/*
* virtime.c: Time handling functions
*
* Copyright (C) 2006-2014 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* .
*
* The intent is that this file provides a set of time APIs which
* are async signal safe, to allow use in between fork/exec eg by
* the logging code.
*
* The reality is that wsnprintf is technically unsafe. We ought
* to roll out our int -> str conversions to avoid this.
*
* We do *not* use regular libvirt error APIs for most of the code,
* since those are not async signal safe, and we dont want logging
* APIs generating timestamps to blow away real errors
*/
#include
#include
#include
#include "virtime.h"
#include "viralloc.h"
#include "virerror.h"
#include "virlog.h"
#define VIR_FROM_THIS VIR_FROM_NONE
VIR_LOG_INIT("util.time");
/* We prefer clock_gettime if available because that is officially
* async signal safe according to POSIX. Many platforms lack it
* though, so fallback to gettimeofday everywhere else
*/
/**
* virTimeMillisNowRaw:
* @now: filled with current time in milliseconds
*
* Retrieves the current system time, in milliseconds since the
* epoch
*
* Returns 0 on success, -1 on error with errno set
*/
int virTimeMillisNowRaw(unsigned long long *now)
{
#ifdef HAVE_CLOCK_GETTIME
struct timespec ts;
if (clock_gettime(CLOCK_REALTIME, &ts) < 0)
return -1;
*now = (ts.tv_sec * 1000ull) + (ts.tv_nsec / (1000ull * 1000ull));
#else
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0)
return -1;
*now = (tv.tv_sec * 1000ull) + (tv.tv_usec / 1000ull);
#endif
return 0;
}
/**
* virTimeFieldsNowRaw:
* @fields: filled with current time fields
*
* Retrieves the current time, in broken-down field format.
* The time is always in UTC.
*
* Returns 0 on success, -1 on error with errno set
*/
int virTimeFieldsNowRaw(struct tm *fields)
{
unsigned long long now;
if (virTimeMillisNowRaw(&now) < 0)
return -1;
virTimeFieldsThen(now, fields);
return 0;
}
#define SECS_PER_HOUR (60 * 60)
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
#define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
#define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
static const unsigned short int mon_yday[2][13] = {
/* Normal years. */
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
/* Leap years. */
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
};
#define is_leap_year(y) \
((y) % 4 == 0 && ((y) % 100 != 0 || (y) % 400 == 0))
/**
* virTimeFieldsThen:
* @when: the time to convert in milliseconds
* @fields: filled with time @when fields
*
* Converts the timestamp @when into broken-down field format.
* Time time is always in UTC
*
*/
void virTimeFieldsThen(unsigned long long when, struct tm *fields)
{
/* This code is taken from GLibC under terms of LGPLv2+ */
/* Remove the 'offset' or GMT manipulation since we don't care. See
* commit id '3ec12898' comments regarding localtime.
*/
long int days, rem, y;
const unsigned short int *ip;
unsigned long long whenSecs = when / 1000ull;
days = whenSecs / SECS_PER_DAY;
rem = whenSecs % SECS_PER_DAY;
fields->tm_hour = rem / SECS_PER_HOUR;
rem %= SECS_PER_HOUR;
fields->tm_min = rem / 60;
fields->tm_sec = rem % 60;
/* January 1, 1970 was a Thursday. */
fields->tm_wday = (4 + days) % 7;
if (fields->tm_wday < 0)
fields->tm_wday += 7;
y = 1970;
while (days < 0 || days >= (is_leap_year(y) ? 366 : 365)) {
/* Guess a corrected year, assuming 365 days per year. */
long int yg = y + days / 365 - (days % 365 < 0);
/* Adjust DAYS and Y to match the guessed year. */
days -= ((yg - y) * 365
+ LEAPS_THRU_END_OF(yg - 1)
- LEAPS_THRU_END_OF(y - 1));
y = yg;
}
fields->tm_year = y - 1900;
fields->tm_yday = days;
ip = mon_yday[is_leap_year(y)];
for (y = 11; days < (long int) ip[y]; --y)
continue;
days -= ip[y];
fields->tm_mon = y;
fields->tm_mday = days + 1;
}
/**
* virTimeStringNowRaw:
* @buf: a buffer at least VIR_TIME_STRING_BUFLEN in length
*
* Initializes @buf to contain a formatted timestamp
* corresponding to the current time.
*
* Returns 0 on success, -1 on error
*/
int virTimeStringNowRaw(char *buf)
{
unsigned long long now;
if (virTimeMillisNowRaw(&now) < 0)
return -1;
return virTimeStringThenRaw(now, buf);
}
/**
* virTimeStringThenRaw:
* @when: the time to format in milliseconds
* @buf: a buffer at least VIR_TIME_STRING_BUFLEN in length
*
* Initializes @buf to contain a formatted timestamp
* corresponding to the time @when.
*
* Returns 0 on success, -1 on error
*/
int virTimeStringThenRaw(unsigned long long when, char *buf)
{
struct tm fields;
virTimeFieldsThen(when, &fields);
fields.tm_year += 1900;
fields.tm_mon += 1;
if (snprintf(buf, VIR_TIME_STRING_BUFLEN,
"%4d-%02d-%02d %02d:%02d:%02d.%03d+0000",
fields.tm_year, fields.tm_mon, fields.tm_mday,
fields.tm_hour, fields.tm_min, fields.tm_sec,
(int) (when % 1000)) >= VIR_TIME_STRING_BUFLEN) {
errno = ERANGE;
return -1;
}
return 0;
}
/**
* virTimeMillisNow:
* @now: filled with current time in milliseconds
*
* Retrieves the current system time, in milliseconds since the
* epoch
*
* Returns 0 on success, -1 on error with error reported
*/
int virTimeMillisNow(unsigned long long *now)
{
if (virTimeMillisNowRaw(now) < 0) {
virReportSystemError(errno, "%s",
_("Unable to get current time"));
return -1;
}
return 0;
}
/**
* virTimeFieldsNowRaw:
* @fields: filled with current time fields
*
* Retrieves the current time, in broken-down field format.
* The time is always in UTC.
*
* Returns 0 on success, -1 on error with errno reported
*/
int virTimeFieldsNow(struct tm *fields)
{
unsigned long long now;
if (virTimeMillisNow(&now) < 0)
return -1;
virTimeFieldsThen(now, fields);
return 0;
}
/**
* virTimeStringNow:
*
* Creates a string containing a formatted timestamp
* corresponding to the current time.
*
* This function is not async signal safe
*
* Returns a formatted allocated string, or NULL on error
*/
char *virTimeStringNow(void)
{
char *ret;
if (VIR_ALLOC_N(ret, VIR_TIME_STRING_BUFLEN) < 0)
return NULL;
if (virTimeStringNowRaw(ret) < 0) {
virReportSystemError(errno, "%s",
_("Unable to format time"));
VIR_FREE(ret);
return NULL;
}
return ret;
}
/**
* virTimeStringThen:
* @when: the time to format in milliseconds
*
* Creates a string containing a formatted timestamp
* corresponding to the time @when.
*
* This function is not async signal safe
*
* Returns a formatted allocated string, or NULL on error
*/
char *virTimeStringThen(unsigned long long when)
{
char *ret;
if (VIR_ALLOC_N(ret, VIR_TIME_STRING_BUFLEN) < 0)
return NULL;
if (virTimeStringThenRaw(when, ret) < 0) {
virReportSystemError(errno, "%s",
_("Unable to format time"));
VIR_FREE(ret);
return NULL;
}
return ret;
}
/**
* virTimeLocalOffsetFromUTC:
*
* This function is threadsafe, but is *not* async signal safe (due to
* gmtime_r() and mktime()).
*
* @offset: pointer to time_t that will be set to the difference
* between localtime and UTC in seconds (east of UTC is a
* positive number, and west of UTC is a negative number.
*
* Returns 0 on success, -1 on error with error reported
*/
int
virTimeLocalOffsetFromUTC(long *offset)
{
struct tm gmtimeinfo;
time_t current, utc;
/* time() gives seconds since Epoch in current timezone */
if ((current = time(NULL)) == (time_t)-1) {
virReportSystemError(errno, "%s",
_("failed to get current system time"));
return -1;
}
/* treat current as if it were in UTC */
if (!gmtime_r(¤t, &gmtimeinfo)) {
virReportSystemError(errno, "%s",
_("gmtime_r failed"));
return -1;
}
/* tell mktime to figure out itself whether or not DST is in effect */
gmtimeinfo.tm_isdst = -1;
/* mktime() also obeys current timezone rules */
if ((utc = mktime(&gmtimeinfo)) == (time_t)-1) {
virReportSystemError(errno, "%s",
_("mktime failed"));
return -1;
}
*offset = current - utc;
return 0;
}
/**
* virTimeBackOffStart:
* @var: Timeout variable (with type virTimeBackOffVar).
* @first: Initial time to wait (milliseconds).
* @timeout: Timeout (milliseconds).
*
* Initialize the timeout variable @var and start the timer running.
*
* Returns 0 on success, -1 on error and raises a libvirt error.
*/
int
virTimeBackOffStart(virTimeBackOffVar *var,
unsigned long long first, unsigned long long timeout)
{
if (virTimeMillisNow(&var->start_t) < 0)
return -1;
var->next = first;
var->limit_t = var->start_t + timeout;
return 0;
}
#define VIR_TIME_BACKOFF_CAP 1000
/**
* virTimeBackOffWait
* @var: Timeout variable (with type virTimeBackOffVar *).
*
* You must initialize @var first by calling the following function,
* which also starts the timer:
*
* if (virTimeBackOffStart(&var, first, timeout) < 0) {
* // handle errors
* }
*
* Then you use a while loop:
*
* while (virTimeBackOffWait(&var)) {
* //...
* }
*
* The while loop that runs the body of the code repeatedly, with an
* exponential backoff. It first waits for first milliseconds, then
* runs the body, then waits for 2*first ms, then runs the body again.
* Then 4*first ms, and so on, up until wait time would reach
* VIR_TIME_BACK_OFF_CAP (whole second). Then it switches to constant
* waiting time of VIR_TIME_BACK_OFF_CAP.
*
* When timeout milliseconds is reached, the while loop ends.
*
* The body should use "break" or "goto" when whatever condition it is
* testing for succeeds (or there is an unrecoverable error).
*/
bool
virTimeBackOffWait(virTimeBackOffVar *var)
{
unsigned long long t, next;
ignore_value(virTimeMillisNowRaw(&t));
VIR_DEBUG("t=%llu, limit=%llu", t, var->limit_t);
if (t > var->limit_t)
return 0; /* ends the while loop */
/* Compute next wait time. Cap at VIR_TIME_BACKOFF_CAP
* to avoid long useless sleeps. */
next = var->next;
if (var->next < VIR_TIME_BACKOFF_CAP)
var->next *= 2;
else if (var->next > VIR_TIME_BACKOFF_CAP)
var->next = VIR_TIME_BACKOFF_CAP;
/* If sleeping would take us beyond the limit, then shorten the
* sleep. This is so we always run the body just before the final
* timeout.
*/
if (t + next > var->limit_t)
next = var->limit_t - t;
VIR_DEBUG("sleeping for %llu ms", next);
usleep(next * 1000);
return 1;
}