 1 console.
This represents a private communication channel between the host and the guest.
... <devices> <channel type='unix'> <source mode='bind' path='/tmp/guestfwd'/> <target type='guestfwd' address='10.0.2.1' port='4600'/> </channel> <!-- KVM virtio channel --> <channel type='pty'> <target type='virtio' name='arbitrary.virtio.serial.port.name'/> </channel> <channel type='spicevmc'> <target type='virtio' name='com.redhat.spice.0'/> </channel> </devices> ...
This can be implemented in a variety of ways. The specific type of
channel is given in the type
attribute of the
target
element. Different channel types have different
target
attributes.
guestfwd
target
element must have address
and port
attributes.
Since 0.7.3virtio
name
is specified,
/dev/virtio-ports/$name (for more info, please see
http://fedoraproject.org/wiki/Features/VirtioSerial). The
optional element address
can tie the channel to a
particular type='virtio-serial'
controller.
Since 0.7.7spicevmc
main
channel. The target
element must be present, with
attribute type='virtio'
; an optional
attribute name
controls how the guest will have
access to the channel, and defaults
to name='com.redhat.spice.0'
. The
optional address
element can tie the channel to a
particular type='virtio-serial'
controller.
Since 0.8.8A character device presents itself to the host as one of the following types.
This disables all input on the character device, and sends output into the virtual machine's logfile
... <devices> <console type='stdio'> <target port='1'> </console> </devices> ...
A file is opened and all data sent to the character device is written to the file.
... <devices> <serial type="file"> <source path="/var/log/vm/vm-serial.log"/> <target port="1"/> </serial> </devices> ...
Connects the character device to the graphical framebuffer in a virtual console. This is typically accessed via a special hotkey sequence such as "ctrl+alt+3"
... <devices> <serial type='vc'> <target port="1"/> </serial> </devices> ...
Connects the character device to the void. No data is ever provided to the input. All data written is discarded.
... <devices> <serial type='null'> <target port="1"/> </serial> </devices> ...
A Pseudo TTY is allocated using /dev/ptmx. A suitable client such as 'virsh console' can connect to interact with the serial port locally.
... <devices> <serial type="pty"> <source path="/dev/pts/3"/> <target port="1"/> </serial> </devices> ...
NB special case if <console type='pty'>, then the TTY path is also duplicated as an attribute tty='/dev/pts/3' on the top level <console> tag. This provides compat with existing syntax for <console> tags.
The character device is passed through to the underlying physical character device. The device types must match, eg the emulated serial port should only be connected to a host serial port - don't connect a serial port to a parallel port.
... <devices> <serial type="dev"> <source path="/dev/ttyS0"/> <target port="1"/> </serial> </devices> ...
The character device writes output to a named pipe. See pipe(7) for more info.
... <devices> <serial type="pipe"> <source path="/tmp/mypipe"/> <target port="1"/> </serial> </devices> ...
The character device acts as a TCP client connecting to a remote server.
... <devices> <serial type="tcp"> <source mode="connect" host="0.0.0.0" service="2445"/> <protocol type="raw"/> <target port="1"/> </serial> </devices> ...
Or as a TCP server waiting for a client connection.
... <devices> <serial type="tcp"> <source mode="bind" host="127.0.0.1" service="2445"/> <protocol type="raw"/> <target port="1"/> </serial> </devices> ...
Alternatively you can use telnet
instead of raw
TCP.
Since 0.8.5 you can also use telnets
(secure telnet) and tls
.
... <devices> <serial type="tcp"> <source mode="connect" host="0.0.0.0" service="2445"/> <protocol type="telnet"/> <target port="1"/> </serial> ... <serial type="tcp"> <source mode="bind" host="127.0.0.1" service="2445"/> <protocol type="telnet"/> <target port="1"/> </serial> </devices> ...
The character device acts as a UDP netconsole service, sending and receiving packets. This is a lossy service.
... <devices> <serial type="udp"> <source mode="bind" host="0.0.0.0" service="2445"/> <source mode="connect" host="0.0.0.0" service="2445"/> <target port="1"/> </serial> </devices> ...
The character device acts as a UNIX domain socket server, accepting connections from local clients.
... <devices> <serial type="unix"> <source mode="bind" path="/tmp/foo"/> <target port="1"/> </serial> </devices> ...
A virtual sound card can be attached to the host via the
sound
element. Since 0.4.3
... <devices> <sound model='es1370'/> </devices> ...
sound
sound
element has one mandatory attribute,
model
, which specifies what real sound device is emulated.
Valid values are specific to the underlying hypervisor, though typical
choices are 'es1370', 'sb16', 'ac97', and 'ich6'
(
'ac97' only since 0.6.0, 'ich6' only since 0.8.8)
Each sound
element has an optional
sub-element <address>
which can tie the
device to a particular PCI slot.
A virtual hardware watchdog device can be added to the guest via
the watchdog
element.
Since 0.7.3, QEMU and KVM only
The watchdog device requires an additional driver and management daemon in the guest. Just enabling the watchdog in the libvirt configuration does not do anything useful on its own.
Currently libvirt does not support notification when the watchdog fires. This feature is planned for a future version of libvirt.
... <devices> <watchdog model='i6300esb'/> </devices> ...
... <devices> <watchdog model='i6300esb' action='poweroff'/> </devices> </domain>
model
The required model
attribute specifies what real
watchdog device is emulated. Valid values are specific to the
underlying hypervisor.
QEMU and KVM support:
action
The optional action
attribute describes what
action to take when the watchdog expires. Valid values are
specific to the underlying hypervisor.
QEMU and KVM support:
Note 1: the 'shutdown' action requires that the guest is responsive to ACPI signals. In the sort of situations where the watchdog has expired, guests are usually unable to respond to ACPI signals. Therefore using 'shutdown' is not recommended.
Note 2: the directory to save dump files can be configured
by auto_dump_path
in file /etc/libvirt/qemu.conf.
A virtual memory balloon device is added to all Xen and KVM/QEMU
guests. It will be seen as memballoon
element.
It will be automatically added when appropriate, so there is no
need to explicitly add this element in the guest XML unless a
specific PCI slot needs to be assigned.
Since 0.8.3, Xen, QEMU and KVM only
Additionally, since 0.8.4, if the
memballoon device needs to be explicitly disabled,
model='none'
may be used.
Example automatically added device with KVM
... <devices> <memballoon model='virtio'/> </devices> ...
Example manually added device with static PCI slot 2 requested
... <devices> <watchdog model='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </devices> </domain>
model
The required model
attribute specifies what type
of balloon device is provided. Valid values are specific to
the virtualization platform
Example configurations for each driver are provide on the driver specific pages listed below