Post patches in unified diff format. A command similar to this should work:
diff -urp libvirt.orig/ libvirt.modified/ > libvirt-myfeature.patch
or:
git diff > libvirt-myfeature.patch
Run the automated tests on your code before submitting any changes. In particular, configure with compile warnings set to -Werror:
./configure --enable-compile-warnings=error
and run the tests:
make check make syntax-check make -C tests valgrind
The latter test checks for memory leaks.
If you encounter any failing tests, the VIR_TEST_DEBUG environment variable may provide extra information to debug the failures. Larger values of VIR_TEST_DEBUG may provide larger amounts of information:
VIR_TEST_DEBUG=1 make check (or) VIR_TEST_DEBUG=2 make check
Also, individual tests can be run from inside the 'tests/' directory, like:
./qemuxml2xmltest
There is more on this subject, including lots of links to background reading on the subject, on Richard Jones' guide to working with open source projects
Libvirt's C source code generally adheres to some basic code-formatting conventions. The existing code base is not totally consistent on this front, but we do prefer that contributed code be formatted similarly. In short, use spaces-not-TABs for indentation, use 4 spaces for each indentation level, and other than that, follow the K&R style.
If you use Emacs, add the following to one of one of your start-up files (e.g., ~/.emacs), to help ensure that you get indentation right:
;;; When editing C sources in libvirt, use this style. (defun libvirt-c-mode () "C mode with adjusted defaults for use with libvirt." (interactive) (c-set-style "K&R") (setq indent-tabs-mode nil) ; indent using spaces, not TABs (setq c-indent-level 4) (setq c-basic-offset 4)) (add-hook 'c-mode-hook '(lambda () (if (string-match "/libvirt" (buffer-file-name)) (libvirt-c-mode))))
With new code, we can be even more strict. Please apply the following function (using GNU indent) to any new code. Note that this also gives you an idea of the type of spacing we prefer around operators and keywords:
indent-libvirt() { indent -bad -bap -bbb -bli4 -br -ce -brs -cs -i4 -l75 -lc75 \ -sbi4 -psl -saf -sai -saw -sbi4 -ss -sc -cdw -cli4 -npcs -nbc \ --no-tabs "$@" }
Note that sometimes you'll have to post-process that output further, by piping it through "expand -i", since some leading TABs can get through. Usually they're in macro definitions or strings, and should be converted anyhow.
For variadic macros, stick with C99 syntax:
#define vshPrint(_ctl, ...) fprintf(stdout, __VA_ARGS__)
Use parenthesis when checking if a macro is defined, and use indentation to track nesting:
#if defined(HAVE_POSIX_FALLOCATE) && !defined(HAVE_FALLOCATE) # define fallocate(a,ignored,b,c) posix_fallocate(a,b,c) #endif
Use the right type.
Of course, take all of the above with a grain of salt. If you're about to use some system interface that requires a type like size_t, pid_t or off_t, use matching types for any corresponding variables.
Also, if you try to use e.g., "unsigned int" as a type, and that conflicts with the signedness of a related variable, sometimes it's best just to use the *wrong* type, if "pulling the thread" and fixing all related variables would be too invasive.
Finally, while using descriptive types is important, be careful not to go overboard. If whatever you're doing causes warnings, or requires casts, then reconsider or ask for help.
Ensure that all of your pointers are "const-correct". Unless a pointer is used to modify the pointed-to storage, give it the "const" attribute. That way, the reader knows up-front that this is a read-only pointer. Perhaps more importantly, if we're diligent about this, when you see a non-const pointer, you're guaranteed that it is used to modify the storage it points to, or it is aliased to another pointer that is.
Use of the malloc/free/realloc/calloc APIs is deprecated in the libvirt codebase, because they encourage a number of serious coding bugs and do not enable compile time verification of checks for NULL. Instead of these routines, use the macros from memory.h
eg to allocate a single object:
virDomainPtr domain; if (VIR_ALLOC(domain) < 0) { virReportOOMError(); return NULL; }
eg to allocate an array of objects
virDomainPtr domains; int ndomains = 10; if (VIR_ALLOC_N(domains, ndomains) < 0) { virReportOOMError(); return NULL; }
eg to allocate an array of object pointers
virDomainPtr *domains; int ndomains = 10; if (VIR_ALLOC_N(domains, ndomains) < 0) { virReportOOMError(); return NULL; }
eg to re-allocate the array of domains to be longer
ndomains = 20 if (VIR_REALLOC_N(domains, ndomains) < 0) { virReportOOMError(); return NULL; }
eg to free the domain
VIR_FREE(domain);
Do not use the strcmp, strncmp, etc functions directly. Instead use one of the following semantically named macros
For strict equality:
STREQ(a,b) STRNEQ(a,b)
For case insensitive equality:
STRCASEEQ(a,b) STRCASENEQ(a,b)
For strict equality of a substring:
STREQLEN(a,b,n) STRNEQLEN(a,b,n)
For case insensitive equality of a substring:
STRCASEEQLEN(a,b,n) STRCASENEQLEN(a,b,n)
For strict equality of a prefix:
STRPREFIX(a,b)
Do not use the strncpy function. According to the man page, it does not guarantee a NULL-terminated buffer, which makes it extremely dangerous to use. Instead, use one of the functionally equivalent functions:
virStrncpy(char *dest, const char *src, size_t n, size_t destbytes)
The first three arguments have the same meaning as for strncpy; namely the destination, source, and number of bytes to copy, respectively. The last argument is the number of bytes available in the destination string; if a copy of the source string (including a \0) will not fit into the destination, no bytes are copied and the routine returns NULL. Otherwise, n bytes from the source are copied into the destination and a trailing \0 is appended.
virStrcpy(char *dest, const char *src, size_t destbytes)
Use this variant if you know you want to copy the entire src string into dest. Note that this is a macro, so arguments could be evaluated more than once. This is equivalent to virStrncpy(dest, src, strlen(src), destbytes)
virStrcpyStatic(char *dest, const char *src)
Use this variant if you know you want to copy the entire src string into dest *and* you know that your destination string is a static string (i.e. that sizeof(dest) returns something meaningful). Note that this is a macro, so arguments could be evaluated more than once. This is equivalent to virStrncpy(dest, src, strlen(src), sizeof(dest)).
If there is a need for complex string concatenations, avoid using the usual sequence of malloc/strcpy/strcat/snprintf functions and make use of the virBuffer API described in buf.h
eg typical usage is as follows:
char * somefunction(...) { virBuffer buf = VIR_BUFFER_INITIALIZER; ... virBufferAddLit(&buf, "<domain>\n"); virBufferVSprint(&buf, " <memory>%d</memory>\n", memory); ... virBufferAddLit(&buf, "</domain>\n"); ... if (virBufferError(&buf)) { virBufferFreeAndReset(&buf); virReportOOMError(); return NULL; } return virBufferContentAndReset(&buf); }
There are now quite a large number of include files, both libvirt internal and external, and system includes. To manage all this complexity it's best to stick to the following general plan for all *.c source files:
/* * Copyright notice * .... * .... * .... * */ #include <config.h> Must come first in every file. #include <stdio.h> Any system includes you need. #include <string.h> #include <limits.h> #if HAVE_NUMACTL Some system includes aren't supported # include <numa.h> everywhere so need these #if guards. #endif #include "internal.h" Include this first, after system includes. #include "util.h" Any libvirt internal header files. #include "buf.h" static myInternalFunc () The actual code. { ...
Of particular note: *DO NOT* include libvirt/libvirt.h or libvirt/virterror.h. It is included by "internal.h" already and there are some special reasons why you cannot include these files explicitly.
Whenever you add a new printf-style function, i.e., one with a format string argument and following "..." in its prototype, be sure to use gcc's printf attribute directive in the prototype. For example, here's the one for virAsprintf, in util.h:
int virAsprintf(char **strp, const char *fmt, ...) ATTRIBUTE_FORMAT(printf, 2, 3);
This makes it so gcc's -Wformat and -Wformat-security options can do their jobs and cross-check format strings with the number and types of arguments.
The use of goto is not forbidden, and goto is widely used throughout libvirt. While the uncontrolled use of goto will quickly lead to unmaintainable code, there is a place for it in well structured code where its use increases readability and maintainability. In general, if goto is used for error recovery, it's likely to be ok, otherwise, be cautious or avoid it all together.
The typical use of goto is to jump to cleanup code in the case of a long list of actions, any of which may fail and cause the entire operation to fail. In this case, a function will have a single label at the end of the function. It's almost always ok to use this style. In particular, if the cleanup code only involves free'ing memory, then having multiple labels is overkill. VIR_FREE() and every function named XXXFree() in libvirt is required to handle NULL as its arg. Thus you can safely call free on all the variables even if they were not yet allocated (yes they have to have been initialized to NULL). This is much simpler and clearer than having multiple labels.
There are a couple of signs that a particular use of goto is not ok:
Although libvirt does not encourage the Linux kernel wind/unwind style of multiple labels, there's a good general discussion of the issue archived at KernelTrap
When using goto, please use one of these standard labels if it makes sense:
error: A path only taken upon return with an error code cleanup: A path taken upon return with success code + optional error no_memory: A path only taken upon return with an OOM error code retry: If needing to jump upwards (eg retry on EINTR)
The AUTHORS files indicates the list of people with commit access right who can actually merge the patches.
The general rule for committing a patch is to make sure it has been reviewed properly in the mailing-list first, usually if a couple of people gave an ACK or +1 to a patch and nobody raised an objection on the list it should be good to go. If the patch touches a part of the code where you're not the main maintainer, or where you do not have a very clear idea of how things work, it's better to wait for a more authoritative feedback though. Before committing, please also rebuild locally, run 'make check syntax-check', and make sure you don't raise errors. Try to look for warnings too; for example, configure with
--enable-compile-warnings=errorwhich adds -Werror to compile flags, so no warnings get missed
An exception to 'review and approval on the list first' is fixing failures to build: