1
0
mirror of https://passt.top/passt synced 2024-12-23 06:05:23 +00:00
passt/tcp.h

74 lines
2.3 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: AGPL-3.0-or-later
* Copyright (c) 2021 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
#ifndef TCP_H
#define TCP_H
#define TCP_TIMER_INTERVAL 1000 /* ms */
udp: Connection tracking for ephemeral, local ports, and related fixes As we support UDP forwarding for packets that are sent to local ports, we actually need some kind of connection tracking for UDP. While at it, this commit introduces a number of vaguely related fixes for issues observed while trying this out. In detail: - implement an explicit, albeit minimalistic, connection tracking for UDP, to allow usage of ephemeral ports by the guest and by the host at the same time, by binding them dynamically as needed, and to allow mapping address changes for packets with a loopback address as destination - set the guest MAC address whenever we receive a packet from tap instead of waiting for an ARP request, and set it to broadcast on start, otherwise DHCPv6 might not work if all DHCPv6 requests time out before the guest starts talking IPv4 - split context IPv6 address into address we assign, global or site address seen on tap, and link-local address seen on tap, and make sure we use the addresses we've seen as destination (link-local choice depends on source address). Similarly, for IPv4, split into address we assign and address we observe, and use the address we observe as destination - introduce a clock_gettime() syscall right after epoll_wait() wakes up, so that we can remove all the other ones and pass the current timestamp to tap and socket handlers -- this is additionally needed by UDP to time out bindings to ephemeral ports and mappings between loopback address and a local address - rename sock_l4_add() to sock_l4(), no semantic changes intended - include <arpa/inet.h> in passt.c before kernel headers so that we can use <netinet/in.h> macros to check IPv6 address types, and remove a duplicate <linux/ip.h> inclusion Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
#define TCP_CONN_INDEX_BITS 17 /* 128k */
#define TCP_MAX_CONNS (1 << TCP_CONN_INDEX_BITS)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
struct ctx;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
void tcp_sock_handler(struct ctx *c, union epoll_ref ref, uint32_t events,
const struct timespec *now);
int tcp_tap_handler(struct ctx *c, int af, const void *addr,
const struct pool *p, const struct timespec *now);
int tcp_sock_init(const struct ctx *c, sa_family_t af, const void *addr,
const char *ifname, in_port_t port);
int tcp_init(struct ctx *c);
void tcp_timer(struct ctx *c, const struct timespec *ts);
void tcp_defer_handler(struct ctx *c);
void tcp_sock_set_bufsize(const struct ctx *c, int s);
void tcp_update_l2_buf(const unsigned char *eth_d, const unsigned char *eth_s,
const struct in_addr *ip_da);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
/**
* union tcp_epoll_ref - epoll reference portion for TCP connections
* @listen: Set if this file descriptor is a listening socket
* @outbound: Listening socket maps to outbound, spliced connection
* @timer: Reference is a timerfd descriptor for connection
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
* @index: Index of connection in table, or port for bound sockets
* @u32: Opaque u32 value of reference
*/
union tcp_epoll_ref {
struct {
uint32_t listen:1,
outbound:1,
timer:1,
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
index:20;
} tcp;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
uint32_t u32;
};
/**
* struct tcp_ctx - Execution context for TCP routines
* @hash_secret: 128-bit secret for hash functions, ISN and hash table
* @conn_count: Count of total connections in connection table
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
* @splice_conn_count: Count of spliced connections in connection table
* @port_to_tap: Ports bound host-side, packets to tap or spliced
* @fwd_in: Port forwarding configuration for inbound packets
* @fwd_out: Port forwarding configuration for outbound packets
udp: Connection tracking for ephemeral, local ports, and related fixes As we support UDP forwarding for packets that are sent to local ports, we actually need some kind of connection tracking for UDP. While at it, this commit introduces a number of vaguely related fixes for issues observed while trying this out. In detail: - implement an explicit, albeit minimalistic, connection tracking for UDP, to allow usage of ephemeral ports by the guest and by the host at the same time, by binding them dynamically as needed, and to allow mapping address changes for packets with a loopback address as destination - set the guest MAC address whenever we receive a packet from tap instead of waiting for an ARP request, and set it to broadcast on start, otherwise DHCPv6 might not work if all DHCPv6 requests time out before the guest starts talking IPv4 - split context IPv6 address into address we assign, global or site address seen on tap, and link-local address seen on tap, and make sure we use the addresses we've seen as destination (link-local choice depends on source address). Similarly, for IPv4, split into address we assign and address we observe, and use the address we observe as destination - introduce a clock_gettime() syscall right after epoll_wait() wakes up, so that we can remove all the other ones and pass the current timestamp to tap and socket handlers -- this is additionally needed by UDP to time out bindings to ephemeral ports and mappings between loopback address and a local address - rename sock_l4_add() to sock_l4(), no semantic changes intended - include <arpa/inet.h> in passt.c before kernel headers so that we can use <netinet/in.h> macros to check IPv6 address types, and remove a duplicate <linux/ip.h> inclusion Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
* @timer_run: Timestamp of most recent timer run
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
* @kernel_snd_wnd: Kernel reports sending window (with commit 8f7baad7f035)
* @pipe_size: Size of pipes for spliced connections
*/
struct tcp_ctx {
uint64_t hash_secret[2];
int conn_count;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
int splice_conn_count;
struct port_fwd fwd_in;
struct port_fwd fwd_out;
udp: Connection tracking for ephemeral, local ports, and related fixes As we support UDP forwarding for packets that are sent to local ports, we actually need some kind of connection tracking for UDP. While at it, this commit introduces a number of vaguely related fixes for issues observed while trying this out. In detail: - implement an explicit, albeit minimalistic, connection tracking for UDP, to allow usage of ephemeral ports by the guest and by the host at the same time, by binding them dynamically as needed, and to allow mapping address changes for packets with a loopback address as destination - set the guest MAC address whenever we receive a packet from tap instead of waiting for an ARP request, and set it to broadcast on start, otherwise DHCPv6 might not work if all DHCPv6 requests time out before the guest starts talking IPv4 - split context IPv6 address into address we assign, global or site address seen on tap, and link-local address seen on tap, and make sure we use the addresses we've seen as destination (link-local choice depends on source address). Similarly, for IPv4, split into address we assign and address we observe, and use the address we observe as destination - introduce a clock_gettime() syscall right after epoll_wait() wakes up, so that we can remove all the other ones and pass the current timestamp to tap and socket handlers -- this is additionally needed by UDP to time out bindings to ephemeral ports and mappings between loopback address and a local address - rename sock_l4_add() to sock_l4(), no semantic changes intended - include <arpa/inet.h> in passt.c before kernel headers so that we can use <netinet/in.h> macros to check IPv6 address types, and remove a duplicate <linux/ip.h> inclusion Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
struct timespec timer_run;
#ifdef HAS_SND_WND
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
int kernel_snd_wnd;
#endif
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
size_t pipe_size;
};
#endif /* TCP_H */