libvirt/src/util/viralloc.h
Sukrit Bhatnagar dcec13f5a2 util: alloc: add macros for implementing automatic cleanup functionality
New macros are introduced which help in adding GNU C's cleanup
attribute to variable declarations. Variables declared with these
macros will have their allocated memory freed automatically when
they go out of scope.

Signed-off-by: Sukrit Bhatnagar <skrtbhtngr@gmail.com>
Reviewed-by: Erik Skultety <eskultet@redhat.com>
2018-07-14 17:01:30 +02:00

642 lines
27 KiB
C

/*
* viralloc.h: safer memory allocation
*
* Copyright (C) 2010-2014 Red Hat, Inc.
* Copyright (C) 2008 Daniel P. Berrange
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
*/
#ifndef __VIR_MEMORY_H_
# define __VIR_MEMORY_H_
# include "internal.h"
/* Return 1 if an array of N objects, each of size S, cannot exist due
to size arithmetic overflow. S must be positive and N must be
nonnegative. This is a macro, not an inline function, so that it
works correctly even when SIZE_MAX < N.
By gnulib convention, SIZE_MAX represents overflow in size
calculations, so the conservative dividend to use here is
SIZE_MAX - 1, since SIZE_MAX might represent an overflowed value.
However, malloc (SIZE_MAX) fails on all known hosts where
sizeof(ptrdiff_t) <= sizeof(size_t), so do not bother to test for
exactly-SIZE_MAX allocations on such hosts; this avoids a test and
branch when S is known to be 1. */
# ifndef xalloc_oversized
# define xalloc_oversized(n, s) \
((size_t) (sizeof(ptrdiff_t) <= sizeof(size_t) ? -1 : -2) / (s) < (n))
# endif
/* Don't call these directly - use the macros below */
int virAlloc(void *ptrptr, size_t size, bool report, int domcode,
const char *filename, const char *funcname, size_t linenr)
ATTRIBUTE_RETURN_CHECK ATTRIBUTE_NONNULL(1);
int virAllocN(void *ptrptr, size_t size, size_t count, bool report, int domcode,
const char *filename, const char *funcname, size_t linenr)
ATTRIBUTE_RETURN_CHECK ATTRIBUTE_NONNULL(1);
int virReallocN(void *ptrptr, size_t size, size_t count, bool report, int domcode,
const char *filename, const char *funcname, size_t linenr)
ATTRIBUTE_RETURN_CHECK ATTRIBUTE_NONNULL(1);
int virExpandN(void *ptrptr, size_t size, size_t *count, size_t add, bool report,
int domcode, const char *filename, const char *funcname, size_t linenr)
ATTRIBUTE_RETURN_CHECK ATTRIBUTE_NONNULL(1) ATTRIBUTE_NONNULL(3);
int virResizeN(void *ptrptr, size_t size, size_t *alloc, size_t count, size_t desired,
bool report, int domcode, const char *filename,
const char *funcname, size_t linenr)
ATTRIBUTE_RETURN_CHECK ATTRIBUTE_NONNULL(1) ATTRIBUTE_NONNULL(3);
void virShrinkN(void *ptrptr, size_t size, size_t *count, size_t toremove)
ATTRIBUTE_NONNULL(1) ATTRIBUTE_NONNULL(3);
int virInsertElementsN(void *ptrptr, size_t size, size_t at, size_t *countptr,
size_t add, void *newelem,
bool clearOriginal, bool inPlace, bool report, int domcode,
const char *filename, const char *funcname, size_t linenr)
ATTRIBUTE_RETURN_CHECK ATTRIBUTE_NONNULL(1) ATTRIBUTE_NONNULL(4);
int virDeleteElementsN(void *ptrptr, size_t size, size_t at, size_t *countptr,
size_t toremove, bool inPlace)
ATTRIBUTE_NONNULL(1) ATTRIBUTE_NONNULL(4);
int virAllocVar(void *ptrptr, size_t struct_size, size_t element_size, size_t count,
bool report, int domcode, const char *filename,
const char *funcname, size_t linenr)
ATTRIBUTE_RETURN_CHECK ATTRIBUTE_NONNULL(1);
void virFree(void *ptrptr) ATTRIBUTE_NONNULL(1);
void virDispose(void *ptrptr, size_t count, size_t element_size, size_t *countptr)
ATTRIBUTE_NONNULL(1);
/**
* VIR_ALLOC:
* @ptr: pointer to hold address of allocated memory
*
* Allocate sizeof(*ptr) bytes of memory and store
* the address of allocated memory in 'ptr'. Fill the
* newly allocated memory with zeros.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure (with OOM error reported), 0 on success
*/
# define VIR_ALLOC(ptr) virAlloc(&(ptr), sizeof(*(ptr)), true, VIR_FROM_THIS, \
__FILE__, __FUNCTION__, __LINE__)
/**
* VIR_ALLOC_QUIET:
* @ptr: pointer to hold address of allocated memory
*
* Allocate sizeof(*ptr) bytes of memory and store
* the address of allocated memory in 'ptr'. Fill the
* newly allocated memory with zeros.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_ALLOC_QUIET(ptr) virAlloc(&(ptr), sizeof(*(ptr)), false, 0, NULL, NULL, 0)
/**
* VIR_ALLOC_N:
* @ptr: pointer to hold address of allocated memory
* @count: number of elements to allocate
*
* Allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long and store the address of allocated memory in
* 'ptr'. Fill the newly allocated memory with zeros.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure (with OOM error reported), 0 on success
*/
# define VIR_ALLOC_N(ptr, count) virAllocN(&(ptr), sizeof(*(ptr)), (count), true, \
VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
/**
* VIR_ALLOC_N_QUIET:
* @ptr: pointer to hold address of allocated memory
* @count: number of elements to allocate
*
* Allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long and store the address of allocated memory in
* 'ptr'. Fill the newly allocated memory with zeros.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_ALLOC_N_QUIET(ptr, count) virAllocN(&(ptr), sizeof(*(ptr)), (count), \
false, 0, NULL, NULL, 0)
/**
* VIR_REALLOC_N:
* @ptr: pointer to hold address of allocated memory
* @count: number of elements to allocate
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long and store the address of allocated memory in
* 'ptr'. If 'ptr' grew, the added memory is uninitialized.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure (with OOM error reported), 0 on success
*/
# define VIR_REALLOC_N(ptr, count) virReallocN(&(ptr), sizeof(*(ptr)), (count), \
true, VIR_FROM_THIS, __FILE__, \
__FUNCTION__, __LINE__)
/**
* VIR_REALLOC_N_QUIET:
* @ptr: pointer to hold address of allocated memory
* @count: number of elements to allocate
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long and store the address of allocated memory in
* 'ptr'. If 'ptr' grew, the added memory is uninitialized.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_REALLOC_N_QUIET(ptr, count) virReallocN(&(ptr), sizeof(*(ptr)), (count), \
false, 0, NULL, NULL, 0)
/**
* VIR_EXPAND_N:
* @ptr: pointer to hold address of allocated memory
* @count: variable tracking number of elements currently allocated
* @add: number of elements to add
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long, to be 'count' + 'add' elements long, then store the
* address of allocated memory in 'ptr' and the new size in 'count'.
* The new elements are filled with zero.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure (with OOM error reported), 0 on success
*/
# define VIR_EXPAND_N(ptr, count, add) \
virExpandN(&(ptr), sizeof(*(ptr)), &(count), add, true, VIR_FROM_THIS, \
__FILE__, __FUNCTION__, __LINE__)
/**
* VIR_EXPAND_N_QUIET:
* @ptr: pointer to hold address of allocated memory
* @count: variable tracking number of elements currently allocated
* @add: number of elements to add
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long, to be 'count' + 'add' elements long, then store the
* address of allocated memory in 'ptr' and the new size in 'count'.
* The new elements are filled with zero.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_EXPAND_N_QUIET(ptr, count, add) \
virExpandN(&(ptr), sizeof(*(ptr)), &(count), add, false, 0, NULL, NULL, 0)
/**
* VIR_RESIZE_N:
* @ptr: pointer to hold address of allocated memory
* @alloc: variable tracking number of elements currently allocated
* @count: number of elements currently in use
* @add: minimum number of elements to additionally support
*
* Blindly using VIR_EXPAND_N(array, alloc, 1) in a loop scales
* quadratically, because every iteration must copy contents from
* all prior iterations. But amortized linear scaling can be achieved
* by tracking allocation size separately from the number of used
* elements, and growing geometrically only as needed.
*
* If 'count' + 'add' is larger than 'alloc', then geometrically reallocate
* the array of 'alloc' elements, each sizeof(*ptr) bytes long, and store
* the address of allocated memory in 'ptr' and the new size in 'alloc'.
* The new elements are filled with zero.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure (with OOM error reported), 0 on success
*/
# define VIR_RESIZE_N(ptr, alloc, count, add) \
virResizeN(&(ptr), sizeof(*(ptr)), &(alloc), count, add, true, \
VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
/**
* VIR_RESIZE_N_QUIET:
* @ptr: pointer to hold address of allocated memory
* @alloc: variable tracking number of elements currently allocated
* @count: number of elements currently in use
* @add: minimum number of elements to additionally support
*
* Blindly using VIR_EXPAND_N(array, alloc, 1) in a loop scales
* quadratically, because every iteration must copy contents from
* all prior iterations. But amortized linear scaling can be achieved
* by tracking allocation size separately from the number of used
* elements, and growing geometrically only as needed.
*
* If 'count' + 'add' is larger than 'alloc', then geometrically reallocate
* the array of 'alloc' elements, each sizeof(*ptr) bytes long, and store
* the address of allocated memory in 'ptr' and the new size in 'alloc'.
* The new elements are filled with zero.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_RESIZE_N_QUIET(ptr, alloc, count, add) \
virResizeN(&(ptr), sizeof(*(ptr)), &(alloc), count, add, \
false, 0, NULL, NULL, 0)
/**
* VIR_SHRINK_N:
* @ptr: pointer to hold address of allocated memory
* @count: variable tracking number of elements currently allocated
* @remove: number of elements to remove
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long, to be 'count' - 'remove' elements long, then store the
* address of allocated memory in 'ptr' and the new size in 'count'.
* If 'count' <= 'remove', the entire array is freed.
*
* This macro is safe to use on arguments with side effects.
*
* No return value.
*/
# define VIR_SHRINK_N(ptr, count, remove) \
virShrinkN(&(ptr), sizeof(*(ptr)), &(count), remove)
/**
* VIR_TYPEMATCH:
*
* The following macro seems a bit cryptic, so it needs a thorough
* explanation. Its purpose is to check for assignment compatibility
* and identical size between two values without creating any side
* effects (by doing something silly like actually assigning one to
* the other). Note that it takes advantage of the C89-guaranteed
* property of sizeof() - it cannot have any side effects, so anything
* that happens inside sizeof() will not have any effect at runtime.
*
* VIR_TYPEMATCH evaluates to "1" if the two passed values are both
* assignment-compatible and the same size, and otherwise generates a
* compile-time error. It determines the result by performing the
* following three operations:
*
* * sizeof(*(a) = *(b)) assures that *a and *b are
* assignment-compatible (they may still have a different size
* though! e.g. longVar = intVar) (If not, there is a compile-time
* error. If so, the result of that subexpression is sizeof(*(a)),
* i.e. one element of the array)
*
* * sizeof(*(a) = *(b)) == sizeof(*(b)) checks if *a and *b are also
* of the same size (so that, e.g. you don't accidentally copy an
* int plus the random bytes following it into an array of long). It
* evaluates to 1 if they are the same, and 0 otherwise.
*
* * sizeof(char[2 * (result of previous step) - 1]) evaluates to 1
* if the previous step was successful (char [(2*1) - 1] i.e.
* char[1]), or generates a compile error if it wasn't successful
* (char[2*0 -1] i.e. char[-1], which isn't valid in C).
*
* So VIR_TYPEMATCH(a, b) will either abort the compile with an error,
* or evaluate to "1", and in the meantime check that we've actually
* added the correct &'s and/or *'s to the arguments. (Whew!)
*/
# define VIR_TYPEMATCH(a, b) \
sizeof(char[2 * (sizeof(*(a) = *(b)) == sizeof(*(b))) - 1])
/**
* VIR_INSERT_ELEMENT:
* @ptr: pointer to array of objects (*not* ptr to ptr)
* @at: index within array where new elements should be added
* @count: variable tracking number of elements currently allocated
* @newelem: the new element to move into place (*not* a pointer to
* the element, but the element itself).
* (the original will be zeroed out if successful)
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr) bytes
* long, to be 'count' + 1 elements long, then appropriately move
* the elements starting at ptr[at] up by 1 element, copy the
* item 'newelem' into ptr[at], then store the address of
* allocated memory in 'ptr' and the new size in 'count'.
*
* VIR_INSERT_ELEMENT_COPY is identical, but doesn't clear out the
* original element to 0 on success, so there are two copies of the
* element. This is useful if the "element" is actually just a
* pointer to the real data, and you want to maintain a reference to
* it for use after the insert is completed; but if the "element" is
* an object that points to other allocated memory, having multiple
* copies can cause problems (e.g. double free).
*
* VIR_INSERT_ELEMENT_*INPLACE are identical, but assume any necessary
* memory re-allocation has already been done.
*
* VIR_INSERT_ELEMENT_* all need to send "1" as the "add" argument to
* virInsertElementsN (which has the currently-unused capability of
* inserting multiple items at once). We use this to our advantage by
* replacing it with VIR_TYPECHECK(ptr, &newelem) so that we can be
* assured ptr and &newelem are of compatible types.
*
* These macros are safe to use on arguments with side effects.
*
* Returns -1 on failure (with OOM error reported), 0 on success
*/
# define VIR_INSERT_ELEMENT(ptr, at, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), at, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), true, false, \
true, VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
# define VIR_INSERT_ELEMENT_COPY(ptr, at, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), at, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), false, false, \
true, VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
# define VIR_INSERT_ELEMENT_INPLACE(ptr, at, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), at, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), true, true, \
true, VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
# define VIR_INSERT_ELEMENT_COPY_INPLACE(ptr, at, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), at, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), false, true, \
true, VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
/* Quiet version of macros above */
# define VIR_INSERT_ELEMENT_QUIET(ptr, at, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), at, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), true, false, \
false, 0, NULL, NULL, 0)
# define VIR_INSERT_ELEMENT_COPY_QUIET(ptr, at, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), at, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), false, false, \
false, 0, NULL, NULL, 0)
# define VIR_INSERT_ELEMENT_INPLACE_QUIET(ptr, at, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), at, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), true, true, \
false, 0, NULL, NULL, 0)
# define VIR_INSERT_ELEMENT_COPY_INPLACE_QUIET(ptr, at, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), at, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), false, true, \
false, 0, NULL, NULL, 0)
/**
* VIR_APPEND_ELEMENT:
* @ptr: pointer to array of objects (*not* ptr to ptr)
* @count: variable tracking number of elements currently allocated
* @newelem: the new element to move into place (*not* a pointer to
* the element, but the element itself).
* (the original will be zeroed out if successful)
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr) bytes
* long, to be 'count' + 1 elements long, then copy the item from
* 'newelem' into ptr[count+1], and store the address of allocated
* memory in 'ptr' and the new size in 'count'. If 'newelem' is NULL,
* the new element at ptr[at] is instead filled with zero.
*
* VIR_APPEND_ELEMENT_COPY is identical, but doesn't clear out the
* original element to 0 on success, so there are two copies of the
* element. This is useful if the "element" is actually just a
* pointer to the real data, and you want to maintain a reference to
* it for use after the append is completed; but if the "element" is
* an object that points to other allocated memory, having multiple
* copies can cause problems (e.g. double free).
*
* VIR_APPEND_ELEMENT_*INPLACE are identical, but assume any
* necessary memory re-allocation has already been done.
*
* VIR_APPEND_ELEMENT_* all need to send "1" as the "add" argument to
* virInsertElementsN (which has the currently-unused capability of
* inserting multiple items at once). We use this to our advantage by
* replacing it with VIR_TYPECHECK(ptr, &newelem) so that we can be
* assured ptr and &newelem are of compatible types.
*
* These macros are safe to use on arguments with side effects.
*
* Returns -1 on failure (with OOM error reported), 0 on success
*/
# define VIR_APPEND_ELEMENT(ptr, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), -1, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), true, false, \
true, VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
# define VIR_APPEND_ELEMENT_COPY(ptr, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), -1, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), false, false, \
true, VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
# define VIR_APPEND_ELEMENT_INPLACE(ptr, count, newelem) \
ignore_value(virInsertElementsN(&(ptr), sizeof(*(ptr)), -1, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), \
&(newelem), true, true, false, \
VIR_FROM_THIS, __FILE__, \
__FUNCTION__, __LINE__))
# define VIR_APPEND_ELEMENT_COPY_INPLACE(ptr, count, newelem) \
ignore_value(virInsertElementsN(&(ptr), sizeof(*(ptr)), -1, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), \
&(newelem), false, true, false, \
VIR_FROM_THIS, __FILE__, \
__FUNCTION__, __LINE__))
/* Quiet version of macros above */
# define VIR_APPEND_ELEMENT_QUIET(ptr, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), -1, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), true, false, \
false, 0, NULL, NULL, 0)
# define VIR_APPEND_ELEMENT_COPY_QUIET(ptr, count, newelem) \
virInsertElementsN(&(ptr), sizeof(*(ptr)), -1, &(count), \
VIR_TYPEMATCH(ptr, &(newelem)), &(newelem), false, false, \
false, 0, NULL, NULL, 0)
/**
* VIR_DELETE_ELEMENT:
* @ptr: pointer to array of objects (*not* ptr to ptr)
* @at: index within array where new elements should be deleted
* @count: variable tracking number of elements currently allocated
*
* Re-allocate an array of 'count' elements, each sizeof(*ptr)
* bytes long, to be 'count' - 1 elements long, then store the
* address of allocated memory in 'ptr' and the new size in 'count'.
* If 'count' <= 1, the entire array is freed.
*
* VIR_DELETE_ELEMENT_INPLACE is identical, but assumes any
* necessary memory re-allocation will be done later.
*
* These macros are safe to use on arguments with side effects.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_DELETE_ELEMENT(ptr, at, count) \
virDeleteElementsN(&(ptr), sizeof(*(ptr)), at, &(count), 1, false)
# define VIR_DELETE_ELEMENT_INPLACE(ptr, at, count) \
virDeleteElementsN(&(ptr), sizeof(*(ptr)), at, &(count), 1, true)
/**
* VIR_ALLOC_VAR_OVERSIZED:
* @M: size of base structure
* @N: number of array elements in trailing array
* @S: size of trailing array elements
*
* Check to make sure that the requested allocation will not cause
* arithmetic overflow in the allocation size. The check is
* essentially the same as that in gnulib's xalloc_oversized.
*/
# define VIR_ALLOC_VAR_OVERSIZED(M, N, S) ((((size_t)-1) - (M)) / (S) < (N))
/**
* VIR_ALLOC_VAR:
* @ptr: pointer to hold address of allocated memory
* @type: element type of trailing array
* @count: number of array elements to allocate
*
* Allocate sizeof(*ptr) bytes plus an array of 'count' elements, each
* sizeof('type'). This sort of allocation is useful for receiving
* the data of certain ioctls and other APIs which return a struct in
* which the last element is an array of undefined length. The caller
* of this type of API is expected to know the length of the array
* that will be returned and allocate a suitable buffer to contain the
* returned data. C99 refers to these variable length objects as
* structs containing flexible array members.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure (with OOM error reported), 0 on success
*/
# define VIR_ALLOC_VAR(ptr, type, count) \
virAllocVar(&(ptr), sizeof(*(ptr)), sizeof(type), (count), true, \
VIR_FROM_THIS, __FILE__, __FUNCTION__, __LINE__)
/**
* VIR_ALLOC_VAR_QUIET:
* @ptr: pointer to hold address of allocated memory
* @type: element type of trailing array
* @count: number of array elements to allocate
*
* Allocate sizeof(*ptr) bytes plus an array of 'count' elements, each
* sizeof('type'). This sort of allocation is useful for receiving
* the data of certain ioctls and other APIs which return a struct in
* which the last element is an array of undefined length. The caller
* of this type of API is expected to know the length of the array
* that will be returned and allocate a suitable buffer to contain the
* returned data. C99 refers to these variable length objects as
* structs containing flexible array members.
*
* This macro is safe to use on arguments with side effects.
*
* Returns -1 on failure, 0 on success
*/
# define VIR_ALLOC_VAR_QUIET(ptr, type, count) \
virAllocVar(&(ptr), sizeof(*(ptr)), sizeof(type), (count), false, 0, NULL, NULL, 0)
/**
* VIR_FREE:
* @ptr: pointer holding address to be freed
*
* Free the memory stored in 'ptr' and update to point
* to NULL.
*
* This macro is safe to use on arguments with side effects.
*/
/* The ternary ensures that ptr is a non-const pointer and not an
* integer type, all while evaluating ptr only once. This gives us
* extra compiler safety when compiling under gcc.
*/
# define VIR_FREE(ptr) virFree(1 ? (void *) &(ptr) : (ptr))
/**
* VIR_DISPOSE_N:
* @ptr: pointer holding address to be cleared and freed
* @count: count of elements in @ptr
*
* Clear the memory of the array of elemets pointed to by 'ptr' of 'count'
* elements and free it. Update the pointer/count to NULL/0.
*
* This macro is safe to use on arguments with side effects.
*/
# define VIR_DISPOSE_N(ptr, count) virDispose(1 ? (void *) &(ptr) : (ptr), 0, \
sizeof(*(ptr)), &(count))
/**
* VIR_DISPOSE_STRING:
* @ptr: pointer to a string to be cleared and freed
*
* Clears the string and frees the corresponding memory.
*
* This macro is not safe to be used on arguments with side effects.
*/
# define VIR_DISPOSE_STRING(ptr) virDispose(1 ? (void *) &(ptr) : (ptr), \
(ptr) ? strlen((ptr)) : 0, 1, NULL)
/**
* VIR_DISPOSE:
* @ptr: pointer to memory to be cleared and freed
*
* Clears and frees the corresponding memory.
*
* This macro is safe to be used on arguments with side effects.
*/
# define VIR_DISPOSE(ptr) virDispose(1 ? (void *) &(ptr) : (ptr), 1, \
sizeof(*(ptr)), NULL)
void virAllocTestInit(void);
int virAllocTestCount(void);
void virAllocTestOOM(int n, int m);
void virAllocTestHook(void (*func)(int, void*), void *data);
# define VIR_AUTOPTR_FUNC_NAME(type) type##AutoPtrFree
/**
* VIR_DEFINE_AUTOPTR_FUNC:
* @type: type of the variable to be freed automatically
* @func: cleanup function to be automatically called
*
* This macro defines a function for automatic freeing of
* resources allocated to a variable of type @type. This newly
* defined function works as a necessary wrapper around @func.
*/
# define VIR_DEFINE_AUTOPTR_FUNC(type, func) \
static inline void VIR_AUTOPTR_FUNC_NAME(type)(type **_ptr) \
{ \
if (*_ptr) \
(func)(*_ptr); \
*_ptr = NULL; \
} \
/**
* VIR_AUTOFREE:
* @type: type of the variable to be freed automatically
*
* Macro to automatically free the memory allocated to
* the variable declared with it by calling virFree
* when the variable goes out of scope.
*/
# define VIR_AUTOFREE(type) __attribute__((cleanup(virFree))) type
/**
* VIR_AUTOPTR:
* @type: type of the variable to be freed automatically
*
* Macro to automatically free the memory allocated to
* the variable declared with it by calling the function
* defined by VIR_DEFINE_AUTOPTR_FUNC when the variable
* goes out of scope.
*/
# define VIR_AUTOPTR(type) \
__attribute__((cleanup(VIR_AUTOPTR_FUNC_NAME(type)))) type *
#endif /* __VIR_MEMORY_H_ */