libvirt/src/util/viralloc.c
Eric Blake ddcfc5492a alloc: make VIR_APPEND_ELEMENT safer
VIR_APPEND_ELEMENT(array, size, elem) was not safe if the expression
for 'size' had side effects.  While no one in the current code base
was trying to pass side effects, we might as well be robust and
explicitly document our intentions.

* src/util/viralloc.c (virInsertElementsN): Add special case.
* src/util/viralloc.h (VIR_APPEND_ELEMENT): Use it.
(VIR_ALLOC, VIR_ALLOC_N, VIR_REALLOC_N, VIR_EXPAND_N)
(VIR_RESIZE_N, VIR_SHRINK_N, VIR_INSERT_ELEMENT)
(VIR_DELETE_ELEMENT, VIR_ALLOC_VAR, VIR_FREE): Document
which macros are safe in the presence of side effects.
* docs/hacking.html.in: Document this.
* HACKING: Regenerate.

Signed-off-by: Eric Blake <eblake@redhat.com>
2013-05-07 13:21:31 -06:00

450 lines
13 KiB
C

/*
* viralloc.c: safer memory allocation
*
* Copyright (C) 2010-2013 Red Hat, Inc.
* Copyright (C) 2008 Daniel P. Berrange
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
*/
#include <config.h>
#include <stdlib.h>
#include "viralloc.h"
#include "virlog.h"
#if TEST_OOM
static int testMallocNext = 0;
static int testMallocFailFirst = 0;
static int testMallocFailLast = 0;
static void (*testMallocHook)(int, void*) = NULL;
static void *testMallocHookData = NULL;
void virAllocTestInit(void)
{
testMallocNext = 1;
testMallocFailFirst = 0;
testMallocFailLast = 0;
}
int virAllocTestCount(void)
{
return testMallocNext - 1;
}
void virAllocTestHook(void (*func)(int, void*), void *data)
{
testMallocHook = func;
testMallocHookData = data;
}
void virAllocTestOOM(int n, int m)
{
testMallocNext = 1;
testMallocFailFirst = n;
testMallocFailLast = n + m - 1;
}
static int virAllocTestFail(void)
{
int fail = 0;
if (testMallocNext == 0)
return 0;
fail =
testMallocNext >= testMallocFailFirst &&
testMallocNext <= testMallocFailLast;
if (fail && testMallocHook)
(testMallocHook)(testMallocNext, testMallocHookData);
testMallocNext++;
return fail;
}
#else
void virAllocTestOOM(int n ATTRIBUTE_UNUSED,
int m ATTRIBUTE_UNUSED)
{
/* nada */
}
int virAllocTestCount(void)
{
return 0;
}
void virAllocTestInit(void)
{
/* nada */
}
void virAllocTestHook(void (*func)(int, void*) ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
/* nada */
}
#endif
/**
* virAlloc:
* @ptrptr: pointer to pointer for address of allocated memory
* @size: number of bytes to allocate
*
* Allocate 'size' bytes of memory. Return the address of the
* allocated memory in 'ptrptr'. The newly allocated memory is
* filled with zeros.
*
* Returns -1 on failure to allocate, zero on success
*/
int virAlloc(void *ptrptr, size_t size)
{
#if TEST_OOM
if (virAllocTestFail()) {
*(void **)ptrptr = NULL;
return -1;
}
#endif
*(void **)ptrptr = calloc(1, size);
if (*(void **)ptrptr == NULL)
return -1;
return 0;
}
/**
* virAllocN:
* @ptrptr: pointer to pointer for address of allocated memory
* @size: number of bytes to allocate
* @count: number of elements to allocate
*
* Allocate an array of memory 'count' elements long,
* each with 'size' bytes. Return the address of the
* allocated memory in 'ptrptr'. The newly allocated
* memory is filled with zeros.
*
* Returns -1 on failure to allocate, zero on success
*/
int virAllocN(void *ptrptr, size_t size, size_t count)
{
#if TEST_OOM
if (virAllocTestFail()) {
*(void **)ptrptr = NULL;
return -1;
}
#endif
*(void**)ptrptr = calloc(count, size);
if (*(void**)ptrptr == NULL)
return -1;
return 0;
}
/**
* virReallocN:
* @ptrptr: pointer to pointer for address of allocated memory
* @size: number of bytes to allocate
* @count: number of elements in array
*
* Resize the block of memory in 'ptrptr' to be an array of
* 'count' elements, each 'size' bytes in length. Update 'ptrptr'
* with the address of the newly allocated memory. On failure,
* 'ptrptr' is not changed and still points to the original memory
* block. Any newly allocated memory in 'ptrptr' is uninitialized.
*
* Returns -1 on failure to allocate, zero on success
*/
int virReallocN(void *ptrptr, size_t size, size_t count)
{
void *tmp;
#if TEST_OOM
if (virAllocTestFail())
return -1;
#endif
if (xalloc_oversized(count, size)) {
errno = ENOMEM;
return -1;
}
tmp = realloc(*(void**)ptrptr, size * count);
if (!tmp && (size * count))
return -1;
*(void**)ptrptr = tmp;
return 0;
}
/**
* virExpandN:
* @ptrptr: pointer to pointer for address of allocated memory
* @size: number of bytes per element
* @countptr: pointer to number of elements in array
* @add: number of elements to add
*
* Resize the block of memory in 'ptrptr' to be an array of
* '*countptr' + 'add' elements, each 'size' bytes in length.
* Update 'ptrptr' and 'countptr' with the details of the newly
* allocated memory. On failure, 'ptrptr' and 'countptr' are not
* changed. Any newly allocated memory in 'ptrptr' is zero-filled.
*
* Returns -1 on failure to allocate, zero on success
*/
int virExpandN(void *ptrptr, size_t size, size_t *countptr, size_t add)
{
int ret;
if (*countptr + add < *countptr) {
errno = ENOMEM;
return -1;
}
ret = virReallocN(ptrptr, size, *countptr + add);
if (ret == 0) {
memset(*(char **)ptrptr + (size * *countptr), 0, size * add);
*countptr += add;
}
return ret;
}
/**
* virResizeN:
* @ptrptr: pointer to pointer for address of allocated memory
* @size: number of bytes per element
* @allocptr: pointer to number of elements allocated in array
* @count: number of elements currently used in array
* @add: minimum number of additional elements to support in array
*
* If 'count' + 'add' is larger than '*allocptr', then resize the
* block of memory in 'ptrptr' to be an array of at least 'count' +
* 'add' elements, each 'size' bytes in length. Update 'ptrptr' and
* 'allocptr' with the details of the newly allocated memory. On
* failure, 'ptrptr' and 'allocptr' are not changed. Any newly
* allocated memory in 'ptrptr' is zero-filled.
*
* Returns -1 on failure to allocate, zero on success
*/
int virResizeN(void *ptrptr, size_t size, size_t *allocptr, size_t count,
size_t add)
{
size_t delta;
if (count + add < count) {
errno = ENOMEM;
return -1;
}
if (count + add <= *allocptr)
return 0;
delta = count + add - *allocptr;
if (delta < *allocptr / 2)
delta = *allocptr / 2;
return virExpandN(ptrptr, size, allocptr, delta);
}
/**
* virShrinkN:
* @ptrptr: pointer to pointer for address of allocated memory
* @size: number of bytes per element
* @countptr: pointer to number of elements in array
* @toremove: number of elements to remove
*
* Resize the block of memory in 'ptrptr' to be an array of
* '*countptr' - 'toremove' elements, each 'size' bytes in length.
* Update 'ptrptr' and 'countptr' with the details of the newly
* allocated memory. If 'toremove' is larger than 'countptr', free
* the entire array.
*/
void virShrinkN(void *ptrptr, size_t size, size_t *countptr, size_t toremove)
{
if (toremove < *countptr)
ignore_value(virReallocN(ptrptr, size, *countptr -= toremove));
else {
virFree(ptrptr);
*countptr = 0;
}
}
/**
* virInsertElementsN:
* @ptrptr: pointer to hold address of allocated memory
* @size: the size of one element in bytes
* @at: index within array where new elements should be added, -1 for end
* @countptr: variable tracking number of elements currently allocated
* @add: number of elements to add
* @newelems: pointer to array of one or more new elements to move into
* place (the originals will be zeroed out if successful
* and if clearOriginal is true)
* @clearOriginal: false if the new item in the array should be copied
* from the original, and the original left intact.
* true if the original should be 0'd out on success.
* @inPlace: false if we should expand the allocated memory before
* moving, true if we should assume someone else *has
* already* done that.
*
* Re-allocate an array of *countptr elements, each sizeof(*ptrptr) bytes
* long, to be *countptr+add elements long, then appropriately move
* the elements starting at ptrptr[at] up by add elements, copy the
* items from newelems into ptrptr[at], then store the address of
* allocated memory in *ptrptr and the new size in *countptr. If
* newelems is NULL, the new elements at ptrptr[at] are instead filled
* with zero. at must be between [0,*countptr], except that -1 is
* treated the same as *countptr for convenience.
*
* Returns -1 on failure, 0 on success
*/
int
virInsertElementsN(void *ptrptr, size_t size, size_t at,
size_t *countptr,
size_t add, void *newelems,
bool clearOriginal, bool inPlace)
{
if (at == -1) {
at = *countptr;
} else if (at > *countptr) {
VIR_WARN("out of bounds index - count %zu at %zu add %zu",
*countptr, at, add);
return -1;
}
if (inPlace) {
*countptr += add;
} else if (virExpandN(ptrptr, size, countptr, add) < 0) {
return -1;
}
/* memory was successfully re-allocated. Move up all elements from
* ptrptr[at] to the end (if we're not "inserting" at the end
* already), memcpy in the new elements, and clear the elements
* from their original location. Remember that *countptr has
* already been updated with new element count!
*/
if (at < *countptr - add) {
memmove(*(char**)ptrptr + (size * (at + add)),
*(char**)ptrptr + (size * at),
size * (*countptr - add - at));
}
if (newelems) {
memcpy(*(char**)ptrptr + (size * at), newelems, size * add);
if (clearOriginal)
memset((char*)newelems, 0, size * add);
} else if (inPlace || (at < *countptr - add)) {
/* NB: if inPlace, assume memory at the end wasn't initialized */
memset(*(char**)ptrptr + (size * at), 0, size * add);
}
return 0;
}
/**
* virDeleteElementsN:
* @ptrptr: pointer to hold address of allocated memory
* @size: the size of one element in bytes
* @at: index within array where new elements should be deleted
* @countptr: variable tracking number of elements currently allocated
* @toremove: number of elements to remove
* @inPlace: false if we should shrink the allocated memory when done,
* true if we should assume someone else will do that.
*
* Re-allocate an array of *countptr elements, each sizeof(*ptrptr)
* bytes long, to be *countptr-remove elements long, then store the
* address of allocated memory in *ptrptr and the new size in *countptr.
* If *countptr <= remove, the entire array is freed.
*
* Returns -1 on failure, 0 on success
*/
int
virDeleteElementsN(void *ptrptr, size_t size, size_t at,
size_t *countptr, size_t toremove,
bool inPlace)
{
if (at + toremove > *countptr) {
VIR_WARN("out of bounds index - count %zu at %zu toremove %zu",
*countptr, at, toremove);
return -1;
}
/* First move down the elements at the end that won't be deleted,
* then realloc. We assume that the items being deleted have
* already been cleared.
*/
memmove(*(char**)ptrptr + (size * at),
*(char**)ptrptr + (size * (at + toremove)),
size * (*countptr - toremove - at));
if (inPlace)
*countptr -= toremove;
else
virShrinkN(ptrptr, size, countptr, toremove);
return 0;
}
/**
* virAllocVar:
* @ptrptr: pointer to hold address of allocated memory
* @struct_size: size of initial struct
* @element_size: size of array elements
* @count: number of array elements to allocate
*
* Allocate struct_size bytes plus an array of 'count' elements, each
* of size element_size. This sort of allocation is useful for
* receiving the data of certain ioctls and other APIs which return a
* struct in which the last element is an array of undefined length.
* The caller of this type of API is expected to know the length of
* the array that will be returned and allocate a suitable buffer to
* contain the returned data. C99 refers to these variable length
* objects as structs containing flexible array members.
*
* Returns -1 on failure, 0 on success
*/
int virAllocVar(void *ptrptr, size_t struct_size, size_t element_size, size_t count)
{
size_t alloc_size = 0;
#if TEST_OOM
if (virAllocTestFail())
return -1;
#endif
if (VIR_ALLOC_VAR_OVERSIZED(struct_size, count, element_size)) {
errno = ENOMEM;
return -1;
}
alloc_size = struct_size + (element_size * count);
*(void **)ptrptr = calloc(1, alloc_size);
if (*(void **)ptrptr == NULL)
return -1;
return 0;
}
/**
* virFree:
* @ptrptr: pointer to pointer for address of memory to be freed
*
* Release the chunk of memory in the pointer pointed to by
* the 'ptrptr' variable. After release, 'ptrptr' will be
* updated to point to NULL.
*/
void virFree(void *ptrptr)
{
int save_errno = errno;
free(*(void**)ptrptr);
*(void**)ptrptr = NULL;
errno = save_errno;
}