libvirt/src/util/memory.h
David Allan 62170b9952 Implement variable length structure allocator
* This patch implements a memory allocator to obtain memory for
  structures whose last member is a variable length array.  C99 refers
  to these variable length objects as structs containing flexible
  array members.
* Fixed macro parentheses per Eric Blake
2010-04-14 00:46:13 -04:00

146 lines
4.9 KiB
C

/*
* memory.c: safer memory allocation
*
* Copyright (C) 2008 Daniel P. Berrange
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef __VIR_MEMORY_H_
# define __VIR_MEMORY_H_
# include "internal.h"
/* Return 1 if an array of N objects, each of size S, cannot exist due
to size arithmetic overflow. S must be positive and N must be
nonnegative. This is a macro, not an inline function, so that it
works correctly even when SIZE_MAX < N.
By gnulib convention, SIZE_MAX represents overflow in size
calculations, so the conservative dividend to use here is
SIZE_MAX - 1, since SIZE_MAX might represent an overflowed value.
However, malloc (SIZE_MAX) fails on all known hosts where
sizeof (ptrdiff_t) <= sizeof (size_t), so do not bother to test for
exactly-SIZE_MAX allocations on such hosts; this avoids a test and
branch when S is known to be 1. */
# ifndef xalloc_oversized
# define xalloc_oversized(n, s) \
((size_t) (sizeof (ptrdiff_t) <= sizeof (size_t) ? -1 : -2) / (s) < (n))
# endif
/* Don't call these directly - use the macros below */
int virAlloc(void *ptrptr, size_t size) ATTRIBUTE_RETURN_CHECK;
int virAllocN(void *ptrptr, size_t size, size_t count) ATTRIBUTE_RETURN_CHECK;
int virReallocN(void *ptrptr, size_t size, size_t count) ATTRIBUTE_RETURN_CHECK;
int virAllocVar(void *ptrptr,
size_t struct_size,
size_t element_size,
size_t count) ATTRIBUTE_RETURN_CHECK;
void virFree(void *ptrptr);
/**
* VIR_ALLOC:
* @ptr: pointer to hold address of allocated memory
*
* Allocate sizeof(*ptr) bytes of memory and store
* the address of allocated memory in 'ptr'. Fill the
* newly allocated memory with zeros.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_ALLOC(ptr) virAlloc(&(ptr), sizeof(*(ptr)))
/**
* VIR_ALLOC_N:
* @ptr: pointer to hold address of allocated memory
* @count: number of elements to allocate
*
* Allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long and store the address of allocated memory in
* 'ptr'. Fill the newly allocated memory with zeros.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_ALLOC_N(ptr, count) virAllocN(&(ptr), sizeof(*(ptr)), (count))
/**
* VIR_REALLOC_N:
* @ptr: pointer to hold address of allocated memory
* @count: number of elements to allocate
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long and store the address of allocated memory in
* 'ptr'. Fill the newly allocated memory with zeros
*
* Returns -1 on failure, 0 on success
*/
# define VIR_REALLOC_N(ptr, count) virReallocN(&(ptr), sizeof(*(ptr)), (count))
/*
* VIR_ALLOC_VAR_OVERSIZED:
* @M: size of base structure
* @N: number of array elements in trailing array
* @S: size of trailing array elements
*
* Check to make sure that the requested allocation will not cause
* arithmetic overflow in the allocation size. The check is
* essentially the same as that in gnulib's xalloc_oversized.
*/
#define VIR_ALLOC_VAR_OVERSIZED(M, N, S) ((((size_t)-1) - (M)) / (S) < (N))
/**
* VIR_ALLOC_VAR:
* @ptr: pointer to hold address of allocated memory
* @type: element type of trailing array
* @count: number of array elements to allocate
*
* Allocate sizeof(*ptr) bytes plus an array of 'count' elements, each
* sizeof('type'). This sort of allocation is useful for receiving
* the data of certain ioctls and other APIs which return a struct in
* which the last element is an array of undefined length. The caller
* of this type of API is expected to know the length of the array
* that will be returned and allocate a suitable buffer to contain the
* returned data. C99 refers to these variable length objects as
* structs containing flexible array members.
* Returns -1 on failure, 0 on success
*/
#define VIR_ALLOC_VAR(ptr, type, count) virAllocVar(&(ptr), sizeof(*(ptr)), sizeof(type), (count))
/**
* VIR_FREE:
* @ptr: pointer holding address to be freed
*
* Free the memory stored in 'ptr' and update to point
* to NULL.
*/
# define VIR_FREE(ptr) virFree(&(ptr))
# if TEST_OOM
void virAllocTestInit(void);
int virAllocTestCount(void);
void virAllocTestOOM(int n, int m);
void virAllocTestHook(void (*func)(int, void*), void *data);
# endif
#endif /* __VIR_MEMORY_H_ */