libvirt/src/cpu/cpu_x86.c
Martin Kletzander 9943276fd2 Cleanup for a return statement in source files
Return statements with parameter enclosed in parentheses were modified
and parentheses were removed. The whole change was scripted, here is how:

List of files was obtained using this command:
git grep -l -e '\<return\s*([^()]*\(([^()]*)[^()]*\)*)\s*;' |             \
grep -e '\.[ch]$' -e '\.py$'

Found files were modified with this command:
sed -i -e                                                                 \
's_^\(.*\<return\)\s*(\(\([^()]*([^()]*)[^()]*\)*\))\s*\(;.*$\)_\1 \2\4_' \
-e 's_^\(.*\<return\)\s*(\([^()]*\))\s*\(;.*$\)_\1 \2\3_'

Then checked for nonsense.

The whole command looks like this:
git grep -l -e '\<return\s*([^()]*\(([^()]*)[^()]*\)*)\s*;' |             \
grep -e '\.[ch]$' -e '\.py$' | xargs sed -i -e                            \
's_^\(.*\<return\)\s*(\(\([^()]*([^()]*)[^()]*\)*\))\s*\(;.*$\)_\1 \2\4_' \
-e 's_^\(.*\<return\)\s*(\([^()]*\))\s*\(;.*$\)_\1 \2\3_'
2012-03-26 14:45:22 -06:00

1798 lines
43 KiB
C

/*
* cpu_x86.c: CPU driver for CPUs with x86 compatible CPUID instruction
*
* Copyright (C) 2009-2011 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Authors:
* Jiri Denemark <jdenemar@redhat.com>
*/
#include <config.h>
#include <stdint.h>
#include "logging.h"
#include "memory.h"
#include "util.h"
#include "cpu.h"
#include "cpu_map.h"
#include "cpu_x86.h"
#define VIR_FROM_THIS VIR_FROM_CPU
#define VENDOR_STRING_LENGTH 12
static const struct cpuX86cpuid cpuidNull = { 0, 0, 0, 0, 0 };
static const char *archs[] = { "i686", "x86_64" };
struct x86_vendor {
char *name;
struct cpuX86cpuid cpuid;
struct x86_vendor *next;
};
struct x86_feature {
char *name;
union cpuData *data;
struct x86_feature *next;
};
struct x86_model {
char *name;
const struct x86_vendor *vendor;
union cpuData *data;
struct x86_model *next;
};
struct x86_map {
struct x86_vendor *vendors;
struct x86_feature *features;
struct x86_model *models;
};
enum compare_result {
SUBSET,
EQUAL,
SUPERSET,
UNRELATED
};
struct data_iterator {
union cpuData *data;
int pos;
bool extended;
};
#define DATA_ITERATOR_INIT(data) \
{ data, -1, false }
static void
x86DataIteratorInit(struct data_iterator *iter,
union cpuData *data)
{
struct data_iterator init = DATA_ITERATOR_INIT(data);
*iter = init;
}
static int
x86cpuidMatch(const struct cpuX86cpuid *cpuid1,
const struct cpuX86cpuid *cpuid2)
{
return (cpuid1->eax == cpuid2->eax &&
cpuid1->ebx == cpuid2->ebx &&
cpuid1->ecx == cpuid2->ecx &&
cpuid1->edx == cpuid2->edx);
}
static int
x86cpuidMatchMasked(const struct cpuX86cpuid *cpuid,
const struct cpuX86cpuid *mask)
{
return ((cpuid->eax & mask->eax) == mask->eax &&
(cpuid->ebx & mask->ebx) == mask->ebx &&
(cpuid->ecx & mask->ecx) == mask->ecx &&
(cpuid->edx & mask->edx) == mask->edx);
}
static int
x86cpuidMatchAny(const struct cpuX86cpuid *cpuid,
const struct cpuX86cpuid *mask)
{
return ((cpuid->eax & mask->eax) ||
(cpuid->ebx & mask->ebx) ||
(cpuid->ecx & mask->ecx) ||
(cpuid->edx & mask->edx));
}
static void
x86cpuidSetBits(struct cpuX86cpuid *cpuid,
const struct cpuX86cpuid *mask)
{
cpuid->eax |= mask->eax;
cpuid->ebx |= mask->ebx;
cpuid->ecx |= mask->ecx;
cpuid->edx |= mask->edx;
}
static void
x86cpuidClearBits(struct cpuX86cpuid *cpuid,
const struct cpuX86cpuid *mask)
{
cpuid->eax &= ~mask->eax;
cpuid->ebx &= ~mask->ebx;
cpuid->ecx &= ~mask->ecx;
cpuid->edx &= ~mask->edx;
}
static void
x86cpuidAndBits(struct cpuX86cpuid *cpuid,
const struct cpuX86cpuid *mask)
{
cpuid->eax &= mask->eax;
cpuid->ebx &= mask->ebx;
cpuid->ecx &= mask->ecx;
cpuid->edx &= mask->edx;
}
/* skips all zero CPUID leafs */
static struct cpuX86cpuid *
x86DataCpuidNext(struct data_iterator *iterator)
{
struct cpuX86cpuid *ret;
struct cpuX86Data *data;
if (!iterator->data)
return NULL;
data = &iterator->data->x86;
do {
ret = NULL;
iterator->pos++;
if (!iterator->extended) {
if (iterator->pos < data->basic_len)
ret = data->basic + iterator->pos;
else {
iterator->extended = true;
iterator->pos = 0;
}
}
if (iterator->extended && iterator->pos < data->extended_len) {
ret = data->extended + iterator->pos;
}
} while (ret && x86cpuidMatch(ret, &cpuidNull));
return ret;
}
static struct cpuX86cpuid *
x86DataCpuid(const union cpuData *data,
uint32_t function)
{
struct cpuX86cpuid *cpuids;
int len;
unsigned int i;
if (function < CPUX86_EXTENDED) {
cpuids = data->x86.basic;
len = data->x86.basic_len;
i = function;
}
else {
cpuids = data->x86.extended;
len = data->x86.extended_len;
i = function - CPUX86_EXTENDED;
}
if (i < len && !x86cpuidMatch(cpuids + i, &cpuidNull))
return cpuids + i;
else
return NULL;
}
static void
x86DataFree(union cpuData *data)
{
if (data == NULL)
return;
VIR_FREE(data->x86.basic);
VIR_FREE(data->x86.extended);
VIR_FREE(data);
}
static union cpuData *
x86DataCopy(const union cpuData *data)
{
union cpuData *copy = NULL;
int i;
if (VIR_ALLOC(copy) < 0
|| VIR_ALLOC_N(copy->x86.basic, data->x86.basic_len) < 0
|| VIR_ALLOC_N(copy->x86.extended, data->x86.extended_len) < 0) {
x86DataFree(copy);
return NULL;
}
copy->x86.basic_len = data->x86.basic_len;
for (i = 0; i < data->x86.basic_len; i++)
copy->x86.basic[i] = data->x86.basic[i];
copy->x86.extended_len = data->x86.extended_len;
for (i = 0; i < data->x86.extended_len; i++)
copy->x86.extended[i] = data->x86.extended[i];
return copy;
}
static int
x86DataExpand(union cpuData *data,
int basic_by,
int extended_by)
{
size_t i;
if (basic_by > 0) {
size_t len = data->x86.basic_len;
if (VIR_EXPAND_N(data->x86.basic, data->x86.basic_len, basic_by) < 0)
goto no_memory;
for (i = 0; i < basic_by; i++)
data->x86.basic[len + i].function = len + i;
}
if (extended_by > 0) {
size_t len = data->x86.extended_len;
if (VIR_EXPAND_N(data->x86.extended, data->x86.extended_len, extended_by) < 0)
goto no_memory;
for (i = 0; i < extended_by; i++)
data->x86.extended[len + i].function = len + i + CPUX86_EXTENDED;
}
return 0;
no_memory:
virReportOOMError();
return -1;
}
static int
x86DataAddCpuid(union cpuData *data,
const struct cpuX86cpuid *cpuid)
{
unsigned int basic_by = 0;
unsigned int extended_by = 0;
struct cpuX86cpuid **cpuids;
unsigned int pos;
if (cpuid->function < CPUX86_EXTENDED) {
pos = cpuid->function;
basic_by = pos + 1 - data->x86.basic_len;
cpuids = &data->x86.basic;
} else {
pos = cpuid->function - CPUX86_EXTENDED;
extended_by = pos + 1 - data->x86.extended_len;
cpuids = &data->x86.extended;
}
if (x86DataExpand(data, basic_by, extended_by) < 0)
return -1;
x86cpuidSetBits((*cpuids) + pos, cpuid);
return 0;
}
static int
x86DataAdd(union cpuData *data1,
const union cpuData *data2)
{
unsigned int i;
if (x86DataExpand(data1,
data2->x86.basic_len - data1->x86.basic_len,
data2->x86.extended_len - data1->x86.extended_len) < 0)
return -1;
for (i = 0; i < data2->x86.basic_len; i++) {
x86cpuidSetBits(data1->x86.basic + i,
data2->x86.basic + i);
}
for (i = 0; i < data2->x86.extended_len; i++) {
x86cpuidSetBits(data1->x86.extended + i,
data2->x86.extended + i);
}
return 0;
}
static void
x86DataSubtract(union cpuData *data1,
const union cpuData *data2)
{
unsigned int i;
unsigned int len;
len = MIN(data1->x86.basic_len, data2->x86.basic_len);
for (i = 0; i < len; i++) {
x86cpuidClearBits(data1->x86.basic + i,
data2->x86.basic + i);
}
len = MIN(data1->x86.extended_len, data2->x86.extended_len);
for (i = 0; i < len; i++) {
x86cpuidClearBits(data1->x86.extended + i,
data2->x86.extended + i);
}
}
static void
x86DataIntersect(union cpuData *data1,
const union cpuData *data2)
{
struct data_iterator iter = DATA_ITERATOR_INIT(data1);
struct cpuX86cpuid *cpuid1;
struct cpuX86cpuid *cpuid2;
while ((cpuid1 = x86DataCpuidNext(&iter))) {
cpuid2 = x86DataCpuid(data2, cpuid1->function);
if (cpuid2)
x86cpuidAndBits(cpuid1, cpuid2);
else
x86cpuidClearBits(cpuid1, cpuid1);
}
}
static bool
x86DataIsEmpty(union cpuData *data)
{
struct data_iterator iter = DATA_ITERATOR_INIT(data);
return x86DataCpuidNext(&iter) == NULL;
}
static bool
x86DataIsSubset(const union cpuData *data,
const union cpuData *subset)
{
struct data_iterator iter = DATA_ITERATOR_INIT((union cpuData *) subset);
const struct cpuX86cpuid *cpuid;
const struct cpuX86cpuid *cpuidSubset;
while ((cpuidSubset = x86DataCpuidNext(&iter))) {
if (!(cpuid = x86DataCpuid(data, cpuidSubset->function)) ||
!x86cpuidMatchMasked(cpuid, cpuidSubset))
return false;
}
return true;
}
/* also removes all detected features from data */
static int
x86DataToCPUFeatures(virCPUDefPtr cpu,
int policy,
union cpuData *data,
const struct x86_map *map)
{
const struct x86_feature *feature = map->features;
while (feature != NULL) {
if (x86DataIsSubset(data, feature->data)) {
x86DataSubtract(data, feature->data);
if (virCPUDefAddFeature(cpu, feature->name, policy) < 0)
return -1;
}
feature = feature->next;
}
return 0;
}
/* also removes bits corresponding to vendor string from data */
static const struct x86_vendor *
x86DataToVendor(union cpuData *data,
const struct x86_map *map)
{
const struct x86_vendor *vendor = map->vendors;
struct cpuX86cpuid *cpuid;
while (vendor) {
if ((cpuid = x86DataCpuid(data, vendor->cpuid.function)) &&
x86cpuidMatchMasked(cpuid, &vendor->cpuid)) {
x86cpuidClearBits(cpuid, &vendor->cpuid);
return vendor;
}
vendor = vendor->next;
}
return NULL;
}
static virCPUDefPtr
x86DataToCPU(const union cpuData *data,
const struct x86_model *model,
const struct x86_map *map)
{
virCPUDefPtr cpu;
union cpuData *copy = NULL;
union cpuData *modelData = NULL;
const struct x86_vendor *vendor;
if (VIR_ALLOC(cpu) < 0 ||
!(cpu->model = strdup(model->name)) ||
!(copy = x86DataCopy(data)) ||
!(modelData = x86DataCopy(model->data)))
goto no_memory;
if ((vendor = x86DataToVendor(copy, map)) &&
!(cpu->vendor = strdup(vendor->name)))
goto no_memory;
x86DataSubtract(copy, modelData);
x86DataSubtract(modelData, data);
/* because feature policy is ignored for host CPU */
cpu->type = VIR_CPU_TYPE_GUEST;
if (x86DataToCPUFeatures(cpu, VIR_CPU_FEATURE_REQUIRE, copy, map) ||
x86DataToCPUFeatures(cpu, VIR_CPU_FEATURE_DISABLE, modelData, map))
goto error;
cleanup:
x86DataFree(modelData);
x86DataFree(copy);
return cpu;
no_memory:
virReportOOMError();
error:
virCPUDefFree(cpu);
cpu = NULL;
goto cleanup;
}
static void
x86VendorFree(struct x86_vendor *vendor)
{
if (!vendor)
return;
VIR_FREE(vendor->name);
VIR_FREE(vendor);
}
static struct x86_vendor *
x86VendorFind(const struct x86_map *map,
const char *name)
{
struct x86_vendor *vendor;
vendor = map->vendors;
while (vendor) {
if (STREQ(vendor->name, name))
return vendor;
vendor = vendor->next;
}
return NULL;
}
static int
x86VendorLoad(xmlXPathContextPtr ctxt,
struct x86_map *map)
{
struct x86_vendor *vendor = NULL;
char *string = NULL;
int ret = 0;
if (VIR_ALLOC(vendor) < 0)
goto no_memory;
vendor->name = virXPathString("string(@name)", ctxt);
if (!vendor->name) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("Missing CPU vendor name"));
goto ignore;
}
if (x86VendorFind(map, vendor->name)) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("CPU vendor %s already defined"), vendor->name);
goto ignore;
}
string = virXPathString("string(@string)", ctxt);
if (!string) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Missing vendor string for CPU vendor %s"), vendor->name);
goto ignore;
}
if (strlen(string) != VENDOR_STRING_LENGTH) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Invalid CPU vendor string '%s'"), string);
goto ignore;
}
vendor->cpuid.function = 0;
vendor->cpuid.ebx = (string[0] ) |
(string[1] << 8) |
(string[2] << 16) |
(string[3] << 24);
vendor->cpuid.edx = (string[4] ) |
(string[5] << 8) |
(string[6] << 16) |
(string[7] << 24);
vendor->cpuid.ecx = (string[8] ) |
(string[9] << 8) |
(string[10] << 16) |
(string[11] << 24);
if (!map->vendors)
map->vendors = vendor;
else {
vendor->next = map->vendors;
map->vendors = vendor;
}
out:
VIR_FREE(string);
return ret;
no_memory:
virReportOOMError();
ret = -1;
ignore:
x86VendorFree(vendor);
goto out;
}
static struct x86_feature *
x86FeatureNew(void)
{
struct x86_feature *feature;
if (VIR_ALLOC(feature) < 0)
return NULL;
if (VIR_ALLOC(feature->data) < 0) {
VIR_FREE(feature);
return NULL;
}
return feature;
}
static void
x86FeatureFree(struct x86_feature *feature)
{
if (feature == NULL)
return;
VIR_FREE(feature->name);
x86DataFree(feature->data);
VIR_FREE(feature);
}
static struct x86_feature *
x86FeatureFind(const struct x86_map *map,
const char *name)
{
struct x86_feature *feature;
feature = map->features;
while (feature != NULL) {
if (STREQ(feature->name, name))
return feature;
feature = feature->next;
}
return NULL;
}
static int
x86FeatureLoad(xmlXPathContextPtr ctxt,
struct x86_map *map)
{
xmlNodePtr *nodes = NULL;
xmlNodePtr ctxt_node = ctxt->node;
struct x86_feature *feature;
int ret = 0;
int i;
int n;
if (!(feature = x86FeatureNew()))
goto no_memory;
feature->name = virXPathString("string(@name)", ctxt);
if (feature->name == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("Missing CPU feature name"));
goto ignore;
}
if (x86FeatureFind(map, feature->name)) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("CPU feature %s already defined"), feature->name);
goto ignore;
}
n = virXPathNodeSet("./cpuid", ctxt, &nodes);
if (n < 0)
goto ignore;
for (i = 0; i < n; i++) {
struct cpuX86cpuid cpuid;
unsigned long fun, eax, ebx, ecx, edx;
int ret_fun, ret_eax, ret_ebx, ret_ecx, ret_edx;
ctxt->node = nodes[i];
fun = eax = ebx = ecx = edx = 0;
ret_fun = virXPathULongHex("string(@function)", ctxt, &fun);
ret_eax = virXPathULongHex("string(@eax)", ctxt, &eax);
ret_ebx = virXPathULongHex("string(@ebx)", ctxt, &ebx);
ret_ecx = virXPathULongHex("string(@ecx)", ctxt, &ecx);
ret_edx = virXPathULongHex("string(@edx)", ctxt, &edx);
if (ret_fun < 0 || ret_eax == -2 || ret_ebx == -2
|| ret_ecx == -2 || ret_edx == -2) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Invalid cpuid[%d] in %s feature"), i, feature->name);
goto ignore;
}
cpuid.function = fun;
cpuid.eax = eax;
cpuid.ebx = ebx;
cpuid.ecx = ecx;
cpuid.edx = edx;
if (x86DataAddCpuid(feature->data, &cpuid))
goto no_memory;
}
if (map->features == NULL)
map->features = feature;
else {
feature->next = map->features;
map->features = feature;
}
out:
ctxt->node = ctxt_node;
VIR_FREE(nodes);
return ret;
no_memory:
virReportOOMError();
ret = -1;
ignore:
x86FeatureFree(feature);
goto out;
}
static struct x86_model *
x86ModelNew(void)
{
struct x86_model *model;
if (VIR_ALLOC(model) < 0)
return NULL;
if (VIR_ALLOC(model->data) < 0) {
VIR_FREE(model);
return NULL;
}
return model;
}
static void
x86ModelFree(struct x86_model *model)
{
if (model == NULL)
return;
VIR_FREE(model->name);
x86DataFree(model->data);
VIR_FREE(model);
}
static struct x86_model *
x86ModelCopy(const struct x86_model *model)
{
struct x86_model *copy;
if (VIR_ALLOC(copy) < 0
|| !(copy->name = strdup(model->name))
|| !(copy->data = x86DataCopy(model->data))) {
x86ModelFree(copy);
return NULL;
}
copy->vendor = model->vendor;
return copy;
}
static struct x86_model *
x86ModelFind(const struct x86_map *map,
const char *name)
{
struct x86_model *model;
model = map->models;
while (model != NULL) {
if (STREQ(model->name, name))
return model;
model = model->next;
}
return NULL;
}
static struct x86_model *
x86ModelFromCPU(const virCPUDefPtr cpu,
const struct x86_map *map,
int policy)
{
struct x86_model *model = NULL;
int i;
if (policy == VIR_CPU_FEATURE_REQUIRE) {
if ((model = x86ModelFind(map, cpu->model)) == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU model %s"), cpu->model);
goto error;
}
if ((model = x86ModelCopy(model)) == NULL)
goto no_memory;
} else if (!(model = x86ModelNew())) {
goto no_memory;
} else if (cpu->type == VIR_CPU_TYPE_HOST) {
return model;
}
for (i = 0; i < cpu->nfeatures; i++) {
const struct x86_feature *feature;
if (cpu->type == VIR_CPU_TYPE_GUEST
&& cpu->features[i].policy != policy)
continue;
if ((feature = x86FeatureFind(map, cpu->features[i].name)) == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU feature %s"), cpu->features[i].name);
goto error;
}
if (x86DataAdd(model->data, feature->data))
goto no_memory;
}
return model;
no_memory:
virReportOOMError();
error:
x86ModelFree(model);
return NULL;
}
static int
x86ModelSubtractCPU(struct x86_model *model,
const virCPUDefPtr cpu,
const struct x86_map *map)
{
const struct x86_model *cpu_model;
unsigned int i;
if (!(cpu_model = x86ModelFind(map, cpu->model))) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU model %s"),
cpu->model);
return -1;
}
x86DataSubtract(model->data, cpu_model->data);
for (i = 0; i < cpu->nfeatures; i++) {
const struct x86_feature *feature;
if (!(feature = x86FeatureFind(map, cpu->features[i].name))) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU feature %s"),
cpu->features[i].name);
return -1;
}
x86DataSubtract(model->data, feature->data);
}
return 0;
}
static enum compare_result
x86ModelCompare(const struct x86_model *model1,
const struct x86_model *model2)
{
enum compare_result result = EQUAL;
struct data_iterator iter1 = DATA_ITERATOR_INIT(model1->data);
struct data_iterator iter2 = DATA_ITERATOR_INIT(model2->data);
struct cpuX86cpuid *cpuid1;
struct cpuX86cpuid *cpuid2;
while ((cpuid1 = x86DataCpuidNext(&iter1))) {
enum compare_result match = SUPERSET;
if ((cpuid2 = x86DataCpuid(model2->data, cpuid1->function))) {
if (x86cpuidMatch(cpuid1, cpuid2))
continue;
else if (!x86cpuidMatchMasked(cpuid1, cpuid2))
match = SUBSET;
}
if (result == EQUAL)
result = match;
else if (result != match)
return UNRELATED;
}
while ((cpuid2 = x86DataCpuidNext(&iter2))) {
enum compare_result match = SUBSET;
if ((cpuid1 = x86DataCpuid(model1->data, cpuid2->function))) {
if (x86cpuidMatch(cpuid2, cpuid1))
continue;
else if (!x86cpuidMatchMasked(cpuid2, cpuid1))
match = SUPERSET;
}
if (result == EQUAL)
result = match;
else if (result != match)
return UNRELATED;
}
return result;
}
static int
x86ModelLoad(xmlXPathContextPtr ctxt,
struct x86_map *map)
{
xmlNodePtr *nodes = NULL;
struct x86_model *model;
char *vendor = NULL;
int ret = 0;
int i;
int n;
if (!(model = x86ModelNew()))
goto no_memory;
model->name = virXPathString("string(@name)", ctxt);
if (model->name == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("Missing CPU model name"));
goto ignore;
}
if (virXPathNode("./model", ctxt) != NULL) {
const struct x86_model *ancestor;
char *name;
name = virXPathString("string(./model/@name)", ctxt);
if (name == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Missing ancestor's name in CPU model %s"),
model->name);
goto ignore;
}
if ((ancestor = x86ModelFind(map, name)) == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Ancestor model %s not found for CPU model %s"),
name, model->name);
VIR_FREE(name);
goto ignore;
}
VIR_FREE(name);
model->vendor = ancestor->vendor;
x86DataFree(model->data);
if (!(model->data = x86DataCopy(ancestor->data)))
goto no_memory;
}
if (virXPathBoolean("boolean(./vendor)", ctxt)) {
vendor = virXPathString("string(./vendor/@name)", ctxt);
if (!vendor) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Invalid vendor element in CPU model %s"),
model->name);
goto ignore;
}
if (!(model->vendor = x86VendorFind(map, vendor))) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown vendor %s referenced by CPU model %s"),
vendor, model->name);
goto ignore;
}
}
n = virXPathNodeSet("./feature", ctxt, &nodes);
if (n < 0)
goto ignore;
for (i = 0; i < n; i++) {
const struct x86_feature *feature;
char *name;
if ((name = virXMLPropString(nodes[i], "name")) == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Missing feature name for CPU model %s"), model->name);
goto ignore;
}
if ((feature = x86FeatureFind(map, name)) == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Feature %s required by CPU model %s not found"),
name, model->name);
VIR_FREE(name);
goto ignore;
}
VIR_FREE(name);
if (x86DataAdd(model->data, feature->data))
goto no_memory;
}
if (map->models == NULL)
map->models = model;
else {
model->next = map->models;
map->models = model;
}
out:
VIR_FREE(vendor);
VIR_FREE(nodes);
return ret;
no_memory:
virReportOOMError();
ret = -1;
ignore:
x86ModelFree(model);
goto out;
}
static void
x86MapFree(struct x86_map *map)
{
if (map == NULL)
return;
while (map->features != NULL) {
struct x86_feature *feature = map->features;
map->features = feature->next;
x86FeatureFree(feature);
}
while (map->models != NULL) {
struct x86_model *model = map->models;
map->models = model->next;
x86ModelFree(model);
}
while (map->vendors != NULL) {
struct x86_vendor *vendor = map->vendors;
map->vendors = vendor->next;
x86VendorFree(vendor);
}
VIR_FREE(map);
}
static int
x86MapLoadCallback(enum cpuMapElement element,
xmlXPathContextPtr ctxt,
void *data)
{
struct x86_map *map = data;
switch (element) {
case CPU_MAP_ELEMENT_VENDOR:
return x86VendorLoad(ctxt, map);
case CPU_MAP_ELEMENT_FEATURE:
return x86FeatureLoad(ctxt, map);
case CPU_MAP_ELEMENT_MODEL:
return x86ModelLoad(ctxt, map);
case CPU_MAP_ELEMENT_LAST:
break;
}
return 0;
}
static struct x86_map *
x86LoadMap(void)
{
struct x86_map *map;
if (VIR_ALLOC(map) < 0) {
virReportOOMError();
return NULL;
}
if (cpuMapLoad("x86", x86MapLoadCallback, map) < 0)
goto error;
return map;
error:
x86MapFree(map);
return NULL;
}
static virCPUCompareResult
x86Compute(virCPUDefPtr host,
virCPUDefPtr cpu,
union cpuData **guest)
{
struct x86_map *map = NULL;
struct x86_model *host_model = NULL;
struct x86_model *cpu_force = NULL;
struct x86_model *cpu_require = NULL;
struct x86_model *cpu_optional = NULL;
struct x86_model *cpu_disable = NULL;
struct x86_model *cpu_forbid = NULL;
struct x86_model *diff = NULL;
struct x86_model *guest_model = NULL;
struct data_iterator iter;
const struct cpuX86cpuid *cpuid;
virCPUCompareResult ret;
enum compare_result result;
unsigned int i;
if (cpu->arch != NULL) {
bool found = false;
for (i = 0; i < ARRAY_CARDINALITY(archs); i++) {
if (STREQ(archs[i], cpu->arch)) {
found = true;
break;
}
}
if (!found) {
VIR_DEBUG("CPU arch %s does not match host arch", cpu->arch);
return VIR_CPU_COMPARE_INCOMPATIBLE;
}
}
if (cpu->vendor &&
(!host->vendor || STRNEQ(cpu->vendor, host->vendor))) {
VIR_DEBUG("host CPU vendor does not match required CPU vendor %s",
cpu->vendor);
return VIR_CPU_COMPARE_INCOMPATIBLE;
}
if (!(map = x86LoadMap()) ||
!(host_model = x86ModelFromCPU(host, map, VIR_CPU_FEATURE_REQUIRE)) ||
!(cpu_force = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_FORCE)) ||
!(cpu_require = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_REQUIRE)) ||
!(cpu_optional = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_OPTIONAL)) ||
!(cpu_disable = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_DISABLE)) ||
!(cpu_forbid = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_FORBID)))
goto error;
x86DataIteratorInit(&iter, cpu_forbid->data);
while ((cpuid = x86DataCpuidNext(&iter))) {
const struct cpuX86cpuid *cpuid2;
cpuid2 = x86DataCpuid(host_model->data, cpuid->function);
if (cpuid2 != NULL && x86cpuidMatchAny(cpuid2, cpuid)) {
VIR_DEBUG("Host CPU provides forbidden features in CPUID function 0x%x",
cpuid->function);
ret = VIR_CPU_COMPARE_INCOMPATIBLE;
goto out;
}
}
x86DataSubtract(cpu_require->data, cpu_disable->data);
result = x86ModelCompare(host_model, cpu_require);
if (result == SUBSET || result == UNRELATED) {
VIR_DEBUG("Host CPU does not provide all required features");
ret = VIR_CPU_COMPARE_INCOMPATIBLE;
goto out;
}
ret = VIR_CPU_COMPARE_IDENTICAL;
if ((diff = x86ModelCopy(host_model)) == NULL)
goto no_memory;
x86DataSubtract(diff->data, cpu_optional->data);
x86DataSubtract(diff->data, cpu_require->data);
x86DataSubtract(diff->data, cpu_disable->data);
x86DataSubtract(diff->data, cpu_force->data);
if (!x86DataIsEmpty(diff->data))
ret = VIR_CPU_COMPARE_SUPERSET;
if (ret == VIR_CPU_COMPARE_SUPERSET
&& cpu->type == VIR_CPU_TYPE_GUEST
&& cpu->match == VIR_CPU_MATCH_STRICT) {
VIR_DEBUG("Host CPU does not strictly match guest CPU");
ret = VIR_CPU_COMPARE_INCOMPATIBLE;
goto out;
}
if (guest != NULL) {
if ((guest_model = x86ModelCopy(host_model)) == NULL)
goto no_memory;
if (cpu->type == VIR_CPU_TYPE_GUEST
&& cpu->match == VIR_CPU_MATCH_EXACT)
x86DataSubtract(guest_model->data, diff->data);
if (x86DataAdd(guest_model->data, cpu_force->data))
goto no_memory;
x86DataSubtract(guest_model->data, cpu_disable->data);
if ((*guest = x86DataCopy(guest_model->data)) == NULL)
goto no_memory;
}
out:
x86MapFree(map);
x86ModelFree(host_model);
x86ModelFree(diff);
x86ModelFree(cpu_force);
x86ModelFree(cpu_require);
x86ModelFree(cpu_optional);
x86ModelFree(cpu_disable);
x86ModelFree(cpu_forbid);
x86ModelFree(guest_model);
return ret;
no_memory:
virReportOOMError();
error:
ret = VIR_CPU_COMPARE_ERROR;
goto out;
}
static virCPUCompareResult
x86Compare(virCPUDefPtr host,
virCPUDefPtr cpu)
{
return x86Compute(host, cpu, NULL);
}
static virCPUCompareResult
x86GuestData(virCPUDefPtr host,
virCPUDefPtr guest,
union cpuData **data)
{
return x86Compute(host, guest, data);
}
static int
x86Decode(virCPUDefPtr cpu,
const union cpuData *data,
const char **models,
unsigned int nmodels,
const char *preferred)
{
int ret = -1;
struct x86_map *map;
const struct x86_model *candidate;
virCPUDefPtr cpuCandidate;
virCPUDefPtr cpuModel = NULL;
unsigned int i;
if (data == NULL || (map = x86LoadMap()) == NULL)
return -1;
candidate = map->models;
while (candidate != NULL) {
bool allowed = (models == NULL);
for (i = 0; i < nmodels; i++) {
if (models && models[i] && STREQ(models[i], candidate->name)) {
allowed = true;
break;
}
}
if (!allowed) {
if (preferred && STREQ(candidate->name, preferred)) {
if (cpu->fallback != VIR_CPU_FALLBACK_ALLOW) {
virCPUReportError(VIR_ERR_CONFIG_UNSUPPORTED,
_("CPU model %s is not supported by hypervisor"),
preferred);
goto out;
} else {
VIR_WARN("Preferred CPU model %s not allowed by"
" hypervisor; closest supported model will be"
" used", preferred);
}
} else {
VIR_DEBUG("CPU model %s not allowed by hypervisor; ignoring",
candidate->name);
}
goto next;
}
if (!(cpuCandidate = x86DataToCPU(data, candidate, map)))
goto out;
if (candidate->vendor && cpuCandidate->vendor &&
STRNEQ(candidate->vendor->name, cpuCandidate->vendor)) {
VIR_DEBUG("CPU vendor %s of model %s differs from %s; ignoring",
candidate->vendor->name, candidate->name,
cpuCandidate->vendor);
virCPUDefFree(cpuCandidate);
goto next;
}
if (cpu->type == VIR_CPU_TYPE_HOST) {
cpuCandidate->type = VIR_CPU_TYPE_HOST;
for (i = 0; i < cpuCandidate->nfeatures; i++) {
switch (cpuCandidate->features[i].policy) {
case VIR_CPU_FEATURE_DISABLE:
virCPUDefFree(cpuCandidate);
goto next;
default:
cpuCandidate->features[i].policy = -1;
}
}
}
if (preferred && STREQ(cpuCandidate->model, preferred)) {
virCPUDefFree(cpuModel);
cpuModel = cpuCandidate;
break;
}
if (cpuModel == NULL
|| cpuModel->nfeatures > cpuCandidate->nfeatures) {
virCPUDefFree(cpuModel);
cpuModel = cpuCandidate;
} else
virCPUDefFree(cpuCandidate);
next:
candidate = candidate->next;
}
if (cpuModel == NULL) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("Cannot find suitable CPU model for given data"));
goto out;
}
cpu->model = cpuModel->model;
cpu->vendor = cpuModel->vendor;
cpu->nfeatures = cpuModel->nfeatures;
cpu->features = cpuModel->features;
VIR_FREE(cpuModel);
ret = 0;
out:
x86MapFree(map);
virCPUDefFree(cpuModel);
return ret;
}
static union cpuData *
x86EncodePolicy(const virCPUDefPtr cpu,
const struct x86_map *map,
enum virCPUFeaturePolicy policy)
{
struct x86_model *model;
union cpuData *data = NULL;
if (!(model = x86ModelFromCPU(cpu, map, policy)))
return NULL;
data = model->data;
model->data = NULL;
x86ModelFree(model);
return data;
}
static int
x86Encode(const virCPUDefPtr cpu,
union cpuData **forced,
union cpuData **required,
union cpuData **optional,
union cpuData **disabled,
union cpuData **forbidden,
union cpuData **vendor)
{
struct x86_map *map = NULL;
union cpuData *data_forced = NULL;
union cpuData *data_required = NULL;
union cpuData *data_optional = NULL;
union cpuData *data_disabled = NULL;
union cpuData *data_forbidden = NULL;
union cpuData *data_vendor = NULL;
int ret = -1;
if ((map = x86LoadMap()) == NULL)
goto error;
if (forced) {
data_forced = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_FORCE);
if (!data_forced)
goto error;
}
if (required) {
data_required = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_REQUIRE);
if (!data_required)
goto error;
}
if (optional) {
data_optional = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_OPTIONAL);
if (!data_optional)
goto error;
}
if (disabled) {
data_disabled = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_DISABLE);
if (!data_disabled)
goto error;
}
if (forbidden) {
data_forbidden = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_FORBID);
if (!data_forbidden)
goto error;
}
if (vendor) {
const struct x86_vendor *v = NULL;
if (cpu->vendor && !(v = x86VendorFind(map, cpu->vendor))) {
virCPUReportError(VIR_ERR_OPERATION_FAILED,
_("CPU vendor %s not found"), cpu->vendor);
goto error;
}
if (v &&
(VIR_ALLOC(data_vendor) < 0 ||
x86DataAddCpuid(data_vendor, &v->cpuid) < 0)) {
virReportOOMError();
goto error;
}
}
if (forced)
*forced = data_forced;
if (required)
*required = data_required;
if (optional)
*optional = data_optional;
if (disabled)
*disabled = data_disabled;
if (forbidden)
*forbidden = data_forbidden;
if (vendor)
*vendor = data_vendor;
ret = 0;
cleanup:
x86MapFree(map);
return ret;
error:
x86DataFree(data_forced);
x86DataFree(data_required);
x86DataFree(data_optional);
x86DataFree(data_disabled);
x86DataFree(data_forbidden);
x86DataFree(data_vendor);
goto cleanup;
}
#if HAVE_CPUID
static inline void
cpuidCall(struct cpuX86cpuid *cpuid)
{
# if __x86_64__
asm("cpuid"
: "=a" (cpuid->eax),
"=b" (cpuid->ebx),
"=c" (cpuid->ecx),
"=d" (cpuid->edx)
: "a" (cpuid->function));
# else
/* we need to avoid direct use of ebx for CPUID output as it is used
* for global offset table on i386 with -fPIC
*/
asm("push %%ebx;"
"cpuid;"
"mov %%ebx, %1;"
"pop %%ebx;"
: "=a" (cpuid->eax),
"=r" (cpuid->ebx),
"=c" (cpuid->ecx),
"=d" (cpuid->edx)
: "a" (cpuid->function)
: "cc");
# endif
}
static int
cpuidSet(uint32_t base, struct cpuX86cpuid **set)
{
uint32_t max;
uint32_t i;
struct cpuX86cpuid cpuid = { base, 0, 0, 0, 0 };
cpuidCall(&cpuid);
max = cpuid.eax - base;
if (VIR_ALLOC_N(*set, max + 1) < 0) {
virReportOOMError();
return -1;
}
for (i = 0; i <= max; i++) {
cpuid.function = base | i;
cpuidCall(&cpuid);
(*set)[i] = cpuid;
}
return max + 1;
}
static union cpuData *
x86NodeData(void)
{
union cpuData *data;
int ret;
if (VIR_ALLOC(data) < 0) {
virReportOOMError();
return NULL;
}
if ((ret = cpuidSet(CPUX86_BASIC, &data->x86.basic)) < 0)
goto error;
data->x86.basic_len = ret;
if ((ret = cpuidSet(CPUX86_EXTENDED, &data->x86.extended)) < 0)
goto error;
data->x86.extended_len = ret;
return data;
error:
x86DataFree(data);
return NULL;
}
#endif
static virCPUDefPtr
x86Baseline(virCPUDefPtr *cpus,
unsigned int ncpus,
const char **models,
unsigned int nmodels)
{
struct x86_map *map = NULL;
struct x86_model *base_model = NULL;
virCPUDefPtr cpu = NULL;
unsigned int i;
const struct x86_vendor *vendor = NULL;
struct x86_model *model = NULL;
bool outputVendor = true;
if (!(map = x86LoadMap()))
goto error;
if (!(base_model = x86ModelFromCPU(cpus[0], map, VIR_CPU_FEATURE_REQUIRE)))
goto error;
if (VIR_ALLOC(cpu) < 0 ||
!(cpu->arch = strdup(cpus[0]->arch)))
goto no_memory;
cpu->type = VIR_CPU_TYPE_GUEST;
cpu->match = VIR_CPU_MATCH_EXACT;
if (!cpus[0]->vendor)
outputVendor = false;
else if (!(vendor = x86VendorFind(map, cpus[0]->vendor))) {
virCPUReportError(VIR_ERR_OPERATION_FAILED,
_("Unknown CPU vendor %s"), cpus[0]->vendor);
goto error;
}
for (i = 1; i < ncpus; i++) {
const char *vn = NULL;
if (!(model = x86ModelFromCPU(cpus[i], map, VIR_CPU_FEATURE_REQUIRE)))
goto error;
if (cpus[i]->vendor && model->vendor &&
STRNEQ(cpus[i]->vendor, model->vendor->name)) {
virCPUReportError(VIR_ERR_OPERATION_FAILED,
_("CPU vendor %s of model %s differs from vendor %s"),
model->vendor->name, model->name, cpus[i]->vendor);
goto error;
}
if (cpus[i]->vendor)
vn = cpus[i]->vendor;
else {
outputVendor = false;
if (model->vendor)
vn = model->vendor->name;
}
if (vn) {
if (!vendor) {
if (!(vendor = x86VendorFind(map, vn))) {
virCPUReportError(VIR_ERR_OPERATION_FAILED,
_("Unknown CPU vendor %s"), vn);
goto error;
}
} else if (STRNEQ(vendor->name, vn)) {
virCPUReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("CPU vendors do not match"));
goto error;
}
}
x86DataIntersect(base_model->data, model->data);
x86ModelFree(model);
model = NULL;
}
if (x86DataIsEmpty(base_model->data)) {
virCPUReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("CPUs are incompatible"));
goto error;
}
if (vendor && x86DataAddCpuid(base_model->data, &vendor->cpuid) < 0)
goto no_memory;
if (x86Decode(cpu, base_model->data, models, nmodels, NULL) < 0)
goto error;
if (!outputVendor)
VIR_FREE(cpu->vendor);
VIR_FREE(cpu->arch);
cleanup:
x86ModelFree(base_model);
x86MapFree(map);
return cpu;
no_memory:
virReportOOMError();
error:
x86ModelFree(model);
virCPUDefFree(cpu);
cpu = NULL;
goto cleanup;
}
static int
x86UpdateCustom(virCPUDefPtr guest,
const virCPUDefPtr host)
{
int ret = -1;
unsigned int i;
struct x86_map *map;
struct x86_model *host_model = NULL;
if (!(map = x86LoadMap()) ||
!(host_model = x86ModelFromCPU(host, map, VIR_CPU_FEATURE_REQUIRE)))
goto cleanup;
for (i = 0; i < guest->nfeatures; i++) {
if (guest->features[i].policy == VIR_CPU_FEATURE_OPTIONAL) {
const struct x86_feature *feature;
if (!(feature = x86FeatureFind(map, guest->features[i].name))) {
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU feature %s"),
guest->features[i].name);
goto cleanup;
}
if (x86DataIsSubset(host_model->data, feature->data))
guest->features[i].policy = VIR_CPU_FEATURE_REQUIRE;
else
guest->features[i].policy = VIR_CPU_FEATURE_DISABLE;
}
}
if (guest->match == VIR_CPU_MATCH_MINIMUM) {
guest->match = VIR_CPU_MATCH_EXACT;
if (x86ModelSubtractCPU(host_model, guest, map)
|| x86DataToCPUFeatures(guest, VIR_CPU_FEATURE_REQUIRE,
host_model->data, map))
goto cleanup;
}
ret = 0;
cleanup:
x86MapFree(map);
x86ModelFree(host_model);
return ret;
}
static int
x86Update(virCPUDefPtr guest,
const virCPUDefPtr host)
{
switch ((enum virCPUMode) guest->mode) {
case VIR_CPU_MODE_CUSTOM:
return x86UpdateCustom(guest, host);
case VIR_CPU_MODE_HOST_MODEL:
case VIR_CPU_MODE_HOST_PASSTHROUGH:
if (guest->mode == VIR_CPU_MODE_HOST_MODEL)
guest->match = VIR_CPU_MATCH_EXACT;
else
guest->match = VIR_CPU_MATCH_MINIMUM;
virCPUDefFreeModel(guest);
return virCPUDefCopyModel(guest, host, true);
case VIR_CPU_MODE_LAST:
break;
}
virCPUReportError(VIR_ERR_INTERNAL_ERROR,
_("Unexpected CPU mode: %d"), guest->mode);
return -1;
}
static int x86HasFeature(const union cpuData *data,
const char *name)
{
struct x86_map *map;
struct x86_feature *feature;
int ret = -1;
if (!(map = x86LoadMap()))
return -1;
if (!(feature = x86FeatureFind(map, name)))
goto cleanup;
ret = x86DataIsSubset(data, feature->data) ? 1 : 0;
cleanup:
x86MapFree(map);
return ret;
}
struct cpuArchDriver cpuDriverX86 = {
.name = "x86",
.arch = archs,
.narch = ARRAY_CARDINALITY(archs),
.compare = x86Compare,
.decode = x86Decode,
.encode = x86Encode,
.free = x86DataFree,
#if HAVE_CPUID
.nodeData = x86NodeData,
#else
.nodeData = NULL,
#endif
.guestData = x86GuestData,
.baseline = x86Baseline,
.update = x86Update,
.hasFeature = x86HasFeature,
};