passt: Relicense to GPL 2.0, or any later version
In practical terms, passt doesn't benefit from the additional
protection offered by the AGPL over the GPL, because it's not
suitable to be executed over a computer network.
Further, restricting the distribution under the version 3 of the GPL
wouldn't provide any practical advantage either, as long as the passt
codebase is concerned, and might cause unnecessary compatibility
dilemmas.
Change licensing terms to the GNU General Public License Version 2,
or any later version, with written permission from all current and
past contributors, namely: myself, David Gibson, Laine Stump, Andrea
Bolognani, Paul Holzinger, Richard W.M. Jones, Chris Kuhn, Florian
Weimer, Giuseppe Scrivano, Stefan Hajnoczi, and Vasiliy Ulyanov.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-04-05 18:11:44 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-or-later
|
2021-10-19 10:43:28 +00:00
|
|
|
* Copyright (c) 2021 Red Hat GmbH
|
|
|
|
* Author: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
*/
|
|
|
|
|
2022-03-25 23:05:31 +00:00
|
|
|
#ifndef PASST_H
|
|
|
|
#define PASST_H
|
|
|
|
|
2021-05-21 09:14:51 +00:00
|
|
|
#define UNIX_SOCK_MAX 100
|
|
|
|
#define UNIX_SOCK_PATH "/tmp/passt_%i.socket"
|
2020-07-20 14:27:43 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
union epoll_ref;
|
2021-04-30 12:52:18 +00:00
|
|
|
|
2022-11-30 04:13:06 +00:00
|
|
|
#include <stdbool.h>
|
2023-08-01 03:36:47 +00:00
|
|
|
#include <assert.h>
|
|
|
|
#include <sys/epoll.h>
|
2022-11-30 04:13:06 +00:00
|
|
|
|
2023-11-07 01:40:15 +00:00
|
|
|
#include "pif.h"
|
treewide: Packet abstraction with mandatory boundary checks
Implement a packet abstraction providing boundary and size checks
based on packet descriptors: packets stored in a buffer can be queued
into a pool (without storage of its own), and data can be retrieved
referring to an index in the pool, specifying offset and length.
Checks ensure data is not read outside the boundaries of buffer and
descriptors, and that packets added to a pool are within the buffer
range with valid offset and indices.
This implies a wider rework: usage of the "queueing" part of the
abstraction mostly affects tap_handler_{passt,pasta}() functions and
their callees, while the "fetching" part affects all the guest or tap
facing implementations: TCP, UDP, ICMP, ARP, NDP, DHCP and DHCPv6
handlers.
Suggested-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-03-25 12:02:47 +00:00
|
|
|
#include "packet.h"
|
2024-07-18 05:26:27 +00:00
|
|
|
#include "siphash.h"
|
|
|
|
#include "ip.h"
|
|
|
|
#include "inany.h"
|
flow,tcp: Use epoll_ref type including flow and side
Currently TCP uses the 'flow' epoll_ref field for both connected
sockets and timers, which consists of just the index of the relevant
flow (connection).
This is just fine for timers, for while it obviously works, it's
subtly incomplete for sockets on spliced connections. In that case we
want to know which side of the connection the event is occurring on as
well as which connection. At present, we deduce that information by
looking at the actual fd, and comparing it to the fds of the sockets
on each side.
When we use the flow table for more things, we expect more cases where
something will need to know a specific side of a specific flow for an
event, but nothing more.
Therefore add a new 'flowside' epoll_ref field, with exactly that
information. We use it for TCP connected sockets. This allows us to
directly know the side for spliced connections. For "tap"
connections, it's pretty meaningless, since the side is always the
socket side. It still makes logical sense though, and it may become
important for future flow table work.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-30 02:02:18 +00:00
|
|
|
#include "flow.h"
|
2021-03-17 09:57:44 +00:00
|
|
|
#include "icmp.h"
|
2024-02-28 11:25:20 +00:00
|
|
|
#include "fwd.h"
|
2021-03-17 09:57:41 +00:00
|
|
|
#include "tcp.h"
|
passt: Spare some syscalls, add some optimisations from profiling
Avoid a bunch of syscalls on forwarding paths by:
- storing minimum and maximum file descriptor numbers for each
protocol, fall back to SO_PROTOCOL query only on overlaps
- allocating a larger receive buffer -- this can result in more
coalesced packets than sendmmsg() can take (UIO_MAXIOV, i.e. 1024),
so make sure we don't exceed that within a single call to protocol
tap handlers
- nesting the handling loop in tap_handler() in the receive loop,
so that we have better chances of filling our receive buffer in
fewer calls
- skipping the recvfrom() in the UDP handler on EPOLLERR -- there's
nothing to be done in that case
and while at it:
- restore the 20ms timer interval for periodic (TCP) events, I
accidentally changed that to 100ms in an earlier commit
- attempt using SO_ZEROCOPY for UDP -- if it's not available,
sendmmsg() will succeed anyway
- fix the handling of the status code from sendmmsg(), if it fails,
we'll try to discard the first message, hence return 1 from the
UDP handler
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-23 20:22:37 +00:00
|
|
|
#include "udp.h"
|
vhost-user: add vhost-user
add virtio and vhost-user functions to connect with QEMU.
$ ./passt --vhost-user
and
# qemu-system-x86_64 ... -m 4G \
-object memory-backend-memfd,id=memfd0,share=on,size=4G \
-numa node,memdev=memfd0 \
-chardev socket,id=chr0,path=/tmp/passt_1.socket \
-netdev vhost-user,id=netdev0,chardev=chr0 \
-device virtio-net,mac=9a:2b:2c:2d:2e:2f,netdev=netdev0 \
...
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[sbrivio: as suggested by lvivier, include <netinet/if_ether.h>
before including <linux/if_ether.h> as C libraries such as musl
__UAPI_DEF_ETHHDR in <netinet/if_ether.h> if they already have
a definition of struct ethhdr]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 16:43:34 +00:00
|
|
|
#include "vhost_user.h"
|
2021-03-17 09:57:41 +00:00
|
|
|
|
2024-08-21 04:20:14 +00:00
|
|
|
/* Default address for our end on the tap interface. Bit 0 of byte 0 must be 0
|
|
|
|
* (unicast) and bit 1 of byte 1 must be 1 (locally administered). Otherwise
|
|
|
|
* it's arbitrary.
|
|
|
|
*/
|
|
|
|
#define MAC_OUR_LAA \
|
|
|
|
((uint8_t [ETH_ALEN]){0x9a, 0x55, 0x9a, 0x55, 0x9a, 0x55})
|
|
|
|
|
2023-08-11 05:12:21 +00:00
|
|
|
/**
|
|
|
|
* union epoll_ref - Breakdown of reference for epoll fd bookkeeping
|
|
|
|
* @type: Type of fd (tells us what to do with events)
|
|
|
|
* @fd: File descriptor number (implies < 2^24 total descriptors)
|
2023-11-30 02:02:16 +00:00
|
|
|
* @flow: Index of the flow this fd is linked to
|
|
|
|
* @tcp_listen: TCP-specific reference part for listening sockets
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @udp: UDP-specific reference part
|
|
|
|
* @icmp: ICMP-specific reference part
|
|
|
|
* @data: Data handled by protocol handlers
|
2024-02-15 22:24:32 +00:00
|
|
|
* @nsdir_fd: netns dirfd for fallback timer checking if namespace is gone
|
vhost-user: add vhost-user
add virtio and vhost-user functions to connect with QEMU.
$ ./passt --vhost-user
and
# qemu-system-x86_64 ... -m 4G \
-object memory-backend-memfd,id=memfd0,share=on,size=4G \
-numa node,memdev=memfd0 \
-chardev socket,id=chr0,path=/tmp/passt_1.socket \
-netdev vhost-user,id=netdev0,chardev=chr0 \
-device virtio-net,mac=9a:2b:2c:2d:2e:2f,netdev=netdev0 \
...
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[sbrivio: as suggested by lvivier, include <netinet/if_ether.h>
before including <linux/if_ether.h> as C libraries such as musl
__UAPI_DEF_ETHHDR in <netinet/if_ether.h> if they already have
a definition of struct ethhdr]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 16:43:34 +00:00
|
|
|
* @queue: vhost-user queue index for this fd
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @u64: Opaque reference for epoll_ctl() and epoll_wait()
|
|
|
|
*/
|
|
|
|
union epoll_ref {
|
|
|
|
struct {
|
2023-08-11 05:12:21 +00:00
|
|
|
enum epoll_type type:8;
|
|
|
|
#define FD_REF_BITS 24
|
2023-11-30 02:02:11 +00:00
|
|
|
#define FD_REF_MAX ((int)MAX_FROM_BITS(FD_REF_BITS))
|
2023-08-11 05:12:21 +00:00
|
|
|
int32_t fd:FD_REF_BITS;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
union {
|
2023-11-30 02:02:16 +00:00
|
|
|
uint32_t flow;
|
flow,tcp: Use epoll_ref type including flow and side
Currently TCP uses the 'flow' epoll_ref field for both connected
sockets and timers, which consists of just the index of the relevant
flow (connection).
This is just fine for timers, for while it obviously works, it's
subtly incomplete for sockets on spliced connections. In that case we
want to know which side of the connection the event is occurring on as
well as which connection. At present, we deduce that information by
looking at the actual fd, and comparing it to the fds of the sockets
on each side.
When we use the flow table for more things, we expect more cases where
something will need to know a specific side of a specific flow for an
event, but nothing more.
Therefore add a new 'flowside' epoll_ref field, with exactly that
information. We use it for TCP connected sockets. This allows us to
directly know the side for spliced connections. For "tap"
connections, it's pretty meaningless, since the side is always the
socket side. It still makes logical sense though, and it may become
important for future flow table work.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-30 02:02:18 +00:00
|
|
|
flow_sidx_t flowside;
|
2023-08-11 05:12:27 +00:00
|
|
|
union tcp_listen_epoll_ref tcp_listen;
|
2024-07-18 05:26:53 +00:00
|
|
|
union udp_listen_epoll_ref udp;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
uint32_t data;
|
2024-02-15 22:24:32 +00:00
|
|
|
int nsdir_fd;
|
vhost-user: add vhost-user
add virtio and vhost-user functions to connect with QEMU.
$ ./passt --vhost-user
and
# qemu-system-x86_64 ... -m 4G \
-object memory-backend-memfd,id=memfd0,share=on,size=4G \
-numa node,memdev=memfd0 \
-chardev socket,id=chr0,path=/tmp/passt_1.socket \
-netdev vhost-user,id=netdev0,chardev=chr0 \
-device virtio-net,mac=9a:2b:2c:2d:2e:2f,netdev=netdev0 \
...
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[sbrivio: as suggested by lvivier, include <netinet/if_ether.h>
before including <linux/if_ether.h> as C libraries such as musl
__UAPI_DEF_ETHHDR in <netinet/if_ether.h> if they already have
a definition of struct ethhdr]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 16:43:34 +00:00
|
|
|
int queue;
|
2023-08-01 03:36:46 +00:00
|
|
|
};
|
|
|
|
};
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
uint64_t u64;
|
|
|
|
};
|
2023-08-01 03:36:47 +00:00
|
|
|
static_assert(sizeof(union epoll_ref) <= sizeof(union epoll_data),
|
|
|
|
"epoll_ref must have same size as epoll_data");
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-09-26 21:19:40 +00:00
|
|
|
#define TAP_BUF_BYTES \
|
2022-03-28 14:56:01 +00:00
|
|
|
ROUND_DOWN(((ETH_MAX_MTU + sizeof(uint32_t)) * 128), PAGE_SIZE)
|
2021-09-09 13:08:31 +00:00
|
|
|
#define TAP_MSGS \
|
|
|
|
DIV_ROUND_UP(TAP_BUF_BYTES, ETH_ZLEN - 2 * ETH_ALEN + sizeof(uint32_t))
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
#define PKT_BUF_BYTES MAX(TAP_BUF_BYTES, 0)
|
|
|
|
extern char pkt_buf [PKT_BUF_BYTES];
|
|
|
|
|
2023-08-11 05:12:21 +00:00
|
|
|
extern char *epoll_type_str[];
|
|
|
|
#define EPOLL_TYPE_STR(n) \
|
2024-01-16 00:50:37 +00:00
|
|
|
(((uint8_t)(n) < EPOLL_NUM_TYPES && epoll_type_str[(n)]) ? \
|
2023-08-11 05:12:21 +00:00
|
|
|
epoll_type_str[(n)] : "?")
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
dhcp, ndp, dhcpv6: Support for multiple DNS servers, search list
Add support for a variable amount of DNS servers, including zero,
from /etc/resolv.conf, in DHCP, NDP and DHCPv6 implementations.
Introduce support for domain search list for DHCP (RFC 3397),
NDP (RFC 8106), and DHCPv6 (RFC 3646), also sourced from
/etc/resolv.conf.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-05-21 09:14:47 +00:00
|
|
|
#include <resolv.h> /* For MAXNS below */
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
/**
|
|
|
|
* struct fqdn - Representation of fully-qualified domain name
|
|
|
|
* @n: Domain name string
|
|
|
|
*/
|
dhcp, ndp, dhcpv6: Support for multiple DNS servers, search list
Add support for a variable amount of DNS servers, including zero,
from /etc/resolv.conf, in DHCP, NDP and DHCPv6 implementations.
Introduce support for domain search list for DHCP (RFC 3397),
NDP (RFC 8106), and DHCPv6 (RFC 3646), also sourced from
/etc/resolv.conf.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-05-21 09:14:47 +00:00
|
|
|
struct fqdn {
|
|
|
|
char n[NS_MAXDNAME];
|
|
|
|
};
|
|
|
|
|
2021-05-21 09:14:51 +00:00
|
|
|
#include <net/if.h>
|
2021-08-12 13:42:43 +00:00
|
|
|
#include <linux/un.h>
|
2021-05-21 09:14:51 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
enum passt_modes {
|
|
|
|
MODE_PASST,
|
|
|
|
MODE_PASTA,
|
vhost-user: add vhost-user
add virtio and vhost-user functions to connect with QEMU.
$ ./passt --vhost-user
and
# qemu-system-x86_64 ... -m 4G \
-object memory-backend-memfd,id=memfd0,share=on,size=4G \
-numa node,memdev=memfd0 \
-chardev socket,id=chr0,path=/tmp/passt_1.socket \
-netdev vhost-user,id=netdev0,chardev=chr0 \
-device virtio-net,mac=9a:2b:2c:2d:2e:2f,netdev=netdev0 \
...
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[sbrivio: as suggested by lvivier, include <netinet/if_ether.h>
before including <linux/if_ether.h> as C libraries such as musl
__UAPI_DEF_ETHHDR in <netinet/if_ether.h> if they already have
a definition of struct ethhdr]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 16:43:34 +00:00
|
|
|
MODE_VU,
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
};
|
|
|
|
|
2022-07-22 05:31:18 +00:00
|
|
|
/**
|
|
|
|
* struct ip4_ctx - IPv4 execution context
|
2024-08-12 09:53:53 +00:00
|
|
|
* @addr: IPv4 address assigned to guest
|
2022-07-22 05:31:18 +00:00
|
|
|
* @addr_seen: Latest IPv4 address seen as source from tap
|
2022-11-04 03:10:33 +00:00
|
|
|
* @prefixlen: IPv4 prefix length (netmask)
|
2024-08-21 04:20:15 +00:00
|
|
|
* @guest_gw: IPv4 gateway as seen by the guest
|
|
|
|
* @map_host_loopback: Outbound connections to this address are NATted to the
|
|
|
|
* host's 127.0.0.1
|
2024-08-21 04:20:19 +00:00
|
|
|
* @map_guest_addr: Outbound connections to this address are NATted to the
|
|
|
|
* guest's assigned address
|
2024-05-01 06:53:47 +00:00
|
|
|
* @dns: DNS addresses for DHCP, zero-terminated
|
|
|
|
* @dns_match: Forward DNS query if sent to this address
|
2024-08-21 04:20:13 +00:00
|
|
|
* @our_tap_addr: IPv4 address for passt's use on tap
|
2024-05-01 06:53:47 +00:00
|
|
|
* @dns_host: Use this DNS on the host for forwarding
|
conf, icmp, tcp, udp: Add options to bind to outbound address and interface
I didn't notice earlier: libslirp (and slirp4netns) supports binding
outbound sockets to specific IPv4 and IPv6 addresses, to force the
source addresse selection. If we want to claim feature parity, we
should implement that as well.
Further, Podman supports specifying outbound interfaces as well, but
this is simply done by resolving the primary address for an interface
when the network back-end is started. However, since kernel version
5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for
non-root users"), we can actually bind to a specific interface name,
which doesn't need to be validated in advance.
Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses,
and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets
to given interfaces.
Given that it probably makes little sense to select addresses and
routes from interfaces different than the ones given for outbound
sockets, also assign those as "template" interfaces, by default,
unless explicitly overridden by '-i'.
For ICMP and UDP, we call sock_l4() to open outbound sockets, as we
already needed to bind to given ports or echo identifiers, and we
can bind() a socket only once: there, pass address (if any) and
interface (if any) for the existing bind() and setsockopt() calls.
For TCP, in general, we wouldn't otherwise bind sockets. Add a
specific helper to do that.
For UDP outbound sockets, we need to know if the final destination
of the socket is a loopback address, before we decide whether it
makes sense to bind the socket at all: move the block mangling the
address destination before the creation of the socket in the IPv4
path. This was already the case for the IPv6 path.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 02:29:51 +00:00
|
|
|
* @addr_out: Optional source address for outbound traffic
|
|
|
|
* @ifname_out: Optional interface name to bind outbound sockets to
|
conf, pasta: Make -g and -a skip route/addresses copy for matching IP version only
Paul reports that setting IPv4 address and gateway manually, using
--address and --gateway, causes pasta to fail inserting IPv6 routes
in a setup where multiple, inter-dependent IPv6 routes are present
on the host.
That's because, currently, any -g option implies --no-copy-routes
altogether, and any -a implies --no-copy-addrs.
Limit this implication to the matching IP version, instead, by having
two copies of no_copy_routes and no_copy_addrs in the context
structure, separately for IPv4 and IPv6.
While at it, change them to 'bool': we had them as 'int' because
getopt_long() used to set them directly, but it hasn't been the case
for a while already.
Reported-by: Paul Holzinger <pholzing@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-08-06 17:24:40 +00:00
|
|
|
* @no_copy_routes: Don't copy all routes when configuring target namespace
|
|
|
|
* @no_copy_addrs: Don't copy all addresses when configuring namespace
|
2022-07-22 05:31:18 +00:00
|
|
|
*/
|
|
|
|
struct ip4_ctx {
|
2024-08-21 04:20:10 +00:00
|
|
|
/* PIF_TAP addresses */
|
2022-11-04 03:10:35 +00:00
|
|
|
struct in_addr addr;
|
|
|
|
struct in_addr addr_seen;
|
2022-11-04 03:10:33 +00:00
|
|
|
int prefix_len;
|
2024-08-21 04:20:15 +00:00
|
|
|
struct in_addr guest_gw;
|
|
|
|
struct in_addr map_host_loopback;
|
2024-08-21 04:20:19 +00:00
|
|
|
struct in_addr map_guest_addr;
|
2022-11-04 03:10:35 +00:00
|
|
|
struct in_addr dns[MAXNS + 1];
|
conf, udp: Drop mostly duplicated dns_send arrays, rename related fields
Given that we use just the first valid DNS resolver address
configured, or read from resolv.conf(5) on the host, to forward DNS
queries to, in case --dns-forward is used, we don't need to duplicate
dns[] to dns_send[]:
- rename dns_send[] back to dns[]: those are the resolvers we
advertise to the guest/container
- for forwarding purposes, instead of dns[], use a single field (for
each protocol version): dns_host
- and rename dns_fwd to dns_match, so that it's clear this is the
address we are matching DNS queries against, to decide if they need
to be forwarded
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2022-11-10 19:30:03 +00:00
|
|
|
struct in_addr dns_match;
|
2024-08-21 04:20:13 +00:00
|
|
|
struct in_addr our_tap_addr;
|
conf, icmp, tcp, udp: Add options to bind to outbound address and interface
I didn't notice earlier: libslirp (and slirp4netns) supports binding
outbound sockets to specific IPv4 and IPv6 addresses, to force the
source addresse selection. If we want to claim feature parity, we
should implement that as well.
Further, Podman supports specifying outbound interfaces as well, but
this is simply done by resolving the primary address for an interface
when the network back-end is started. However, since kernel version
5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for
non-root users"), we can actually bind to a specific interface name,
which doesn't need to be validated in advance.
Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses,
and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets
to given interfaces.
Given that it probably makes little sense to select addresses and
routes from interfaces different than the ones given for outbound
sockets, also assign those as "template" interfaces, by default,
unless explicitly overridden by '-i'.
For ICMP and UDP, we call sock_l4() to open outbound sockets, as we
already needed to bind to given ports or echo identifiers, and we
can bind() a socket only once: there, pass address (if any) and
interface (if any) for the existing bind() and setsockopt() calls.
For TCP, in general, we wouldn't otherwise bind sockets. Add a
specific helper to do that.
For UDP outbound sockets, we need to know if the final destination
of the socket is a loopback address, before we decide whether it
makes sense to bind the socket at all: move the block mangling the
address destination before the creation of the socket in the IPv4
path. This was already the case for the IPv6 path.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 02:29:51 +00:00
|
|
|
|
2024-08-21 04:20:10 +00:00
|
|
|
/* PIF_HOST addresses */
|
|
|
|
struct in_addr dns_host;
|
conf, icmp, tcp, udp: Add options to bind to outbound address and interface
I didn't notice earlier: libslirp (and slirp4netns) supports binding
outbound sockets to specific IPv4 and IPv6 addresses, to force the
source addresse selection. If we want to claim feature parity, we
should implement that as well.
Further, Podman supports specifying outbound interfaces as well, but
this is simply done by resolving the primary address for an interface
when the network back-end is started. However, since kernel version
5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for
non-root users"), we can actually bind to a specific interface name,
which doesn't need to be validated in advance.
Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses,
and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets
to given interfaces.
Given that it probably makes little sense to select addresses and
routes from interfaces different than the ones given for outbound
sockets, also assign those as "template" interfaces, by default,
unless explicitly overridden by '-i'.
For ICMP and UDP, we call sock_l4() to open outbound sockets, as we
already needed to bind to given ports or echo identifiers, and we
can bind() a socket only once: there, pass address (if any) and
interface (if any) for the existing bind() and setsockopt() calls.
For TCP, in general, we wouldn't otherwise bind sockets. Add a
specific helper to do that.
For UDP outbound sockets, we need to know if the final destination
of the socket is a loopback address, before we decide whether it
makes sense to bind the socket at all: move the block mangling the
address destination before the creation of the socket in the IPv4
path. This was already the case for the IPv6 path.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 02:29:51 +00:00
|
|
|
struct in_addr addr_out;
|
2024-08-21 04:20:10 +00:00
|
|
|
|
conf, icmp, tcp, udp: Add options to bind to outbound address and interface
I didn't notice earlier: libslirp (and slirp4netns) supports binding
outbound sockets to specific IPv4 and IPv6 addresses, to force the
source addresse selection. If we want to claim feature parity, we
should implement that as well.
Further, Podman supports specifying outbound interfaces as well, but
this is simply done by resolving the primary address for an interface
when the network back-end is started. However, since kernel version
5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for
non-root users"), we can actually bind to a specific interface name,
which doesn't need to be validated in advance.
Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses,
and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets
to given interfaces.
Given that it probably makes little sense to select addresses and
routes from interfaces different than the ones given for outbound
sockets, also assign those as "template" interfaces, by default,
unless explicitly overridden by '-i'.
For ICMP and UDP, we call sock_l4() to open outbound sockets, as we
already needed to bind to given ports or echo identifiers, and we
can bind() a socket only once: there, pass address (if any) and
interface (if any) for the existing bind() and setsockopt() calls.
For TCP, in general, we wouldn't otherwise bind sockets. Add a
specific helper to do that.
For UDP outbound sockets, we need to know if the final destination
of the socket is a loopback address, before we decide whether it
makes sense to bind the socket at all: move the block mangling the
address destination before the creation of the socket in the IPv4
path. This was already the case for the IPv6 path.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 02:29:51 +00:00
|
|
|
char ifname_out[IFNAMSIZ];
|
conf, pasta: Make -g and -a skip route/addresses copy for matching IP version only
Paul reports that setting IPv4 address and gateway manually, using
--address and --gateway, causes pasta to fail inserting IPv6 routes
in a setup where multiple, inter-dependent IPv6 routes are present
on the host.
That's because, currently, any -g option implies --no-copy-routes
altogether, and any -a implies --no-copy-addrs.
Limit this implication to the matching IP version, instead, by having
two copies of no_copy_routes and no_copy_addrs in the context
structure, separately for IPv4 and IPv6.
While at it, change them to 'bool': we had them as 'int' because
getopt_long() used to set them directly, but it hasn't been the case
for a while already.
Reported-by: Paul Holzinger <pholzing@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-08-06 17:24:40 +00:00
|
|
|
|
|
|
|
bool no_copy_routes;
|
|
|
|
bool no_copy_addrs;
|
2022-07-22 05:31:18 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct ip6_ctx - IPv6 execution context
|
2024-08-12 09:53:53 +00:00
|
|
|
* @addr: IPv6 address assigned to guest
|
2022-07-22 05:31:18 +00:00
|
|
|
* @addr_seen: Latest IPv6 global/site address seen as source from tap
|
|
|
|
* @addr_ll_seen: Latest IPv6 link-local address seen as source from tap
|
2024-08-21 04:20:15 +00:00
|
|
|
* @guest_gw: IPv6 gateway as seen by the guest
|
|
|
|
* @map_host_loopback: Outbound connections to this address are NATted to the
|
|
|
|
* host's [::1]
|
2024-08-21 04:20:19 +00:00
|
|
|
* @map_guest_addr: Outbound connections to this address are NATted to the
|
|
|
|
* guest's assigned address
|
conf, udp: Drop mostly duplicated dns_send arrays, rename related fields
Given that we use just the first valid DNS resolver address
configured, or read from resolv.conf(5) on the host, to forward DNS
queries to, in case --dns-forward is used, we don't need to duplicate
dns[] to dns_send[]:
- rename dns_send[] back to dns[]: those are the resolvers we
advertise to the guest/container
- for forwarding purposes, instead of dns[], use a single field (for
each protocol version): dns_host
- and rename dns_fwd to dns_match, so that it's clear this is the
address we are matching DNS queries against, to decide if they need
to be forwarded
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2022-11-10 19:30:03 +00:00
|
|
|
* @dns: DNS addresses for DHCPv6 and NDP, zero-terminated
|
|
|
|
* @dns_match: Forward DNS query if sent to this address
|
2024-08-21 04:20:10 +00:00
|
|
|
* @our_tap_ll: Link-local IPv6 address for passt's use on tap
|
conf, udp: Drop mostly duplicated dns_send arrays, rename related fields
Given that we use just the first valid DNS resolver address
configured, or read from resolv.conf(5) on the host, to forward DNS
queries to, in case --dns-forward is used, we don't need to duplicate
dns[] to dns_send[]:
- rename dns_send[] back to dns[]: those are the resolvers we
advertise to the guest/container
- for forwarding purposes, instead of dns[], use a single field (for
each protocol version): dns_host
- and rename dns_fwd to dns_match, so that it's clear this is the
address we are matching DNS queries against, to decide if they need
to be forwarded
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2022-11-10 19:30:03 +00:00
|
|
|
* @dns_host: Use this DNS on the host for forwarding
|
conf, icmp, tcp, udp: Add options to bind to outbound address and interface
I didn't notice earlier: libslirp (and slirp4netns) supports binding
outbound sockets to specific IPv4 and IPv6 addresses, to force the
source addresse selection. If we want to claim feature parity, we
should implement that as well.
Further, Podman supports specifying outbound interfaces as well, but
this is simply done by resolving the primary address for an interface
when the network back-end is started. However, since kernel version
5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for
non-root users"), we can actually bind to a specific interface name,
which doesn't need to be validated in advance.
Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses,
and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets
to given interfaces.
Given that it probably makes little sense to select addresses and
routes from interfaces different than the ones given for outbound
sockets, also assign those as "template" interfaces, by default,
unless explicitly overridden by '-i'.
For ICMP and UDP, we call sock_l4() to open outbound sockets, as we
already needed to bind to given ports or echo identifiers, and we
can bind() a socket only once: there, pass address (if any) and
interface (if any) for the existing bind() and setsockopt() calls.
For TCP, in general, we wouldn't otherwise bind sockets. Add a
specific helper to do that.
For UDP outbound sockets, we need to know if the final destination
of the socket is a loopback address, before we decide whether it
makes sense to bind the socket at all: move the block mangling the
address destination before the creation of the socket in the IPv4
path. This was already the case for the IPv6 path.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 02:29:51 +00:00
|
|
|
* @addr_out: Optional source address for outbound traffic
|
|
|
|
* @ifname_out: Optional interface name to bind outbound sockets to
|
conf, pasta: Make -g and -a skip route/addresses copy for matching IP version only
Paul reports that setting IPv4 address and gateway manually, using
--address and --gateway, causes pasta to fail inserting IPv6 routes
in a setup where multiple, inter-dependent IPv6 routes are present
on the host.
That's because, currently, any -g option implies --no-copy-routes
altogether, and any -a implies --no-copy-addrs.
Limit this implication to the matching IP version, instead, by having
two copies of no_copy_routes and no_copy_addrs in the context
structure, separately for IPv4 and IPv6.
While at it, change them to 'bool': we had them as 'int' because
getopt_long() used to set them directly, but it hasn't been the case
for a while already.
Reported-by: Paul Holzinger <pholzing@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-08-06 17:24:40 +00:00
|
|
|
* @no_copy_routes: Don't copy all routes when configuring target namespace
|
|
|
|
* @no_copy_addrs: Don't copy all addresses when configuring namespace
|
2022-07-22 05:31:18 +00:00
|
|
|
*/
|
|
|
|
struct ip6_ctx {
|
2024-08-21 04:20:10 +00:00
|
|
|
/* PIF_TAP addresses */
|
2022-07-22 05:31:18 +00:00
|
|
|
struct in6_addr addr;
|
|
|
|
struct in6_addr addr_seen;
|
|
|
|
struct in6_addr addr_ll_seen;
|
2024-08-21 04:20:15 +00:00
|
|
|
struct in6_addr guest_gw;
|
|
|
|
struct in6_addr map_host_loopback;
|
2024-08-21 04:20:19 +00:00
|
|
|
struct in6_addr map_guest_addr;
|
2022-07-22 05:31:18 +00:00
|
|
|
struct in6_addr dns[MAXNS + 1];
|
conf, udp: Drop mostly duplicated dns_send arrays, rename related fields
Given that we use just the first valid DNS resolver address
configured, or read from resolv.conf(5) on the host, to forward DNS
queries to, in case --dns-forward is used, we don't need to duplicate
dns[] to dns_send[]:
- rename dns_send[] back to dns[]: those are the resolvers we
advertise to the guest/container
- for forwarding purposes, instead of dns[], use a single field (for
each protocol version): dns_host
- and rename dns_fwd to dns_match, so that it's clear this is the
address we are matching DNS queries against, to decide if they need
to be forwarded
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2022-11-10 19:30:03 +00:00
|
|
|
struct in6_addr dns_match;
|
2024-08-21 04:20:10 +00:00
|
|
|
struct in6_addr our_tap_ll;
|
conf, icmp, tcp, udp: Add options to bind to outbound address and interface
I didn't notice earlier: libslirp (and slirp4netns) supports binding
outbound sockets to specific IPv4 and IPv6 addresses, to force the
source addresse selection. If we want to claim feature parity, we
should implement that as well.
Further, Podman supports specifying outbound interfaces as well, but
this is simply done by resolving the primary address for an interface
when the network back-end is started. However, since kernel version
5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for
non-root users"), we can actually bind to a specific interface name,
which doesn't need to be validated in advance.
Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses,
and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets
to given interfaces.
Given that it probably makes little sense to select addresses and
routes from interfaces different than the ones given for outbound
sockets, also assign those as "template" interfaces, by default,
unless explicitly overridden by '-i'.
For ICMP and UDP, we call sock_l4() to open outbound sockets, as we
already needed to bind to given ports or echo identifiers, and we
can bind() a socket only once: there, pass address (if any) and
interface (if any) for the existing bind() and setsockopt() calls.
For TCP, in general, we wouldn't otherwise bind sockets. Add a
specific helper to do that.
For UDP outbound sockets, we need to know if the final destination
of the socket is a loopback address, before we decide whether it
makes sense to bind the socket at all: move the block mangling the
address destination before the creation of the socket in the IPv4
path. This was already the case for the IPv6 path.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 02:29:51 +00:00
|
|
|
|
2024-08-21 04:20:10 +00:00
|
|
|
/* PIF_HOST addresses */
|
|
|
|
struct in6_addr dns_host;
|
conf, icmp, tcp, udp: Add options to bind to outbound address and interface
I didn't notice earlier: libslirp (and slirp4netns) supports binding
outbound sockets to specific IPv4 and IPv6 addresses, to force the
source addresse selection. If we want to claim feature parity, we
should implement that as well.
Further, Podman supports specifying outbound interfaces as well, but
this is simply done by resolving the primary address for an interface
when the network back-end is started. However, since kernel version
5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for
non-root users"), we can actually bind to a specific interface name,
which doesn't need to be validated in advance.
Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses,
and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets
to given interfaces.
Given that it probably makes little sense to select addresses and
routes from interfaces different than the ones given for outbound
sockets, also assign those as "template" interfaces, by default,
unless explicitly overridden by '-i'.
For ICMP and UDP, we call sock_l4() to open outbound sockets, as we
already needed to bind to given ports or echo identifiers, and we
can bind() a socket only once: there, pass address (if any) and
interface (if any) for the existing bind() and setsockopt() calls.
For TCP, in general, we wouldn't otherwise bind sockets. Add a
specific helper to do that.
For UDP outbound sockets, we need to know if the final destination
of the socket is a loopback address, before we decide whether it
makes sense to bind the socket at all: move the block mangling the
address destination before the creation of the socket in the IPv4
path. This was already the case for the IPv6 path.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 02:29:51 +00:00
|
|
|
struct in6_addr addr_out;
|
2024-08-21 04:20:10 +00:00
|
|
|
|
conf, icmp, tcp, udp: Add options to bind to outbound address and interface
I didn't notice earlier: libslirp (and slirp4netns) supports binding
outbound sockets to specific IPv4 and IPv6 addresses, to force the
source addresse selection. If we want to claim feature parity, we
should implement that as well.
Further, Podman supports specifying outbound interfaces as well, but
this is simply done by resolving the primary address for an interface
when the network back-end is started. However, since kernel version
5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for
non-root users"), we can actually bind to a specific interface name,
which doesn't need to be validated in advance.
Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses,
and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets
to given interfaces.
Given that it probably makes little sense to select addresses and
routes from interfaces different than the ones given for outbound
sockets, also assign those as "template" interfaces, by default,
unless explicitly overridden by '-i'.
For ICMP and UDP, we call sock_l4() to open outbound sockets, as we
already needed to bind to given ports or echo identifiers, and we
can bind() a socket only once: there, pass address (if any) and
interface (if any) for the existing bind() and setsockopt() calls.
For TCP, in general, we wouldn't otherwise bind sockets. Add a
specific helper to do that.
For UDP outbound sockets, we need to know if the final destination
of the socket is a loopback address, before we decide whether it
makes sense to bind the socket at all: move the block mangling the
address destination before the creation of the socket in the IPv4
path. This was already the case for the IPv6 path.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 02:29:51 +00:00
|
|
|
char ifname_out[IFNAMSIZ];
|
conf, pasta: Make -g and -a skip route/addresses copy for matching IP version only
Paul reports that setting IPv4 address and gateway manually, using
--address and --gateway, causes pasta to fail inserting IPv6 routes
in a setup where multiple, inter-dependent IPv6 routes are present
on the host.
That's because, currently, any -g option implies --no-copy-routes
altogether, and any -a implies --no-copy-addrs.
Limit this implication to the matching IP version, instead, by having
two copies of no_copy_routes and no_copy_addrs in the context
structure, separately for IPv4 and IPv6.
While at it, change them to 'bool': we had them as 'int' because
getopt_long() used to set them directly, but it hasn't been the case
for a while already.
Reported-by: Paul Holzinger <pholzing@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-08-06 17:24:40 +00:00
|
|
|
|
|
|
|
bool no_copy_routes;
|
|
|
|
bool no_copy_addrs;
|
2022-07-22 05:31:18 +00:00
|
|
|
};
|
|
|
|
|
2022-10-06 11:23:07 +00:00
|
|
|
#include <netinet/if_ether.h>
|
|
|
|
|
2020-07-20 14:27:43 +00:00
|
|
|
/**
|
|
|
|
* struct ctx - Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @mode: Operation mode, qemu/UNIX domain socket or namespace/tap
|
2021-08-12 13:42:43 +00:00
|
|
|
* @debug: Enable debug mode
|
2022-03-14 23:59:09 +00:00
|
|
|
* @trace: Enable tracing (extra debug) mode
|
2021-08-12 13:42:43 +00:00
|
|
|
* @quiet: Don't print informational messages
|
|
|
|
* @foreground: Run in foreground, don't log to stderr by default
|
2022-03-18 23:33:46 +00:00
|
|
|
* @nofile: Maximum number of open files (ulimit -n)
|
2021-08-12 13:42:43 +00:00
|
|
|
* @sock_path: Path for UNIX domain socket
|
|
|
|
* @pcap: Path for packet capture file
|
2024-05-22 18:39:30 +00:00
|
|
|
* @pidfile: Path to PID file, empty string if not configured
|
2024-05-22 18:18:19 +00:00
|
|
|
* @pidfile_fd: File descriptor for PID file, -1 if none
|
2021-09-29 14:11:06 +00:00
|
|
|
* @pasta_netns_fd: File descriptor for network namespace in pasta mode
|
2022-02-18 15:12:11 +00:00
|
|
|
* @no_netns_quit: In pasta mode, don't exit if fs-bound namespace is gone
|
|
|
|
* @netns_base: Base name for fs-bound namespace, if any, in pasta mode
|
|
|
|
* @netns_dir: Directory of fs-bound namespace, if any, in pasta mode
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @epollfd: File descriptor for epoll instance
|
|
|
|
* @fd_tap_listen: File descriptor for listening AF_UNIX socket, if any
|
2022-11-17 18:49:34 +00:00
|
|
|
* @fd_tap: AF_UNIX socket, tuntap device, or pre-opened socket
|
2024-08-21 04:19:59 +00:00
|
|
|
* @our_tap_mac: Pasta/passt's MAC on the tap link
|
|
|
|
* @guest_mac: MAC address of guest or namespace, seen or configured
|
2023-11-30 02:02:21 +00:00
|
|
|
* @hash_secret: 128-bit secret for siphash functions
|
treewide: Introduce 'local mode' for disconnected setups
There are setups where no host interface is available or configured
at all, intentionally or not, temporarily or not, but users expect
(Podman) containers to run in any case as they did with slirp4netns,
and we're now getting reports that we broke such setups at a rather
alarming rate.
To this end, if we don't find any usable host interface, instead of
exiting:
- for IPv4, use 169.254.2.1 as guest/container address and 169.254.2.2
as default gateway
- for IPv6, don't assign any address (forcibly disable DHCPv6), and
use the *first* link-local address we observe to represent the
guest/container. Advertise fe80::1 as default gateway
- use 'tap0' as default interface name for pasta
Change ifi4 and ifi6 in struct ctx to int and accept a special -1
value meaning that no host interface was selected, but the IP family
is enabled. The fact that the kernel uses unsigned int values for
those is not an issue as 1. one can't create so many interfaces
anyway and 2. we otherwise handle those values transparently.
Fix a botched conditional in conf_print() to actually skip printing
DHCPv6 information if DHCPv6 is disabled (and skip printing NDP
information if NDP is disabled).
Link: https://github.com/containers/podman/issues/24614
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 06:57:43 +00:00
|
|
|
* @ifi4: Template interface for IPv4, -1: none, 0: IPv4 disabled
|
2022-07-22 05:31:18 +00:00
|
|
|
* @ip: IPv4 configuration
|
dhcp, ndp, dhcpv6: Support for multiple DNS servers, search list
Add support for a variable amount of DNS servers, including zero,
from /etc/resolv.conf, in DHCP, NDP and DHCPv6 implementations.
Introduce support for domain search list for DHCP (RFC 3397),
NDP (RFC 8106), and DHCPv6 (RFC 3646), also sourced from
/etc/resolv.conf.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-05-21 09:14:47 +00:00
|
|
|
* @dns_search: DNS search list
|
treewide: Introduce 'local mode' for disconnected setups
There are setups where no host interface is available or configured
at all, intentionally or not, temporarily or not, but users expect
(Podman) containers to run in any case as they did with slirp4netns,
and we're now getting reports that we broke such setups at a rather
alarming rate.
To this end, if we don't find any usable host interface, instead of
exiting:
- for IPv4, use 169.254.2.1 as guest/container address and 169.254.2.2
as default gateway
- for IPv6, don't assign any address (forcibly disable DHCPv6), and
use the *first* link-local address we observe to represent the
guest/container. Advertise fe80::1 as default gateway
- use 'tap0' as default interface name for pasta
Change ifi4 and ifi6 in struct ctx to int and accept a special -1
value meaning that no host interface was selected, but the IP family
is enabled. The fact that the kernel uses unsigned int values for
those is not an issue as 1. one can't create so many interfaces
anyway and 2. we otherwise handle those values transparently.
Fix a botched conditional in conf_print() to actually skip printing
DHCPv6 information if DHCPv6 is disabled (and skip printing NDP
information if NDP is disabled).
Link: https://github.com/containers/podman/issues/24614
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 06:57:43 +00:00
|
|
|
* @ifi6: Template interface for IPv6, -1: none, 0: IPv6 disabled
|
2022-07-22 05:31:18 +00:00
|
|
|
* @ip6: IPv6 configuration
|
2021-08-12 13:42:43 +00:00
|
|
|
* @pasta_ifn: Name of namespace interface for pasta
|
2023-05-14 17:46:39 +00:00
|
|
|
* @pasta_ifi: Index of namespace interface for pasta
|
2023-05-14 13:04:38 +00:00
|
|
|
* @pasta_conf_ns: Configure namespace after creating it
|
2021-08-12 13:42:43 +00:00
|
|
|
* @no_tcp: Disable TCP operation
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @tcp: Context for TCP protocol handler
|
2021-08-12 13:42:43 +00:00
|
|
|
* @no_tcp: Disable UDP operation
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @udp: Context for UDP protocol handler
|
2021-08-12 13:42:43 +00:00
|
|
|
* @no_icmp: Disable ICMP operation
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @icmp: Context for ICMP protocol handler
|
2021-08-12 13:42:43 +00:00
|
|
|
* @mtu: MTU passed via DHCP/NDP
|
conf, udp: Introduce basic DNS forwarding
For compatibility with libslirp/slirp4netns users: introduce a
mechanism to map, in the UDP routines, an address facing guest or
namespace to the first IPv4 or IPv6 address resulting from
configuration as resolver. This can be enabled with the new
--dns-forward option.
This implies that sourcing and using DNS addresses and search lists,
passed via command line or read from /etc/resolv.conf, is not bound
anymore to DHCP/DHCPv6/NDP usage: for example, pasta users might just
want to use addresses from /etc/resolv.conf as mapping target, while
not passing DNS options via DHCP.
Reflect this in all the involved code paths by differentiating
DHCP/DHCPv6/NDP usage from DNS configuration per se, and in the new
options --dhcp-dns, --dhcp-search for pasta, and --no-dhcp-dns,
--no-dhcp-search for passt.
This should be the last bit to enable substantial compatibility
between slirp4netns.sh and slirp4netns(1): pass the --dns-forward
option from the script too.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-18 03:03:53 +00:00
|
|
|
* @no_dns: Do not source/use DNS servers for any purpose
|
|
|
|
* @no_dns_search: Do not source/use domain search lists for any purpose
|
|
|
|
* @no_dhcp_dns: Do not assign any DNS server via DHCP/DHCPv6/NDP
|
|
|
|
* @no_dhcp_dns_search: Do not assign any DNS domain search via DHCP/DHCPv6/NDP
|
2021-08-12 13:42:43 +00:00
|
|
|
* @no_dhcp: Disable DHCP server
|
|
|
|
* @no_dhcpv6: Disable DHCPv6 server
|
|
|
|
* @no_ndp: Disable NDP handler altogether
|
|
|
|
* @no_ra: Disable router advertisements
|
2024-12-10 18:36:45 +00:00
|
|
|
* @no_splice: Disable socket splicing for inbound traffic
|
2024-10-18 01:35:56 +00:00
|
|
|
* @host_lo_to_ns_lo: Map host loopback addresses to ns loopback addresses
|
2024-10-03 04:48:32 +00:00
|
|
|
* @freebind: Allow binding of non-local addresses for forwarding
|
2021-10-05 17:27:04 +00:00
|
|
|
* @low_wmem: Low probed net.core.wmem_max
|
|
|
|
* @low_rmem: Low probed net.core.rmem_max
|
vhost-user: add vhost-user
add virtio and vhost-user functions to connect with QEMU.
$ ./passt --vhost-user
and
# qemu-system-x86_64 ... -m 4G \
-object memory-backend-memfd,id=memfd0,share=on,size=4G \
-numa node,memdev=memfd0 \
-chardev socket,id=chr0,path=/tmp/passt_1.socket \
-netdev vhost-user,id=netdev0,chardev=chr0 \
-device virtio-net,mac=9a:2b:2c:2d:2e:2f,netdev=netdev0 \
...
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[sbrivio: as suggested by lvivier, include <netinet/if_ether.h>
before including <linux/if_ether.h> as C libraries such as musl
__UAPI_DEF_ETHHDR in <netinet/if_ether.h> if they already have
a definition of struct ethhdr]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 16:43:34 +00:00
|
|
|
* @vdev: vhost-user device
|
2020-07-20 14:27:43 +00:00
|
|
|
*/
|
|
|
|
struct ctx {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
enum passt_modes mode;
|
2021-08-12 13:42:43 +00:00
|
|
|
int debug;
|
2022-03-14 23:59:09 +00:00
|
|
|
int trace;
|
2021-08-12 13:42:43 +00:00
|
|
|
int quiet;
|
|
|
|
int foreground;
|
2022-03-18 23:33:46 +00:00
|
|
|
int nofile;
|
2021-08-12 13:42:43 +00:00
|
|
|
char sock_path[UNIX_PATH_MAX];
|
|
|
|
char pcap[PATH_MAX];
|
2024-05-22 18:18:19 +00:00
|
|
|
|
2024-05-22 18:39:30 +00:00
|
|
|
char pidfile[PATH_MAX];
|
2024-05-22 18:18:19 +00:00
|
|
|
int pidfile_fd;
|
|
|
|
|
2022-10-07 02:01:56 +00:00
|
|
|
int one_off;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-09-29 14:11:06 +00:00
|
|
|
int pasta_netns_fd;
|
|
|
|
|
2022-02-18 15:12:11 +00:00
|
|
|
int no_netns_quit;
|
|
|
|
char netns_base[PATH_MAX];
|
|
|
|
char netns_dir[PATH_MAX];
|
|
|
|
|
2020-07-20 14:27:43 +00:00
|
|
|
int epollfd;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
int fd_tap_listen;
|
|
|
|
int fd_tap;
|
2024-08-21 04:19:59 +00:00
|
|
|
unsigned char our_tap_mac[ETH_ALEN];
|
|
|
|
unsigned char guest_mac[ETH_ALEN];
|
2023-11-30 02:02:21 +00:00
|
|
|
uint64_t hash_secret[2];
|
2020-07-21 08:48:24 +00:00
|
|
|
|
treewide: Introduce 'local mode' for disconnected setups
There are setups where no host interface is available or configured
at all, intentionally or not, temporarily or not, but users expect
(Podman) containers to run in any case as they did with slirp4netns,
and we're now getting reports that we broke such setups at a rather
alarming rate.
To this end, if we don't find any usable host interface, instead of
exiting:
- for IPv4, use 169.254.2.1 as guest/container address and 169.254.2.2
as default gateway
- for IPv6, don't assign any address (forcibly disable DHCPv6), and
use the *first* link-local address we observe to represent the
guest/container. Advertise fe80::1 as default gateway
- use 'tap0' as default interface name for pasta
Change ifi4 and ifi6 in struct ctx to int and accept a special -1
value meaning that no host interface was selected, but the IP family
is enabled. The fact that the kernel uses unsigned int values for
those is not an issue as 1. one can't create so many interfaces
anyway and 2. we otherwise handle those values transparently.
Fix a botched conditional in conf_print() to actually skip printing
DHCPv6 information if DHCPv6 is disabled (and skip printing NDP
information if NDP is disabled).
Link: https://github.com/containers/podman/issues/24614
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 06:57:43 +00:00
|
|
|
int ifi4;
|
2022-07-22 05:31:18 +00:00
|
|
|
struct ip4_ctx ip4;
|
dhcp, ndp, dhcpv6: Support for multiple DNS servers, search list
Add support for a variable amount of DNS servers, including zero,
from /etc/resolv.conf, in DHCP, NDP and DHCPv6 implementations.
Introduce support for domain search list for DHCP (RFC 3397),
NDP (RFC 8106), and DHCPv6 (RFC 3646), also sourced from
/etc/resolv.conf.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-05-21 09:14:47 +00:00
|
|
|
|
|
|
|
struct fqdn dns_search[MAXDNSRCH];
|
2020-07-21 08:48:24 +00:00
|
|
|
|
treewide: Introduce 'local mode' for disconnected setups
There are setups where no host interface is available or configured
at all, intentionally or not, temporarily or not, but users expect
(Podman) containers to run in any case as they did with slirp4netns,
and we're now getting reports that we broke such setups at a rather
alarming rate.
To this end, if we don't find any usable host interface, instead of
exiting:
- for IPv4, use 169.254.2.1 as guest/container address and 169.254.2.2
as default gateway
- for IPv6, don't assign any address (forcibly disable DHCPv6), and
use the *first* link-local address we observe to represent the
guest/container. Advertise fe80::1 as default gateway
- use 'tap0' as default interface name for pasta
Change ifi4 and ifi6 in struct ctx to int and accept a special -1
value meaning that no host interface was selected, but the IP family
is enabled. The fact that the kernel uses unsigned int values for
those is not an issue as 1. one can't create so many interfaces
anyway and 2. we otherwise handle those values transparently.
Fix a botched conditional in conf_print() to actually skip printing
DHCPv6 information if DHCPv6 is disabled (and skip printing NDP
information if NDP is disabled).
Link: https://github.com/containers/podman/issues/24614
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 06:57:43 +00:00
|
|
|
int ifi6;
|
2022-07-22 05:31:18 +00:00
|
|
|
struct ip6_ctx ip6;
|
2020-07-21 08:48:24 +00:00
|
|
|
|
2021-08-12 13:42:43 +00:00
|
|
|
char pasta_ifn[IF_NAMESIZE];
|
2021-10-11 10:01:31 +00:00
|
|
|
unsigned int pasta_ifi;
|
|
|
|
int pasta_conf_ns;
|
2021-03-17 09:57:41 +00:00
|
|
|
|
2021-08-12 13:42:43 +00:00
|
|
|
int no_tcp;
|
2021-03-17 09:57:41 +00:00
|
|
|
struct tcp_ctx tcp;
|
2021-08-12 13:42:43 +00:00
|
|
|
int no_udp;
|
2021-04-30 12:52:18 +00:00
|
|
|
struct udp_ctx udp;
|
2021-08-12 13:42:43 +00:00
|
|
|
int no_icmp;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct icmp_ctx icmp;
|
2021-08-12 13:42:43 +00:00
|
|
|
|
|
|
|
int mtu;
|
|
|
|
int no_dns;
|
|
|
|
int no_dns_search;
|
conf, udp: Introduce basic DNS forwarding
For compatibility with libslirp/slirp4netns users: introduce a
mechanism to map, in the UDP routines, an address facing guest or
namespace to the first IPv4 or IPv6 address resulting from
configuration as resolver. This can be enabled with the new
--dns-forward option.
This implies that sourcing and using DNS addresses and search lists,
passed via command line or read from /etc/resolv.conf, is not bound
anymore to DHCP/DHCPv6/NDP usage: for example, pasta users might just
want to use addresses from /etc/resolv.conf as mapping target, while
not passing DNS options via DHCP.
Reflect this in all the involved code paths by differentiating
DHCP/DHCPv6/NDP usage from DNS configuration per se, and in the new
options --dhcp-dns, --dhcp-search for pasta, and --no-dhcp-dns,
--no-dhcp-search for passt.
This should be the last bit to enable substantial compatibility
between slirp4netns.sh and slirp4netns(1): pass the --dns-forward
option from the script too.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-18 03:03:53 +00:00
|
|
|
int no_dhcp_dns;
|
|
|
|
int no_dhcp_dns_search;
|
2021-08-12 13:42:43 +00:00
|
|
|
int no_dhcp;
|
|
|
|
int no_dhcpv6;
|
|
|
|
int no_ndp;
|
|
|
|
int no_ra;
|
2024-12-10 18:36:45 +00:00
|
|
|
int no_splice;
|
2024-10-18 01:35:56 +00:00
|
|
|
int host_lo_to_ns_lo;
|
2024-10-03 04:48:32 +00:00
|
|
|
int freebind;
|
2021-10-05 17:27:04 +00:00
|
|
|
|
|
|
|
int low_wmem;
|
|
|
|
int low_rmem;
|
vhost-user: add vhost-user
add virtio and vhost-user functions to connect with QEMU.
$ ./passt --vhost-user
and
# qemu-system-x86_64 ... -m 4G \
-object memory-backend-memfd,id=memfd0,share=on,size=4G \
-numa node,memdev=memfd0 \
-chardev socket,id=chr0,path=/tmp/passt_1.socket \
-netdev vhost-user,id=netdev0,chardev=chr0 \
-device virtio-net,mac=9a:2b:2c:2d:2e:2f,netdev=netdev0 \
...
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[sbrivio: as suggested by lvivier, include <netinet/if_ether.h>
before including <linux/if_ether.h> as C libraries such as musl
__UAPI_DEF_ETHHDR in <netinet/if_ether.h> if they already have
a definition of struct ethhdr]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-11-22 16:43:34 +00:00
|
|
|
|
|
|
|
struct vu_dev *vdev;
|
2020-07-20 14:27:43 +00:00
|
|
|
};
|
2021-07-21 10:01:04 +00:00
|
|
|
|
2023-08-22 05:29:57 +00:00
|
|
|
void proto_update_l2_buf(const unsigned char *eth_d,
|
|
|
|
const unsigned char *eth_s);
|
2022-03-25 23:05:31 +00:00
|
|
|
|
|
|
|
#endif /* PASST_H */
|