/* * virhostcpu.c: helper APIs for host CPU info * * Copyright (C) 2006-2016 Red Hat, Inc. * Copyright (C) 2006 Daniel P. Berrange * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see * . */ #include #include #include #ifndef WIN32 # include #endif #include #if WITH_LINUX_KVM_H # include #endif #if defined(__FreeBSD__) || defined(__APPLE__) # include # include # include # include #endif #include "viralloc.h" #define LIBVIRT_VIRHOSTCPUPRIV_H_ALLOW #include "virhostcpupriv.h" #include "virerror.h" #include "virarch.h" #include "virfile.h" #include "virstring.h" #include "virlog.h" #define VIR_FROM_THIS VIR_FROM_NONE VIR_LOG_INIT("util.hostcpu"); #define KVM_DEVICE "/dev/kvm" #define MSR_DEVICE "/dev/cpu/0/msr" #if defined(__FreeBSD__) || defined(__APPLE__) static int virHostCPUGetCountAppleFreeBSD(void) { int ncpu_mib[2] = { CTL_HW, HW_NCPU }; unsigned long ncpu; size_t ncpu_len = sizeof(ncpu); if (sysctl(ncpu_mib, 2, &ncpu, &ncpu_len, NULL, 0) == -1) { virReportSystemError(errno, "%s", _("Cannot obtain CPU count")); return -1; } return ncpu; } #endif /* defined(__FreeBSD__) || defined(__APPLE__) */ #ifdef __FreeBSD__ # define BSD_CPU_STATS_ALL 4 # define BSD_MEMORY_STATS_ALL 4 # define TICK_TO_NSEC (1000ull * 1000ull * 1000ull / (stathz ? stathz : hz)) static int virHostCPUGetStatsFreeBSD(int cpuNum, virNodeCPUStatsPtr params, int *nparams) { const char *sysctl_name; g_autofree long *cpu_times = NULL; struct clockinfo clkinfo; size_t i, j, cpu_times_size, clkinfo_size; int cpu_times_num, offset, hz, stathz; struct field_cpu_map { const char *field; int idx[CPUSTATES]; } cpu_map[] = { {VIR_NODE_CPU_STATS_KERNEL, {CP_SYS}}, {VIR_NODE_CPU_STATS_USER, {CP_USER, CP_NICE}}, {VIR_NODE_CPU_STATS_IDLE, {CP_IDLE}}, {VIR_NODE_CPU_STATS_INTR, {CP_INTR}}, {NULL, {0}} }; if ((*nparams) == 0) { *nparams = BSD_CPU_STATS_ALL; return 0; } if ((*nparams) != BSD_CPU_STATS_ALL) { virReportInvalidArg(*nparams, _("nparams in %1$s must be equal to %2$d"), __FUNCTION__, BSD_CPU_STATS_ALL); return -1; } clkinfo_size = sizeof(clkinfo); if (sysctlbyname("kern.clockrate", &clkinfo, &clkinfo_size, NULL, 0) < 0) { virReportSystemError(errno, _("sysctl failed for '%1$s'"), "kern.clockrate"); return -1; } stathz = clkinfo.stathz; hz = clkinfo.hz; if (cpuNum == VIR_NODE_CPU_STATS_ALL_CPUS) { sysctl_name = "kern.cp_time"; cpu_times_num = 1; offset = 0; } else { sysctl_name = "kern.cp_times"; cpu_times_num = virHostCPUGetCountAppleFreeBSD(); if (cpuNum >= cpu_times_num) { virReportInvalidArg(cpuNum, _("Invalid cpuNum in %1$s"), __FUNCTION__); return -1; } offset = cpu_times_num * CPUSTATES; } cpu_times_size = sizeof(long) * cpu_times_num * CPUSTATES; cpu_times = g_new0(long, cpu_times_num * CPUSTATES); if (sysctlbyname(sysctl_name, cpu_times, &cpu_times_size, NULL, 0) < 0) { virReportSystemError(errno, _("sysctl failed for '%1$s'"), sysctl_name); return -1; } for (i = 0; cpu_map[i].field != NULL; i++) { virNodeCPUStatsPtr param = ¶ms[i]; if (virStrcpyStatic(param->field, cpu_map[i].field) < 0) { virReportError(VIR_ERR_INTERNAL_ERROR, _("Field '%1$s' too long for destination"), cpu_map[i].field); return -1; } param->value = 0; for (j = 0; j < G_N_ELEMENTS(cpu_map[i].idx); j++) param->value += cpu_times[offset + cpu_map[i].idx[j]] * TICK_TO_NSEC; } return 0; } #endif /* __FreeBSD__ */ /* * Even though it doesn't exist on some platforms, the code is adjusted for * graceful handling of that so that we don't have too many stub functions. */ #define SYSFS_SYSTEM_PATH "/sys/devices/system" #ifdef __linux__ # define CPUINFO_PATH "/proc/cpuinfo" # define PROCSTAT_PATH "/proc/stat" # define LINUX_NB_CPU_STATS 4 int virHostCPUGetSocket(unsigned int cpu, unsigned int *socket) { int tmp; int ret = virFileReadValueInt(&tmp, "%s/cpu/cpu%u/topology/physical_package_id", SYSFS_SYSTEM_PATH, cpu); /* If the file is not there, it's 0 */ if (ret == -2) tmp = 0; else if (ret < 0) return -1; /* Some architectures might have '-1' validly in the file, but that actually * means there are no sockets, so from our point of view it's all one socket, * i.e. socket 0. Similarly when the file does not exist. */ if (tmp < 0) tmp = 0; *socket = tmp; return 0; } int virHostCPUGetDie(unsigned int cpu, unsigned int *die) { int die_id; int ret = virFileReadValueInt(&die_id, "%s/cpu/cpu%u/topology/die_id", SYSFS_SYSTEM_PATH, cpu); if (ret == -1) return -1; /* If the file is not there, it's 0. * Another alternative is die_id set to -1, meaning that * the arch does not have die_id support. Set @die to * 0 in this case too. */ if (ret == -2 || die_id < 0) *die = 0; else *die = die_id; return 0; } int virHostCPUGetCluster(unsigned int cpu, unsigned int *cluster) { int cluster_id; int ret = virFileReadValueInt(&cluster_id, "%s/cpu/cpu%u/topology/cluster_id", SYSFS_SYSTEM_PATH, cpu); if (ret == -1) return -1; /* If the file doesn't exists (old kernel) or the value contained * in it is -1 (architecture without CPU clusters), report 0 to * indicate the lack of information */ if (ret == -2 || cluster_id < 0) cluster_id = 0; *cluster = cluster_id; return 0; } int virHostCPUGetCore(unsigned int cpu, unsigned int *core) { int ret = virFileReadValueUint(core, "%s/cpu/cpu%u/topology/core_id", SYSFS_SYSTEM_PATH, cpu); /* If the file is not there, it's 0 */ if (ret == -2) *core = 0; else if (ret < 0) return -1; return 0; } virBitmap * virHostCPUGetSiblingsList(unsigned int cpu) { virBitmap *ret = NULL; int rv = -1; rv = virFileReadValueBitmap(&ret, "%s/cpu/cpu%u/topology/thread_siblings_list", SYSFS_SYSTEM_PATH, cpu); if (rv == -2) { /* If the file doesn't exist, the threadis its only sibling */ ret = virBitmapNew(cpu + 1); ignore_value(virBitmapSetBit(ret, cpu)); } return ret; } static unsigned long virHostCPUCountThreadSiblings(unsigned int cpu) { g_autoptr(virBitmap) siblings_map = NULL; if (!(siblings_map = virHostCPUGetSiblingsList(cpu))) return 0; return virBitmapCountBits(siblings_map); } /* parses a node entry, returning number of processors in the node and * filling arguments */ static int ATTRIBUTE_NONNULL(1) ATTRIBUTE_NONNULL(3) ATTRIBUTE_NONNULL(4) ATTRIBUTE_NONNULL(6) ATTRIBUTE_NONNULL(7) ATTRIBUTE_NONNULL(8) ATTRIBUTE_NONNULL(9) virHostCPUParseNode(const char *node, virArch arch, virBitmap *present_cpus_map, virBitmap *online_cpus_map, int threads_per_subcore, int *sockets, int *cores, int *threads, int *offline) { int ret = -1; int processors = 0; g_autoptr(DIR) cpudir = NULL; struct dirent *cpudirent = NULL; g_autoptr(virBitmap) sockets_map = virBitmapNew(0); virBitmap **cores_maps = NULL; int npresent_cpus = virBitmapSize(present_cpus_map); g_autoptr(virBitmap) node_cpus_map = virBitmapNew(npresent_cpus); unsigned int sock_max = 0; unsigned int sock; unsigned int core; size_t i; int siblings; unsigned int cpu; int direrr; *threads = 0; *cores = 0; *sockets = 0; if (virDirOpen(&cpudir, node) < 0) goto cleanup; while ((direrr = virDirRead(cpudir, &cpudirent, node)) > 0) { if (sscanf(cpudirent->d_name, "cpu%u", &cpu) != 1) continue; if (!virBitmapIsBitSet(present_cpus_map, cpu)) continue; /* Mark this CPU as part of the current node */ if (virBitmapSetBit(node_cpus_map, cpu) < 0) goto cleanup; if (!virBitmapIsBitSet(online_cpus_map, cpu)) continue; if (virHostCPUGetSocket(cpu, &sock) < 0) goto cleanup; virBitmapSetBitExpand(sockets_map, sock); if (sock > sock_max) sock_max = sock; } if (direrr < 0) goto cleanup; sock_max++; /* allocate cores maps for each socket */ cores_maps = g_new0(virBitmap *, sock_max); for (i = 0; i < sock_max; i++) cores_maps[i] = virBitmapNew(0); /* Iterate over all CPUs in the node, in ascending order */ for (cpu = 0; cpu < npresent_cpus; cpu++) { /* Skip CPUs that are not part of the current node */ if (!virBitmapIsBitSet(node_cpus_map, cpu)) continue; if (!virBitmapIsBitSet(online_cpus_map, cpu)) { if (threads_per_subcore > 0 && cpu % threads_per_subcore != 0 && virBitmapIsBitSet(online_cpus_map, cpu - (cpu % threads_per_subcore))) { /* Secondary offline threads are counted as online when * subcores are in use and the corresponding primary * thread is online */ processors++; } else { /* But they are counted as offline otherwise */ (*offline)++; } continue; } processors++; if (virHostCPUGetSocket(cpu, &sock) < 0) goto cleanup; if (!virBitmapIsBitSet(sockets_map, sock)) { virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("CPU socket topology has changed")); goto cleanup; } /* Parse core */ if (ARCH_IS_S390(arch)) { /* logical cpu is equivalent to a core on s390 */ core = cpu; } else { if (virHostCPUGetCore(cpu, &core) < 0) goto cleanup; } virBitmapSetBitExpand(cores_maps[sock], core); if (!(siblings = virHostCPUCountThreadSiblings(cpu))) goto cleanup; if (siblings > *threads) *threads = siblings; } /* finalize the returned data */ *sockets = virBitmapCountBits(sockets_map); for (i = 0; i < sock_max; i++) { if (!virBitmapIsBitSet(sockets_map, i)) continue; core = virBitmapCountBits(cores_maps[i]); if (core > *cores) *cores = core; } if (threads_per_subcore > 0) { /* The thread count ignores offline threads, which means that only * only primary threads have been considered so far. If subcores * are in use, we need to also account for secondary threads */ *threads *= threads_per_subcore; } ret = processors; cleanup: if (cores_maps) for (i = 0; i < sock_max; i++) virBitmapFree(cores_maps[i]); VIR_FREE(cores_maps); return ret; } /* Check whether the host subcore configuration is valid. * * A valid configuration is one where no secondary thread is online; * the primary thread in a subcore is always the first one */ static bool virHostCPUHasValidSubcoreConfiguration(int threads_per_subcore) { g_autoptr(virBitmap) online_cpus = NULL; int cpu = -1; /* No point in checking if subcores are not in use */ if (threads_per_subcore <= 0) return false; if (!(online_cpus = virHostCPUGetOnlineBitmap())) return false; while ((cpu = virBitmapNextSetBit(online_cpus, cpu)) >= 0) { /* A single online secondary thread is enough to * make the configuration invalid */ if (cpu % threads_per_subcore != 0) return false; } return true; } /** * virHostCPUParseFrequencyString: * @str: string to be parsed * @prefix: expected prefix * @mhz: output location * * Parse a /proc/cpuinfo line and extract the CPU frequency, if present. * * The expected format of @str looks like * * cpu MHz : 2100.000 * * where @prefix ("cpu MHz" in the example), is architecture-dependent. * * The decimal part of the CPU frequency, as well as all whitespace, is * ignored. * * Returns: 0 when the string has been parsed successfully and the CPU * frequency has been stored in @mhz, >0 when the string has not * been parsed but no error has occurred, <0 on failure. */ static int virHostCPUParseFrequencyString(const char *str, const char *prefix, unsigned int *mhz) { char *p; unsigned int ui; /* If the string doesn't start with the expected prefix, then * we're not looking at the right string and we should move on */ if (!STRPREFIX(str, prefix)) return 1; /* Skip the prefix */ str += strlen(prefix); /* Skip all whitespace */ while (g_ascii_isspace(*str)) str++; if (*str == '\0') goto error; /* Skip the colon. If anything but a colon is found, then we're * not looking at the right string and we should move on */ if (*str != ':') return 1; str++; /* Skip all whitespace */ while (g_ascii_isspace(*str)) str++; if (*str == '\0') goto error; /* Parse the frequency. We expect an unsigned value, optionally * followed by a fractional part (which gets discarded) or some * leading whitespace */ if (virStrToLong_ui(str, &p, 10, &ui) < 0 || (*p != '.' && *p != '\0' && !g_ascii_isspace(*p))) { goto error; } *mhz = ui; return 0; error: virReportError(VIR_ERR_INTERNAL_ERROR, _("Missing or invalid CPU frequency in %1$s"), CPUINFO_PATH); return -1; } static int virHostCPUParseFrequency(FILE *cpuinfo, virArch arch, unsigned int *mhz) { const char *prefix = NULL; char line[1024]; /* No sensible way to retrieve CPU frequency */ if (ARCH_IS_ARM(arch)) return 0; if (ARCH_IS_X86(arch)) prefix = "cpu MHz"; else if (ARCH_IS_PPC(arch)) prefix = "clock"; else if (ARCH_IS_S390(arch)) prefix = "cpu MHz dynamic"; else if (ARCH_IS_LOONGARCH(arch)) prefix = "CPU MHz"; if (!prefix) { VIR_WARN("%s is not supported by the %s parser", virArchToString(arch), CPUINFO_PATH); return 1; } while (fgets(line, sizeof(line), cpuinfo) != NULL) { if (virHostCPUParseFrequencyString(line, prefix, mhz) < 0) return -1; } return 0; } static int virHostCPUParsePhysAddrSize(FILE *cpuinfo, unsigned int *addrsz) { char line[1024]; while (fgets(line, sizeof(line), cpuinfo) != NULL) { char *str; char *endptr; if (!(str = STRCASESKIP(line, "address sizes"))) continue; /* Skip the colon. */ if ((str = strstr(str, ":")) == NULL) goto error; str++; /* Parse the number of physical address bits */ if (virStrToLong_ui(str, &endptr, 10, addrsz) < 0) goto error; return 0; } error: virReportError(VIR_ERR_INTERNAL_ERROR, _("Missing or invalid CPU address size in %1$s"), CPUINFO_PATH); return -1; } int virHostCPUGetInfoPopulateLinux(FILE *cpuinfo, virArch arch, unsigned int *cpus, unsigned int *mhz, unsigned int *nodes, unsigned int *sockets, unsigned int *cores, unsigned int *threads) { g_autoptr(virBitmap) present_cpus_map = NULL; g_autoptr(virBitmap) online_cpus_map = NULL; g_autoptr(DIR) nodedir = NULL; struct dirent *nodedirent = NULL; int nodecpus, nodecores, nodesockets, nodethreads, offline = 0; int threads_per_subcore = 0; unsigned int node; int ret = -1; char *sysfs_nodedir = NULL; char *sysfs_cpudir = NULL; int direrr; *mhz = 0; *cpus = *nodes = *sockets = *cores = *threads = 0; /* Start with parsing CPU clock speed from /proc/cpuinfo */ if (virHostCPUParseFrequency(cpuinfo, arch, mhz) < 0) { VIR_WARN("Unable to parse CPU frequency information from %s", CPUINFO_PATH); } /* Get information about what CPUs are present in the host and what * CPUs are online, so that we don't have to so for each node */ present_cpus_map = virHostCPUGetPresentBitmap(); if (!present_cpus_map) goto cleanup; online_cpus_map = virHostCPUGetOnlineBitmap(); if (!online_cpus_map) goto cleanup; /* OK, we've parsed clock speed out of /proc/cpuinfo. Get the * core, node, socket, thread and topology information from /sys */ sysfs_nodedir = g_strdup_printf("%s/node", SYSFS_SYSTEM_PATH); if (virDirOpenQuiet(&nodedir, sysfs_nodedir) < 0) { /* the host isn't probably running a NUMA architecture */ goto fallback; } /* PPC-KVM needs the secondary threads of a core to be offline on the * host. The kvm scheduler brings the secondary threads online in the * guest context. Moreover, P8 processor has split-core capability * where, there can be 1,2 or 4 subcores per core. The primaries of the * subcores alone will be online on the host for a subcore in the * host. Even though the actual threads per core for P8 processor is 8, * depending on the subcores_per_core = 1, 2 or 4, the threads per * subcore will vary accordingly to 8, 4 and 2 respectively. * So, On host threads_per_core what is arrived at from sysfs in the * current logic is actually the subcores_per_core. Threads per subcore * can only be obtained from the kvm device. For example, on P8 with 1 * core having 8 threads, sub_cores_percore=4, the threads 0,2,4 & 6 * will be online. The sysfs reflects this and in the current logic * variable 'threads' will be 4 which is nothing but subcores_per_core. * If the user tampers the cpu online/offline states using chcpu or other * means, then it is an unsupported configuration for kvm. * The code below tries to keep in mind * - when the libvirtd is run inside a KVM guest or Phyp based guest. * - Or on the kvm host where user manually tampers the cpu states to * offline/online randomly. * On hosts other than POWER this will be 0, in which case a simpler * thread-counting logic will be used */ if ((threads_per_subcore = virHostCPUGetThreadsPerSubcore(arch)) < 0) goto cleanup; /* If the subcore configuration is not valid, just pretend subcores * are not in use and count threads one by one */ if (!virHostCPUHasValidSubcoreConfiguration(threads_per_subcore)) threads_per_subcore = 0; while ((direrr = virDirRead(nodedir, &nodedirent, sysfs_nodedir)) > 0) { if (sscanf(nodedirent->d_name, "node%u", &node) != 1) continue; (*nodes)++; sysfs_cpudir = g_strdup_printf("%s/node/%s", SYSFS_SYSTEM_PATH, nodedirent->d_name); if ((nodecpus = virHostCPUParseNode(sysfs_cpudir, arch, present_cpus_map, online_cpus_map, threads_per_subcore, &nodesockets, &nodecores, &nodethreads, &offline)) < 0) goto cleanup; VIR_FREE(sysfs_cpudir); *cpus += nodecpus; if (nodesockets > *sockets) *sockets = nodesockets; if (nodecores > *cores) *cores = nodecores; if (nodethreads > *threads) *threads = nodethreads; } if (direrr < 0) goto cleanup; if (*cpus && *nodes) goto done; fallback: VIR_FREE(sysfs_cpudir); sysfs_cpudir = g_strdup_printf("%s/cpu", SYSFS_SYSTEM_PATH); if ((nodecpus = virHostCPUParseNode(sysfs_cpudir, arch, present_cpus_map, online_cpus_map, threads_per_subcore, &nodesockets, &nodecores, &nodethreads, &offline)) < 0) goto cleanup; *nodes = 1; *cpus = nodecpus; *sockets = nodesockets; *cores = nodecores; *threads = nodethreads; done: /* There should always be at least one cpu, socket, node, and thread. */ if (*cpus == 0) { virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("no CPUs found")); goto cleanup; } if (*sockets == 0) { virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("no sockets found")); goto cleanup; } if (*threads == 0) { virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("no threads found")); goto cleanup; } /* Now check if the topology makes sense. There are machines that don't * expose their real number of nodes or for example the AMD Bulldozer * architecture that exposes their Clustered integer core modules as both * threads and cores. This approach throws off our detection. Unfortunately * the nodeinfo structure isn't designed to carry the full topology so * we're going to lie about the detected topology to notify the user * to check the host capabilities for the actual topology. */ if ((*nodes * *sockets * *cores * *threads) != (*cpus + offline)) { *nodes = 1; *sockets = 1; *cores = *cpus + offline; *threads = 1; } ret = 0; cleanup: VIR_FREE(sysfs_nodedir); VIR_FREE(sysfs_cpudir); return ret; } # define TICK_TO_NSEC (1000ull * 1000ull * 1000ull / sysconf(_SC_CLK_TCK)) int virHostCPUGetStatsLinux(FILE *procstat, int cpuNum, virNodeCPUStatsPtr params, int *nparams) { char line[1024]; unsigned long long usr, ni, sys, idle, iowait; unsigned long long irq, softirq, steal, guest, guest_nice; g_autofree char *cpu_header = NULL; if ((*nparams) == 0) { /* Current number of cpu stats supported by linux */ *nparams = LINUX_NB_CPU_STATS; return 0; } if ((*nparams) != LINUX_NB_CPU_STATS) { virReportInvalidArg(*nparams, _("nparams in %1$s must be equal to %2$d"), __FUNCTION__, LINUX_NB_CPU_STATS); return -1; } if (cpuNum == VIR_NODE_CPU_STATS_ALL_CPUS) { cpu_header = g_strdup("cpu "); } else { cpu_header = g_strdup_printf("cpu%d ", cpuNum); } while (fgets(line, sizeof(line), procstat) != NULL) { char *buf = line; if (STRPREFIX(buf, cpu_header)) { /* aka logical CPU time */ if (sscanf(buf, "%*s %llu %llu %llu %llu %llu" /* user ~ iowait */ "%llu %llu %llu %llu %llu", /* irq ~ guest_nice */ &usr, &ni, &sys, &idle, &iowait, &irq, &softirq, &steal, &guest, &guest_nice) < 4) { continue; } if (virHostCPUStatsAssign(¶ms[0], VIR_NODE_CPU_STATS_KERNEL, (sys + irq + softirq) * TICK_TO_NSEC) < 0) return -1; if (virHostCPUStatsAssign(¶ms[1], VIR_NODE_CPU_STATS_USER, (usr + ni) * TICK_TO_NSEC) < 0) return -1; if (virHostCPUStatsAssign(¶ms[2], VIR_NODE_CPU_STATS_IDLE, idle * TICK_TO_NSEC) < 0) return -1; if (virHostCPUStatsAssign(¶ms[3], VIR_NODE_CPU_STATS_IOWAIT, iowait * TICK_TO_NSEC) < 0) return -1; return 0; } } virReportInvalidArg(cpuNum, _("Invalid cpuNum in %1$s"), __FUNCTION__); return -1; } /* Determine the number of CPUs (maximum CPU id + 1) present in * the host. */ static int virHostCPUCountLinux(void) { g_autoptr(virBitmap) present = virHostCPUGetPresentBitmap(); if (!present) return -1; return virBitmapSize(present); } #endif int virHostCPUGetOnline(unsigned int cpu, bool *online) { unsigned int tmp = 0; int ret = virFileReadValueUint(&tmp, "%s/cpu/cpu%u/online", SYSFS_SYSTEM_PATH, cpu); /* If the file is not there, it's online (doesn't support offlining) */ if (ret == -2) tmp = 1; else if (ret < 0) return -1; *online = tmp; return 0; } int virHostCPUStatsAssign(virNodeCPUStatsPtr param, const char *name, unsigned long long value) { if (virStrcpyStatic(param->field, name) < 0) { virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("kernel cpu time field is too long for the destination")); return -1; } param->value = value; return 0; } int virHostCPUGetInfo(virArch hostarch G_GNUC_UNUSED, unsigned int *cpus G_GNUC_UNUSED, unsigned int *mhz G_GNUC_UNUSED, unsigned int *nodes G_GNUC_UNUSED, unsigned int *sockets G_GNUC_UNUSED, unsigned int *cores G_GNUC_UNUSED, unsigned int *threads G_GNUC_UNUSED) { #ifdef __linux__ int ret = -1; FILE *cpuinfo = fopen(CPUINFO_PATH, "r"); if (!cpuinfo) { virReportSystemError(errno, _("cannot open %1$s"), CPUINFO_PATH); return -1; } ret = virHostCPUGetInfoPopulateLinux(cpuinfo, hostarch, cpus, mhz, nodes, sockets, cores, threads); if (ret < 0) goto cleanup; cleanup: VIR_FORCE_FCLOSE(cpuinfo); return ret; #elif defined(__FreeBSD__) || defined(__APPLE__) unsigned long cpu_freq; size_t cpu_freq_len = sizeof(cpu_freq); *cpus = virHostCPUGetCountAppleFreeBSD(); if (*cpus == -1) return -1; *nodes = 1; *sockets = 1; *cores = *cpus; *threads = 1; # ifdef __FreeBSD__ /* dev.cpu.%d.freq reports current active CPU frequency. It is provided by * the cpufreq(4) framework. However, it might be disabled or no driver * available. In this case fallback to "hw.clockrate" which reports boot time * CPU frequency. */ if (sysctlbyname("dev.cpu.0.freq", &cpu_freq, &cpu_freq_len, NULL, 0) < 0) { if (sysctlbyname("hw.clockrate", &cpu_freq, &cpu_freq_len, NULL, 0) < 0) { virReportSystemError(errno, "%s", _("cannot obtain CPU freq")); return -1; } } *mhz = cpu_freq; # else if (sysctlbyname("hw.cpufrequency", &cpu_freq, &cpu_freq_len, NULL, 0) < 0) { if (errno == ENOENT) { /* The hw.cpufrequency sysctl is not implemented on Apple Silicon. * In that case, we report 0 instead of erroring out */ cpu_freq = 0; } else { virReportSystemError(errno, "%s", _("cannot obtain CPU freq")); return -1; } } *mhz = cpu_freq / 1000000; # endif return 0; #else /* XXX Solaris will need an impl later if they port QEMU driver */ virReportError(VIR_ERR_NO_SUPPORT, "%s", _("node info not implemented on this platform")); return -1; #endif } int virHostCPUGetStats(int cpuNum G_GNUC_UNUSED, virNodeCPUStatsPtr params G_GNUC_UNUSED, int *nparams G_GNUC_UNUSED, unsigned int flags) { virCheckFlags(0, -1); #ifdef __linux__ { int ret; FILE *procstat = fopen(PROCSTAT_PATH, "r"); if (!procstat) { virReportSystemError(errno, _("cannot open %1$s"), PROCSTAT_PATH); return -1; } ret = virHostCPUGetStatsLinux(procstat, cpuNum, params, nparams); VIR_FORCE_FCLOSE(procstat); return ret; } #elif defined(__FreeBSD__) return virHostCPUGetStatsFreeBSD(cpuNum, params, nparams); #else virReportError(VIR_ERR_NO_SUPPORT, "%s", _("node CPU stats not implemented on this platform")); return -1; #endif } int virHostCPUGetCount(void) { #if defined(__linux__) return virHostCPUCountLinux(); #elif defined(__FreeBSD__) || defined(__APPLE__) return virHostCPUGetCountAppleFreeBSD(); #else virReportError(VIR_ERR_NO_SUPPORT, "%s", _("host cpu counting not implemented on this platform")); return -1; #endif } bool virHostCPUHasBitmap(void) { #ifdef __linux__ return true; #else return false; #endif } virBitmap * virHostCPUGetPresentBitmap(void) { #ifdef __linux__ virBitmap *ret = NULL; virFileReadValueBitmap(&ret, "%s/cpu/present", SYSFS_SYSTEM_PATH); return ret; #else virReportError(VIR_ERR_NO_SUPPORT, "%s", _("node present CPU map not implemented on this platform")); return NULL; #endif } virBitmap * virHostCPUGetOnlineBitmap(void) { #ifdef __linux__ virBitmap *ret = NULL; virFileReadValueBitmap(&ret, "%s/cpu/online", SYSFS_SYSTEM_PATH); return ret; #else virReportError(VIR_ERR_NO_SUPPORT, "%s", _("node online CPU map not implemented on this platform")); return NULL; #endif } int virHostCPUGetMap(unsigned char **cpumap, unsigned int *online, unsigned int flags) { g_autoptr(virBitmap) cpus = NULL; int ret = -1; int dummy; virCheckFlags(0, -1); if (!cpumap && !online) return virHostCPUGetCount(); if (!(cpus = virHostCPUGetOnlineBitmap())) goto cleanup; if (cpumap && virBitmapToData(cpus, cpumap, &dummy) < 0) goto cleanup; if (online) *online = virBitmapCountBits(cpus); ret = virHostCPUGetCount(); cleanup: if (ret < 0 && cpumap) VIR_FREE(*cpumap); return ret; } /* virHostCPUGetAvailableCPUsBitmap(): * * Returns a virBitmap object with all available host CPUs. * * This is a glorified wrapper of virHostCPUGetOnlineBitmap() * that, instead of returning NULL when 'ifndef __linux__' and * the caller having to handle it outside the function, returns * a virBitmap with all the possible CPUs in the host, up to * virHostCPUGetCount(). */ virBitmap * virHostCPUGetAvailableCPUsBitmap(void) { g_autoptr(virBitmap) bitmap = NULL; if (!(bitmap = virHostCPUGetOnlineBitmap())) { int hostcpus; if ((hostcpus = virHostCPUGetCount()) < 0) return NULL; bitmap = virBitmapNew(hostcpus); virBitmapSetAll(bitmap); } return g_steal_pointer(&bitmap); } /** * virHostCPUGetIsolated: * @isolated: returned bitmap of isolated CPUs * * Sets @isolated to point to a bitmap of isolated CPUs (e.g. those passed to * isolcpus= kernel cmdline). If the file doesn't exist, @isolated is set to * NULL and success is returned. If the file does exist but it's empty, * @isolated is set to an empty bitmap and success is returned. * * Returns: 0 on success, * -1 otherwise (with error reported). */ int virHostCPUGetIsolated(virBitmap **isolated) { g_autoptr(virBitmap) bitmap = NULL; int rc; rc = virFileReadValueBitmapAllowEmpty(&bitmap, "%s/cpu/isolated", SYSFS_SYSTEM_PATH); if (rc == -2) { *isolated = NULL; return 0; } else if (rc < 0) { return -1; } *isolated = g_steal_pointer(&bitmap); return 0; } #if WITH_LINUX_KVM_H && defined(KVM_CAP_PPC_SMT) /* Get the number of threads per subcore. * * This will be 2, 4 or 8 on POWER hosts, depending on the current * micro-threading configuration, and 0 everywhere else. * * Returns the number of threads per subcore if subcores are in use, zero * if subcores are not in use, and a negative value on error */ int virHostCPUGetThreadsPerSubcore(virArch arch) { int threads_per_subcore = 0; int kvmfd; if (ARCH_IS_PPC64(arch)) { /* It's okay if /dev/kvm doesn't exist, because * a. we might be running in a guest * b. the kvm module might not be installed or enabled * In either case, falling back to the subcore-unaware thread * counting logic is the right thing to do */ if (!virFileExists(KVM_DEVICE)) return 0; if ((kvmfd = open(KVM_DEVICE, O_RDONLY)) < 0) { /* This can happen when running as a regular user if * permissions are tight enough, in which case erroring out * is better than silently falling back and reporting * different nodeinfo depending on the user */ virReportSystemError(errno, _("Failed to open '%1$s'"), KVM_DEVICE); return -1; } /* For Phyp and KVM based guests the ioctl for KVM_CAP_PPC_SMT * returns zero and both primary and secondary threads will be * online */ threads_per_subcore = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_PPC_SMT); VIR_FORCE_CLOSE(kvmfd); } return threads_per_subcore; } #else /* Fallback for nodeGetThreadsPerSubcore() used when KVM headers * are not available on the system */ int virHostCPUGetThreadsPerSubcore(virArch arch G_GNUC_UNUSED) { return 0; } #endif /* WITH_LINUX_KVM_H && defined(KVM_CAP_PPC_SMT) */ #if WITH_LINUX_KVM_H int virHostCPUGetKVMMaxVCPUs(void) { int fd; int ret; if ((fd = open(KVM_DEVICE, O_RDONLY)) < 0) { virReportSystemError(errno, _("Unable to open %1$s"), KVM_DEVICE); return -1; } # ifdef KVM_CAP_MAX_VCPUS /* at first try KVM_CAP_MAX_VCPUS to determine the maximum count */ if ((ret = ioctl(fd, KVM_CHECK_EXTENSION, KVM_CAP_MAX_VCPUS)) > 0) goto cleanup; # endif /* KVM_CAP_MAX_VCPUS */ /* as a fallback get KVM_CAP_NR_VCPUS (the recommended maximum number of * vcpus). Note that on most machines this is set to 160. */ if ((ret = ioctl(fd, KVM_CHECK_EXTENSION, KVM_CAP_NR_VCPUS)) > 0) goto cleanup; /* if KVM_CAP_NR_VCPUS doesn't exist either, kernel documentation states * that 4 should be used as the maximum number of cpus */ ret = 4; cleanup: VIR_FORCE_CLOSE(fd); return ret; } #else int virHostCPUGetKVMMaxVCPUs(void) { virReportSystemError(ENOSYS, "%s", _("KVM is not supported on this platform")); return -1; } #endif /* WITH_LINUX_KVM_H */ #ifdef __linux__ /* * Returns 0 if the microcode version is unknown or cannot be read for * some reason. */ unsigned int virHostCPUGetMicrocodeVersion(virArch hostArch) { g_autofree char *outbuf = NULL; char *cur; unsigned int version = 0; if (!ARCH_IS_X86(hostArch)) return 0; if (virFileReadHeaderQuiet(CPUINFO_PATH, 4096, &outbuf) < 0) { VIR_DEBUG("Failed to read microcode version from %s: %s", CPUINFO_PATH, g_strerror(errno)); return 0; } /* Account for format 'microcode : XXXX'*/ if (!(cur = strstr(outbuf, "microcode")) || !(cur = strchr(cur, ':'))) return 0; cur++; /* Linux places the microcode revision in a 32-bit integer, so * ui is fine for us too. */ if (virStrToLong_ui(cur, &cur, 0, &version) < 0) return 0; return version; } #else unsigned int virHostCPUGetMicrocodeVersion(virArch hostArch G_GNUC_UNUSED) { return 0; } #endif /* __linux__ */ #if WITH_LINUX_KVM_H && defined(KVM_GET_MSRS) && \ (defined(__i386__) || defined(__x86_64__)) && \ (defined(__linux__) || defined(__FreeBSD__)) static int virHostCPUGetMSRFromKVM(unsigned long index, uint64_t *result) { VIR_AUTOCLOSE fd = -1; g_autofree struct kvm_msrs *msr = g_malloc0(sizeof(struct kvm_msrs) + sizeof(struct kvm_msr_entry)); msr->nmsrs = 1; msr->entries[0].index = index; if ((fd = open(KVM_DEVICE, O_RDONLY)) < 0) { virReportSystemError(errno, _("Unable to open %1$s"), KVM_DEVICE); return -1; } if (ioctl(fd, KVM_GET_MSRS, msr) < 0) { VIR_DEBUG("Cannot get MSR 0x%lx from KVM", index); return 1; } *result = msr->entries[0].data; return 0; } /* * Returns 0 on success, * 1 when the MSR is not supported by the host CPU, * -1 on error. */ int virHostCPUGetMSR(unsigned long index, uint64_t *msr) { VIR_AUTOCLOSE fd = -1; *msr = 0; if ((fd = open(MSR_DEVICE, O_RDONLY)) < 0) { VIR_DEBUG("Unable to open %s: %s", MSR_DEVICE, g_strerror(errno)); } else { int rc = pread(fd, msr, sizeof(*msr), index); if (rc == sizeof(*msr)) return 0; if (rc < 0 && errno == EIO) { VIR_DEBUG("CPU does not support MSR 0x%lx", index); return 1; } VIR_DEBUG("Cannot read MSR 0x%lx from %s: %s", index, MSR_DEVICE, g_strerror(errno)); } VIR_DEBUG("Falling back to KVM ioctl"); return virHostCPUGetMSRFromKVM(index, msr); } /** * virHostCPUGetCPUIDFilterVolatile: * * Filters the 'kvm_cpuid2' struct and removes data which may change depending * on the CPU core this was run on. * * Currently filtered fields: * - local APIC ID * - topology ids and information on AMD cpus */ static void virHostCPUGetCPUIDFilterVolatile(struct kvm_cpuid2 *kvm_cpuid) { size_t i; bool isAMD = false; for (i = 0; i < kvm_cpuid->nent; ++i) { struct kvm_cpuid_entry2 *entry = &kvm_cpuid->entries[i]; /* filter out local apic id */ if (entry->function == 0x01 && entry->index == 0x00) entry->ebx &= 0x00ffffff; if (entry->function == 0x0b) entry->edx &= 0xffffff00; /* Match AMD hosts */ if (entry->function == 0x00 && entry->index == 0x00 && entry->ebx == 0x68747541 && /* Auth */ entry->edx == 0x69746e65 && /* enti */ entry->ecx == 0x444d4163) /* cAMD */ isAMD = true; /* AMD APIC ID and topology information: * * Leaf 0x8000001e * * CPUID Fn8000_001E_EAX Extended APIC ID * 31:0 ExtendedApicId: extended APIC ID. * * CPUID Fn8000_001E_EBX Compute Unit Identifiers * 31:10 Reserved. * 9:8 CoresPerComputeUnit: cores per compute unit. * The number of cores per compute unit is CoresPerComputeUnit+1. * 7:0 ComputeUnitId: compute unit ID. Identifies the processor compute unit ID. * * CPUID Fn8000_001E_ECX Node Identifiers * 31:11 Reserved. * 10:8 NodesPerProcessor. Specifies the number of nodes per processor. * 000b 1 node per processor * 001b 2 nodes per processor * 111b-010b Reserved * 7:0 NodeId. Specifies the node ID. * * CPUID Fn8000_001E_EDX Reserved * 31:0 Reserved. * * For libvirt none of this information seems to be interesting, thus * we clear all of it including reserved bits for future-proofing. */ if (isAMD && entry->function == 0x8000001e) { entry->eax = 0x00; entry->ebx = 0x00; entry->ecx = 0x00; entry->edx = 0x00; } } } struct kvm_cpuid2 * virHostCPUGetCPUID(void) { size_t alloc_size; VIR_AUTOCLOSE fd = open(KVM_DEVICE, O_RDONLY); if (fd < 0) { virReportSystemError(errno, _("Unable to open %1$s"), KVM_DEVICE); return NULL; } /* Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure * with the 'nent' field indicating the number of entries in the variable-size * array 'entries'. If the number of entries is too low to describe the cpu * capabilities, an error (E2BIG) is returned. If the number is too high, * the 'nent' field is adjusted and an error (ENOMEM) is returned. If the * number is just right, the 'nent' field is adjusted to the number of valid * entries in the 'entries' array, which is then filled. */ for (alloc_size = 64; alloc_size <= 65536; alloc_size *= 2) { g_autofree struct kvm_cpuid2 *kvm_cpuid = NULL; kvm_cpuid = g_malloc0(sizeof(struct kvm_cpuid2) + sizeof(struct kvm_cpuid_entry2) * alloc_size); kvm_cpuid->nent = alloc_size; if (ioctl(fd, KVM_GET_SUPPORTED_CPUID, kvm_cpuid) == 0) { virHostCPUGetCPUIDFilterVolatile(kvm_cpuid); return g_steal_pointer(&kvm_cpuid); } /* enlarge the buffer and try again */ if (errno == E2BIG) { VIR_DEBUG("looping %zu", alloc_size); continue; } /* we fail on any other error code to prevent pointless looping */ break; } virReportSystemError(errno, "%s", _("Cannot read host CPUID")); return NULL; } /* * This function should only be called when the host CPU supports invariant TSC * (invtsc CPUID feature). * * Returns pointer to the TSC info structure on success, * NULL when TSC cannot be probed otherwise. */ virHostCPUTscInfo * virHostCPUGetTscInfo(void) { g_autofree virHostCPUTscInfo *info = g_new0(virHostCPUTscInfo, 1); VIR_AUTOCLOSE kvmFd = -1; VIR_AUTOCLOSE vmFd = -1; VIR_AUTOCLOSE vcpuFd = -1; int rc; if ((kvmFd = open(KVM_DEVICE, O_RDONLY)) < 0) { virReportSystemError(errno, _("Unable to open %1$s"), KVM_DEVICE); return NULL; } if ((vmFd = ioctl(kvmFd, KVM_CREATE_VM, 0)) < 0) { virReportSystemError(errno, "%s", _("Unable to create KVM VM for TSC probing")); return NULL; } if ((vcpuFd = ioctl(vmFd, KVM_CREATE_VCPU, 0)) < 0) { virReportSystemError(errno, "%s", _("Unable to create KVM vCPU for TSC probing")); return NULL; } if ((rc = ioctl(vcpuFd, KVM_GET_TSC_KHZ)) < 0) { virReportSystemError(errno, "%s", _("Unable to probe TSC frequency")); return NULL; } info->frequency = rc * 1000ULL; if ((rc = ioctl(kvmFd, KVM_CHECK_EXTENSION, KVM_CAP_TSC_CONTROL)) < 0) { virReportSystemError(errno, "%s", _("Unable to query TSC scaling support")); return NULL; } info->scaling = rc ? VIR_TRISTATE_BOOL_YES : VIR_TRISTATE_BOOL_NO; VIR_DEBUG("Detected TSC frequency %llu Hz, scaling %s", info->frequency, virTristateBoolTypeToString(info->scaling)); return g_steal_pointer(&info); } #else struct kvm_cpuid2 * virHostCPUGetCPUID(void) { virReportSystemError(ENOSYS, "%s", _("Reading CPUID is not supported on this platform")); return NULL; } int virHostCPUGetMSR(unsigned long index G_GNUC_UNUSED, uint64_t *msr G_GNUC_UNUSED) { virReportSystemError(ENOSYS, "%s", _("Reading MSRs is not supported on this platform")); return -1; } virHostCPUTscInfo * virHostCPUGetTscInfo(void) { virReportSystemError(ENOSYS, "%s", _("Probing TSC is not supported on this platform")); return NULL; } #endif /* WITH_LINUX_KVM_H && defined(KVM_GET_MSRS) && \ (defined(__i386__) || defined(__x86_64__)) && \ (defined(__linux__) || defined(__FreeBSD__)) */ int virHostCPUReadSignature(virArch arch, FILE *cpuinfo, char **signature) { size_t lineLen = 1024; g_autofree char *line = g_new0(char, lineLen); g_autofree char *vendor = NULL; g_autofree char *name = NULL; g_autofree char *family = NULL; g_autofree char *model = NULL; g_autofree char *stepping = NULL; g_autofree char *revision = NULL; g_autofree char *proc = NULL; g_autofree char *facilities = NULL; if (!ARCH_IS_X86(arch) && !ARCH_IS_PPC64(arch) && !ARCH_IS_S390(arch)) return 0; while (fgets(line, lineLen, cpuinfo)) { g_auto(GStrv) parts = g_strsplit(line, ": ", 2); if (g_strv_length(parts) != 2) continue; g_strstrip(parts[0]); g_strstrip(parts[1]); if (ARCH_IS_X86(arch)) { if (STREQ(parts[0], "vendor_id")) { if (!vendor) vendor = g_steal_pointer(&parts[1]); } else if (STREQ(parts[0], "model name")) { if (!name) name = g_steal_pointer(&parts[1]); } else if (STREQ(parts[0], "cpu family")) { if (!family) family = g_steal_pointer(&parts[1]); } else if (STREQ(parts[0], "model")) { if (!model) model = g_steal_pointer(&parts[1]); } else if (STREQ(parts[0], "stepping")) { if (!stepping) stepping = g_steal_pointer(&parts[1]); } if (vendor && name && family && model && stepping) { *signature = g_strdup_printf("%s, %s, family: %s, model: %s, stepping: %s", vendor, name, family, model, stepping); return 0; } } else if (ARCH_IS_PPC64(arch)) { if (STREQ(parts[0], "cpu")) { if (!name) name = g_steal_pointer(&parts[1]); } else if (STREQ(parts[0], "revision")) { if (!revision) revision = g_steal_pointer(&parts[1]); } if (name && revision) { *signature = g_strdup_printf("%s, rev %s", name, revision); return 0; } } else if (ARCH_IS_S390(arch)) { if (STREQ(parts[0], "vendor_id")) { if (!vendor) vendor = g_steal_pointer(&parts[1]); } else if (STREQ(parts[0], "processor 0")) { if (!proc) proc = g_steal_pointer(&parts[1]); } else if (STREQ(parts[0], "facilities")) { if (!facilities) facilities = g_steal_pointer(&parts[1]); } if (vendor && proc && facilities) { *signature = g_strdup_printf("%s, %s, facilities: %s", vendor, proc, facilities); return 0; } } } return 0; } #ifdef __linux__ int virHostCPUGetSignature(char **signature) { g_autoptr(FILE) cpuinfo = NULL; *signature = NULL; if (!(cpuinfo = fopen(CPUINFO_PATH, "r"))) { virReportSystemError(errno, _("Failed to open cpuinfo file '%1$s'"), CPUINFO_PATH); return -1; } return virHostCPUReadSignature(virArchFromHost(), cpuinfo, signature); } int virHostCPUGetPhysAddrSize(const virArch hostArch, unsigned int *size) { g_autoptr(FILE) cpuinfo = NULL; if (!(ARCH_IS_X86(hostArch) || ARCH_IS_SH4(hostArch) || ARCH_IS_LOONGARCH(hostArch))) { /* Ensure size is set to 0 as physical address size is unknown */ *size = 0; return 0; } if (!(cpuinfo = fopen(CPUINFO_PATH, "r"))) { virReportSystemError(errno, _("Failed to open cpuinfo file '%1$s'"), CPUINFO_PATH); return -1; } return virHostCPUParsePhysAddrSize(cpuinfo, size); } #else int virHostCPUGetSignature(char **signature) { *signature = NULL; return 0; } int virHostCPUGetPhysAddrSize(const virArch hostArch G_GNUC_UNUSED, unsigned int *size G_GNUC_UNUSED) { errno = ENOSYS; return -1; } #endif /* __linux__ */ int virHostCPUGetHaltPollTime(pid_t pid, unsigned long long *haltPollSuccess, unsigned long long *haltPollFail) { g_autofree char *pidToStr = NULL; g_autofree char *debugFsPath = NULL; g_autofree char *kvmPath = NULL; struct dirent *ent = NULL; g_autoptr(DIR) dir = NULL; bool found = false; if (!(debugFsPath = virFileFindMountPoint("debugfs"))) return -1; kvmPath = g_strdup_printf("%s/%s", debugFsPath, "kvm"); if (virDirOpenQuiet(&dir, kvmPath) != 1) return -1; pidToStr = g_strdup_printf("%lld-", (long long)pid); while (virDirRead(dir, &ent, NULL) > 0) { if (STRPREFIX(ent->d_name, pidToStr)) { found = true; break; } } if (!found) return -1; if (virFileReadValueUllongQuiet(haltPollSuccess, "%s/%s/%s", kvmPath, ent->d_name, "halt_poll_success_ns") < 0 || virFileReadValueUllongQuiet(haltPollFail, "%s/%s/%s", kvmPath, ent->d_name, "halt_poll_fail_ns") < 0) return -1; return 0; } void virHostCPUX86GetCPUID(uint32_t leaf G_GNUC_UNUSED, uint32_t extended G_GNUC_UNUSED, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { #if defined(__i386__) || defined(__x86_64__) uint32_t out[4]; # if __x86_64__ asm("xor %%ebx, %%ebx;" /* clear the other registers as some cpuid */ "xor %%edx, %%edx;" /* functions may use them as additional arguments */ "cpuid;" : "=a" (out[0]), "=b" (out[1]), "=c" (out[2]), "=d" (out[3]) : "a" (leaf), "c" (extended)); # else /* we need to avoid direct use of ebx for CPUID output as it is used * for global offset table on i386 with -fPIC */ asm("push %%ebx;" "xor %%ebx, %%ebx;" /* clear the other registers as some cpuid */ "xor %%edx, %%edx;" /* functions may use them as additional arguments */ "cpuid;" "mov %%ebx, %1;" "pop %%ebx;" : "=a" (out[0]), "=r" (out[1]), "=c" (out[2]), "=d" (out[3]) : "a" (leaf), "c" (extended) : "cc"); # endif if (eax) *eax = out[0]; if (ebx) *ebx = out[1]; if (ecx) *ecx = out[2]; if (edx) *edx = out[3]; #else if (eax) *eax = 0; if (ebx) *ebx = 0; if (ecx) *ecx = 0; if (edx) *edx = 0; #endif }