passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
// SPDX-License-Identifier: AGPL-3.0-or-later
|
|
|
|
|
|
|
|
/* PASST - Plug A Simple Socket Transport
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* for qemu/UNIX domain socket mode
|
|
|
|
*
|
|
|
|
* PASTA - Pack A Subtle Tap Abstraction
|
|
|
|
* for network namespace/tap device mode
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* tcp.c - TCP L2-L4 translation state machine
|
|
|
|
*
|
|
|
|
* Copyright (c) 2020-2021 Red Hat GmbH
|
|
|
|
* Author: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* DOC: Theory of Operation
|
|
|
|
*
|
|
|
|
*
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* PASST mode
|
|
|
|
* ==========
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* This implementation maps TCP traffic between a single L2 interface (tap) and
|
|
|
|
* native TCP (L4) sockets, mimicking and reproducing as closely as possible the
|
|
|
|
* inferred behaviour of applications running on a guest, connected via said L2
|
|
|
|
* interface. Four connection flows are supported:
|
|
|
|
* - from the local host to the guest behind the tap interface:
|
|
|
|
* - this is the main use case for proxies in service meshes
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* - we bind to configured local ports, and relay traffic between L4 sockets
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* with local endpoints and the L2 interface
|
|
|
|
* - from remote hosts to the guest behind the tap interface:
|
|
|
|
* - this might be needed for services that need to be addressed directly,
|
|
|
|
* and typically configured with special port forwarding rules (which are
|
|
|
|
* not needed here)
|
|
|
|
* - we also relay traffic between L4 sockets with remote endpoints and the L2
|
|
|
|
* interface
|
|
|
|
* - from the guest to the local host:
|
|
|
|
* - this is not observed in practice, but implemented for completeness and
|
|
|
|
* transparency
|
|
|
|
* - from the guest to external hosts:
|
|
|
|
* - this might be needed for applications running on the guest that need to
|
|
|
|
* directly access internet services (e.g. NTP)
|
|
|
|
*
|
|
|
|
* Relevant goals are:
|
|
|
|
* - transparency: sockets need to behave as if guest applications were running
|
|
|
|
* directly on the host. This is achieved by:
|
|
|
|
* - avoiding port and address translations whenever possible
|
|
|
|
* - mirroring TCP dynamics by observation of socket parameters (TCP_INFO
|
|
|
|
* socket option) and TCP headers of packets coming from the tap interface,
|
|
|
|
* reapplying those parameters in both flow directions (including TCP_MSS,
|
|
|
|
* TCP_WINDOW_CLAMP socket options)
|
|
|
|
* - simplicity: only a small subset of TCP logic is implemented here and
|
|
|
|
* delegated as much as possible to the TCP implementations of guest and host
|
|
|
|
* kernel. This is achieved by:
|
|
|
|
* - avoiding a complete TCP stack reimplementation, with a modified TCP state
|
|
|
|
* machine focused on the translation of observed states instead
|
|
|
|
* - mirroring TCP dynamics as described above and hence avoiding the need for
|
|
|
|
* segmentation, explicit queueing, and reassembly of segments
|
|
|
|
* - security:
|
|
|
|
* - no dynamic memory allocation is performed
|
|
|
|
* - TODO: synflood protection
|
|
|
|
*
|
|
|
|
* Portability is limited by usage of Linux-specific socket options.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Limits
|
|
|
|
* ------
|
|
|
|
*
|
|
|
|
* To avoid the need for dynamic memory allocation, a maximum, reasonable amount
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* of connections is defined by MAX_TAP_CONNS below (currently 128k).
|
|
|
|
*
|
|
|
|
* Data needs to linger on sockets as long as it's not acknowledged by the
|
|
|
|
* guest, and is read using MSG_PEEK into preallocated static buffers sized
|
|
|
|
* to the maximum supported window, 64MiB ("discard" buffer, for already-sent
|
|
|
|
* data) plus a number of maximum-MSS-sized buffers. This imposes a practical
|
|
|
|
* limitation on window scaling, that is, the maximum factor is 1024. Larger
|
|
|
|
* factors will be accepted, but resulting, larger values are never advertised
|
|
|
|
* to the other side, and not used while queueing data.
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
*
|
|
|
|
* Ports
|
|
|
|
* -----
|
|
|
|
*
|
|
|
|
* To avoid the need for ad-hoc configuration of port forwarding or allowed
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* ports, listening sockets can be opened and bound to all unbound ports on the
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* host, as far as process capabilities allow. This service needs to be started
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* after any application proxy that needs to bind to local ports. Mapped ports
|
|
|
|
* can also be configured explicitly.
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* No port translation is needed for connections initiated remotely or by the
|
|
|
|
* local host: source port from socket is reused while establishing connections
|
|
|
|
* to the guest.
|
|
|
|
*
|
|
|
|
* For connections initiated by the guest, it's not possible to force the same
|
|
|
|
* source port as connections are established by the host kernel: that's the
|
|
|
|
* only port translation needed.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Connection tracking and storage
|
|
|
|
* -------------------------------
|
|
|
|
*
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* Connections are tracked by the @tt array of struct tcp_tap_conn, containing
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* addresses, ports, TCP states and parameters. This is statically allocated and
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* indexed by an arbitrary connection number. The array is compacted whenever a
|
|
|
|
* connection is closed, by remapping the highest connection index in use to the
|
|
|
|
* one freed up.
|
|
|
|
*
|
|
|
|
* References used for the epoll interface report the connection index used for
|
|
|
|
* the @tt array.
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* IPv4 addresses are stored as IPv4-mapped IPv6 addresses to avoid the need for
|
|
|
|
* separate data structures depending on the protocol version.
|
|
|
|
*
|
|
|
|
* - Inbound connection requests (to the guest) are mapped using the triple
|
|
|
|
* < source IP address, source port, destination port >
|
|
|
|
* - Outbound connection requests (from the guest) are mapped using the triple
|
|
|
|
* < destination IP address, destination port, source port >
|
|
|
|
* where the source port is the one used by the guest, not the one used by the
|
|
|
|
* corresponding host socket
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Initialisation
|
|
|
|
* --------------
|
|
|
|
*
|
|
|
|
* Up to 2^15 + 2^14 listening sockets (excluding ephemeral ports, repeated for
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* IPv4 and IPv6) can be opened and bound to wildcard addresses. Some will fail
|
|
|
|
* to bind (for low ports, or ports already bound, e.g. by a proxy). These are
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* added to the epoll list, with no separate storage.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* States and events
|
|
|
|
* -----------------
|
|
|
|
*
|
|
|
|
* These states apply to connected sockets only, listening sockets are always
|
|
|
|
* open after initialisation, in LISTEN state. A single state is maintained for
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* both sides of the connection, and some states are omitted as they are already
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* handled by host kernel and guest.
|
|
|
|
*
|
|
|
|
* - CLOSED no connection
|
|
|
|
* No associated events: this is always a final state, new connections
|
|
|
|
* directly start from TAP_SYN_SENT or SOCK_SYN_SENT described below.
|
|
|
|
*
|
|
|
|
* - TAP_SYN_SENT connect() in progress, triggered from tap
|
|
|
|
* - connect() completes SYN,ACK to tap > TAP_SYN_RCVD
|
|
|
|
* - connect() aborts RST to tap, close socket > CLOSED
|
|
|
|
*
|
|
|
|
* - SOCK_SYN_SENT new connected socket, SYN sent to tap
|
|
|
|
* - SYN,ACK from tap ACK to tap > ESTABLISHED
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - SYN,ACK timeout RST to tap, close socket > CLOSED
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* - TAP_SYN_RCVD connect() completed, SYN,ACK sent to tap
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - FIN from tap write shutdown > FIN_WAIT_1
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* - ACK from tap > ESTABLISHED
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - ACK timeout RST to tap, close socket > CLOSED
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* - ESTABLISHED connection established, ready for data
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* - EPOLLRDHUP read shutdown > ESTABLISHED_SOCK_FIN
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - FIN from tap write shutdown > FIN_WAIT_1
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* - EPOLLHUP RST to tap, close socket > CLOSED
|
|
|
|
* - data timeout read shutdown, FIN to tap >
|
|
|
|
* ESTABLISHED_SOCK_FIN_SENT
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
2021-09-01 14:43:13 +00:00
|
|
|
* - ESTABLISHED_SOCK_FIN socket closing connection, reading half closed
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* - zero-sized socket read FIN,ACK to tap > ESTABLISHED_SOCK_FIN_SENT
|
|
|
|
*
|
|
|
|
* - ESTABLISHED_SOCK_FIN_SENT socket closing connection, FIN sent to tap
|
|
|
|
* - ACK (for FIN) from tap > CLOSE_WAIT
|
|
|
|
* - tap ACK timeout RST to tap, close socket > CLOSED
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - CLOSE_WAIT socket closing connection, ACK from tap
|
|
|
|
* - FIN from tap write shutdown > LAST_ACK
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* - data timeout RST to tap, close socket > CLOSED
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* - LAST_ACK socket started close, tap completed it
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* - any event from socket ACK to tap, close socket > CLOSED
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* - ACK timeout RST to tap, close socket > CLOSED
|
|
|
|
*
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - FIN_WAIT_1 tap closing connection, FIN sent to socket
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* - EPOLLRDHUP FIN,ACK to tap, shutdown > FIN_WAIT_1_SOCK_FIN
|
|
|
|
* - socket timeout RST to tap, close socket > CLOSED
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - FIN_WAIT_1_SOCK_FIN tap closing connection, FIN received from socket
|
|
|
|
* - ACK from tap close socket > CLOSED
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* - tap ACK timeout RST to tap, close socket > CLOSED
|
|
|
|
*
|
|
|
|
* - from any state
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - RST from tap close socket > CLOSED
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* - socket error RST to tap, close socket > CLOSED
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* Connection setup
|
|
|
|
* ----------------
|
|
|
|
*
|
|
|
|
* - inbound connection (from socket to guest): on accept() from listening
|
|
|
|
* socket, the new socket is mapped in connection tracking table, and
|
|
|
|
* three-way handshake initiated towards the guest, advertising MSS and window
|
|
|
|
* size and scaling from socket parameters
|
|
|
|
* - outbound connection (from guest to socket): on SYN segment from guest, a
|
|
|
|
* new socket is created and mapped in connection tracking table, setting
|
|
|
|
* MSS and window clamping from header and option of the observed SYN segment
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Aging and timeout
|
|
|
|
* -----------------
|
|
|
|
*
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* A bitmap of TCP_MAX_CONNS bits indicate the connections subject to timed
|
|
|
|
* events based on states:
|
|
|
|
* - SOCK_SYN_SENT: after a 2MSL (240s) timeout waiting for a SYN,ACK segment
|
|
|
|
* from tap expires, connection is reset (RST to tap, socket closed)
|
|
|
|
* - TAP_SYN_RCVD: after a 2MSL (240s) timeout waiting for an ACK segment from
|
|
|
|
* tap expires, connection is reset (RST to tap, socket closed)
|
|
|
|
* - TAP_SYN_SENT: connect() is pending, timeout is handled implicitly by
|
|
|
|
* connect() timeout, connection will be reset in case
|
|
|
|
* - ESTABLISHED, ESTABLISHED_SOCK_FIN: if an ACK segment to tap is pending,
|
|
|
|
* bytes acknowledged by socket endpoint are checked every 50ms (one quarter
|
|
|
|
* of current TCP_DELACK_MAX on Linux)
|
|
|
|
* - ESTABLISHED, ESTABLISHED_SOCK_FIN: after a timeout of 3s (TODO: implement
|
|
|
|
* requirements from RFC 6298) waiting for an ACK segment from tap expires,
|
|
|
|
* data from socket queue is retransmitted starting from the last ACK sequence
|
|
|
|
* - ESTABLISHED, ESTABLISHED_SOCK_FIN: after a two hours (current
|
|
|
|
* TCP_KEEPALIVE_TIME on Linux) timeout waiting for any activity expires,
|
|
|
|
* connection is reset (RST to tap, socket closed)
|
|
|
|
* - ESTABLISHED_SOCK_FIN: after a 2MSL (240s) timeout waiting for an ACK
|
|
|
|
* segment from tap expires, connection is reset (RST to tap, socket closed)
|
|
|
|
* - CLOSE_WAIT: after a 2MSL (240s) timeout waiting for a FIN segment from tap
|
|
|
|
* expires, connection is reset (RST to tap, socket closed)
|
|
|
|
* - FIN_WAIT_1: after a 2MSL (240s) timeout waiting for an ACK segment from
|
|
|
|
* socet expires, connection is reset (RST to tap, socket closed)
|
|
|
|
* - FIN_WAIT_1_SOCK_FIN: after a 2MSL (240s) timeout waiting for an ACK segment
|
|
|
|
* from tap expires, connection is reset (RST to tap, socket closed)
|
|
|
|
* - LAST_ACK: after a 2MSL (240s) timeout waiting for an ACK segment from
|
|
|
|
* socket expires, connection is reset (RST to tap, socket closed)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
*
|
|
|
|
* Data flows (from ESTABLISHED, ESTABLISHED_SOCK_FIN states)
|
|
|
|
* ----------------------------------------------------------
|
|
|
|
*
|
|
|
|
* @seq_to_tap: next sequence for packets to tap
|
|
|
|
* @seq_ack_from_tap: last ACK number received from tap
|
|
|
|
* @seq_from_tap: next sequence for packets from tap (not actually sent)
|
|
|
|
* @seq_ack_to_tap: last ACK number sent to tap
|
|
|
|
*
|
|
|
|
* @seq_init_from_tap: initial sequence number from tap
|
|
|
|
*
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @wnd_from_tap: last window size received from tap, scaled
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* - from socket to tap:
|
|
|
|
* - on new data from socket:
|
|
|
|
* - peek into buffer
|
|
|
|
* - send data to tap:
|
|
|
|
* - starting at offset (@seq_to_tap - @seq_ack_from_tap)
|
|
|
|
* - in MSS-sized segments
|
|
|
|
* - increasing @seq_to_tap at each segment
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* - up to window (until @seq_to_tap - @seq_ack_from_tap <= @wnd_from_tap)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* - mark socket in bitmap for periodic ACK check, set @last_ts_to_tap
|
|
|
|
* - on read error, send RST to tap, close socket
|
|
|
|
* - on zero read, send FIN to tap, enter ESTABLISHED_SOCK_FIN
|
|
|
|
* - on ACK from tap:
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* - set @ts_ack_tap
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* - check if it's the second duplicated ACK
|
|
|
|
* - consume buffer by difference between new ack_seq and @seq_ack_from_tap
|
|
|
|
* - update @seq_ack_from_tap from ack_seq in header
|
|
|
|
* - on two duplicated ACKs, reset @seq_to_tap to @seq_ack_from_tap, and
|
|
|
|
* resend with steps listed above
|
|
|
|
* - set TCP_WINDOW_CLAMP from TCP header from tap
|
|
|
|
* - on @seq_ack_from_tap == @seq_to_tap, mark in bitmap, umark otherwise
|
|
|
|
* - periodically:
|
|
|
|
* - if @seq_ack_from_tap < @seq_to_tap and the retransmission timer
|
|
|
|
* (TODO: implement requirements from RFC 6298, currently 3s fixed) from
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @ts_tap_from_ack elapsed, reset @seq_to_tap to @seq_ack_from_tap, and
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* resend data with the steps listed above
|
|
|
|
*
|
|
|
|
* - from tap to socket:
|
|
|
|
* - on packet from tap:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* - set @ts_tap_ack
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* - set TCP_WINDOW_CLAMP from TCP header from tap
|
|
|
|
* - check seq from header against @seq_from_tap, if data is missing, send
|
|
|
|
* two ACKs with number @seq_ack_to_tap, discard packet
|
|
|
|
* - otherwise queue data to socket, set @seq_from_tap to seq from header
|
|
|
|
* plus payload length
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* - in ESTABLISHED state, send ACK to tap as soon as we queue to the
|
|
|
|
* socket. In other states, query socket for TCP_INFO, set
|
|
|
|
* @seq_ack_to_tap to (tcpi_bytes_acked + @seq_init_from_tap) % 2^32 and
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* send ACK to tap
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
*
|
|
|
|
*
|
|
|
|
* PASTA mode
|
|
|
|
* ==========
|
|
|
|
*
|
|
|
|
* For traffic directed to TCP ports configured for mapping to the tuntap device
|
|
|
|
* in the namespace, and for non-local traffic coming from the tuntap device,
|
|
|
|
* the implementation is identical as the PASST mode described in the previous
|
|
|
|
* section.
|
|
|
|
*
|
|
|
|
* For local traffic directed to TCP ports configured for direct mapping between
|
|
|
|
* namespaces, the implementation is substantially simpler: packets are directly
|
|
|
|
* translated between L4 sockets using a pair of splice() syscalls. These
|
|
|
|
* connections are tracked in the @ts array of struct tcp_splice_conn, using
|
2021-09-19 00:35:04 +00:00
|
|
|
* these states:
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
*
|
|
|
|
* - CLOSED: no connection
|
|
|
|
* - SPLICE_ACCEPTED: accept() on the listening socket succeeded
|
|
|
|
* - SPLICE_CONNECT: connect() issued in the destination namespace
|
|
|
|
* - SPLICE_ESTABLISHED: connect() succeeded, packets are transferred
|
2021-09-19 00:35:04 +00:00
|
|
|
* - SPLICE_FIN_FROM: FIN (EPOLLRDHUP) seen from originating socket
|
|
|
|
* - SPLICE_FIN_TO: FIN (EPOLLRDHUP) seen from connected socket
|
|
|
|
* - SPLICE_FIN_BOTH: FIN (EPOLLRDHUP) seen from both sides
|
2021-10-13 20:25:03 +00:00
|
|
|
*
|
|
|
|
* #syscalls pipe pipe2
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#define _GNU_SOURCE
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
#include <sched.h>
|
|
|
|
#include <fcntl.h>
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#include <stdio.h>
|
2021-10-19 15:28:18 +00:00
|
|
|
#include <stdlib.h>
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#include <errno.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <net/ethernet.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <sys/epoll.h>
|
2021-03-17 09:57:36 +00:00
|
|
|
#include <sys/random.h>
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#include <sys/socket.h>
|
2021-03-17 09:57:36 +00:00
|
|
|
#include <sys/types.h>
|
2021-09-26 21:38:22 +00:00
|
|
|
#include <sys/uio.h>
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#include <unistd.h>
|
|
|
|
#include <linux/ip.h>
|
|
|
|
#include <linux/ipv6.h>
|
|
|
|
#include <linux/tcp.h>
|
|
|
|
#include <time.h>
|
|
|
|
|
2021-07-26 12:20:36 +00:00
|
|
|
#include "checksum.h"
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
#include "util.h"
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#include "passt.h"
|
|
|
|
#include "tap.h"
|
2021-03-17 09:57:36 +00:00
|
|
|
#include "siphash.h"
|
2021-07-26 12:20:36 +00:00
|
|
|
#include "pcap.h"
|
2021-09-27 03:24:30 +00:00
|
|
|
#include "conf.h"
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
#define MAX_TAP_CONNS (128 * 1024)
|
|
|
|
#define MAX_SPLICE_CONNS (128 * 1024)
|
|
|
|
|
2021-10-15 15:17:57 +00:00
|
|
|
#define TCP_TAP_FRAMES 256
|
2021-07-26 12:20:36 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
#define MAX_PIPE_SIZE (2 * 1024 * 1024)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-03-17 09:57:40 +00:00
|
|
|
#define TCP_HASH_TABLE_LOAD 70 /* % */
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
#define TCP_HASH_TABLE_SIZE (MAX_TAP_CONNS * 100 / \
|
|
|
|
TCP_HASH_TABLE_LOAD)
|
2021-03-17 09:57:40 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
#define MAX_WS 10
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#define MAX_WINDOW (1 << (16 + (MAX_WS)))
|
|
|
|
#define MSS_DEFAULT 536
|
2021-10-15 15:09:37 +00:00
|
|
|
#define MSS4 (USHRT_MAX - sizeof(uint32_t) - sizeof(struct ethhdr) - \
|
|
|
|
sizeof(struct iphdr) - sizeof(struct tcphdr))
|
|
|
|
#define MSS6 (USHRT_MAX - sizeof(uint32_t) - sizeof(struct ethhdr) - \
|
|
|
|
sizeof(struct ipv6hdr) - sizeof(struct tcphdr))
|
|
|
|
|
tcp: Add support for kernels not exporting tcpi_snd_wnd via TCP_INFO
Before commit 8f7baad7f035 ("tcp: Add snd_wnd to TCP_INFO"), the
kernel didn't export tcpi_snd_wnd via TCP_INFO, which means we don't
know what's the window size of the receiver, socket-side.
To get TCP connections working in that case, ignore this value if
it's zero during handshake, and use the initial window value as
suggested by RFC 6928 (14 600 bytes, instead of 4 380 bytes), to
keep network performance usable.
To make the TCP dynamic responsive enough in this case, also check
the socket for available data whenever we get an ACK segment from
tap, instead of waiting until all the data from the tap is dequeued.
While at it, fix the window scaling value sent for SYN and SYN, ACK
segments: we want to increase the data pointer after writing the
option, not the value itself.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-06-08 00:20:28 +00:00
|
|
|
#define WINDOW_DEFAULT 14600 /* RFC 6928 */
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
|
|
|
#define SYN_TIMEOUT 240000 /* ms */
|
2021-07-17 15:57:11 +00:00
|
|
|
#define ACK_TIMEOUT 2000
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
#define ACK_INTERVAL 50
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#define ACT_TIMEOUT 7200000
|
|
|
|
#define FIN_TIMEOUT 240000
|
|
|
|
#define LAST_ACK_TIMEOUT 240000
|
|
|
|
|
2021-10-05 17:32:20 +00:00
|
|
|
#define TCP_SOCK_POOL_SIZE 32
|
|
|
|
#define TCP_SOCK_POOL_TSH 16 /* Refill in ns if > x used */
|
2021-10-12 20:53:56 +00:00
|
|
|
#define TCP_SPLICE_PIPE_POOL_SIZE 16
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
#define REFILL_INTERVAL 1000
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-09-27 03:24:30 +00:00
|
|
|
#define PORT_DETECT_INTERVAL 1000
|
|
|
|
|
2021-10-04 20:01:16 +00:00
|
|
|
#define LOW_RTT_TABLE_SIZE 8
|
2021-10-05 17:33:37 +00:00
|
|
|
#define LOW_RTT_THRESHOLD 10 /* us */
|
2021-10-04 20:01:16 +00:00
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/* We need to include <linux/tcp.h> for tcpi_bytes_acked, instead of
|
|
|
|
* <netinet/tcp.h>, but that doesn't include a definition for SOL_TCP
|
|
|
|
*/
|
|
|
|
#define SOL_TCP IPPROTO_TCP
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
#define SEQ_LE(a, b) ((b) - (a) < MAX_WINDOW)
|
|
|
|
#define SEQ_LT(a, b) ((b) - (a) - 1 < MAX_WINDOW)
|
|
|
|
#define SEQ_GE(a, b) ((a) - (b) < MAX_WINDOW)
|
|
|
|
#define SEQ_GT(a, b) ((a) - (b) - 1 < MAX_WINDOW)
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
#define CONN_V4(conn) (IN6_IS_ADDR_V4MAPPED(&conn->a.a6))
|
|
|
|
#define CONN_V6(conn) (!CONN_V4(conn))
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
enum tcp_state {
|
|
|
|
CLOSED = 0,
|
|
|
|
TAP_SYN_SENT,
|
|
|
|
SOCK_SYN_SENT,
|
|
|
|
TAP_SYN_RCVD,
|
|
|
|
ESTABLISHED,
|
|
|
|
ESTABLISHED_SOCK_FIN,
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
ESTABLISHED_SOCK_FIN_SENT,
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
CLOSE_WAIT,
|
|
|
|
LAST_ACK,
|
|
|
|
FIN_WAIT_1,
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
FIN_WAIT_1_SOCK_FIN,
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
SPLICE_ACCEPTED,
|
|
|
|
SPLICE_CONNECT,
|
|
|
|
SPLICE_ESTABLISHED,
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
SPLICE_FIN_FROM,
|
|
|
|
SPLICE_FIN_TO,
|
|
|
|
SPLICE_FIN_BOTH,
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
};
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
#define TCP_STATE_STR_SIZE (SPLICE_FIN_BOTH + 1)
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
|
2021-03-18 06:49:08 +00:00
|
|
|
static char *tcp_state_str[TCP_STATE_STR_SIZE] __attribute((__unused__)) = {
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
"CLOSED", "TAP_SYN_SENT", "SOCK_SYN_SENT", "TAP_SYN_RCVD",
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
"ESTABLISHED", "ESTABLISHED_SOCK_FIN", "ESTABLISHED_SOCK_FIN_SENT",
|
|
|
|
"CLOSE_WAIT", "LAST_ACK", "FIN_WAIT_1", "FIN_WAIT_1_SOCK_FIN",
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
"SPLICE_ACCEPTED", "SPLICE_CONNECT", "SPLICE_ESTABLISHED",
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
"SPLICE_FIN_FROM", "SPLICE_FIN_TO", "SPLICE_FIN_BOTH",
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
#define FIN (1 << 0)
|
|
|
|
#define SYN (1 << 1)
|
|
|
|
#define RST (1 << 2)
|
|
|
|
#define ACK (1 << 4)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
/* Flags for internal usage */
|
2021-10-05 17:46:59 +00:00
|
|
|
#define DUP_ACK (1 << 5)
|
|
|
|
#define FORCE_ACK (1 << 6)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
|
|
|
#define OPT_EOL 0
|
|
|
|
#define OPT_NOP 1
|
|
|
|
#define OPT_MSS 2
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
#define OPT_MSS_LEN 4
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#define OPT_WS 3
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
#define OPT_WS_LEN 3
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
#define OPT_SACKP 4
|
|
|
|
#define OPT_SACK 5
|
|
|
|
#define OPT_TS 8
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct tcp_tap_conn;
|
2021-03-17 09:57:40 +00:00
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* struct tcp_tap_conn - Descriptor for a TCP connection via tap (not spliced)
|
2021-03-17 09:57:40 +00:00
|
|
|
* @next: Pointer to next item in hash chain, if any
|
|
|
|
* @sock: Socket descriptor number
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @hash_bucket: Bucket index in connection lookup hash table
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @a.a6: IPv6 remote address, can be IPv4-mapped
|
|
|
|
* @a.a4.zero: Zero prefix for IPv4-mapped, see RFC 6890, Table 20
|
|
|
|
* @a.a4.one: Ones prefix for IPv4-mapped
|
|
|
|
* @a.a4.a: IPv4 address
|
|
|
|
* @tap_port: Guest-facing tap port
|
|
|
|
* @sock_port: Remote, socket-facing port
|
2021-10-04 20:01:16 +00:00
|
|
|
* @local: Destination is local
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @state: TCP connection state
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @seq_to_tap: Next sequence for packets to tap
|
|
|
|
* @seq_ack_from_tap: Last ACK number received from tap
|
|
|
|
* @seq_from_tap: Next sequence for packets from tap (not actually sent)
|
|
|
|
* @seq_ack_to_tap: Last ACK number sent to tap
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @seq_dup_ack: Last duplicate ACK number sent to tap
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @seq_init_from_tap: Initial sequence number from tap
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @seq_init_from_tap: Initial sequence number to tap
|
|
|
|
* @ws_tap: Window scaling factor from tap
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @ws: Window scaling factor
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @wnd_from_tap: Last window size received from tap, scaled
|
|
|
|
* @wnd_to_tap: Socket-side sending window, advertised to tap
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @window_clamped: Window was clamped on socket at least once
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @ts_sock_act: Last activity timestamp from socket for timeout purposes
|
|
|
|
* @ts_tap_act: Last activity timestamp from tap for timeout purposes
|
|
|
|
* @ts_ack_from_tap: Last ACK segment timestamp from tap
|
|
|
|
* @ts_ack_to_tap: Last ACK segment timestamp to tap
|
|
|
|
* @tap_data_noack: Last unacked data to tap, set to { 0, 0 } on ACK
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @mss_guest: Maximum segment size advertised by guest
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @events: epoll events currently enabled for socket
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct tcp_tap_conn {
|
|
|
|
struct tcp_tap_conn *next;
|
2021-03-17 09:57:40 +00:00
|
|
|
int sock;
|
|
|
|
int hash_bucket;
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
union {
|
|
|
|
struct in6_addr a6;
|
|
|
|
struct {
|
|
|
|
uint8_t zero[10];
|
|
|
|
uint8_t one[2];
|
|
|
|
struct in_addr a;
|
|
|
|
} a4;
|
|
|
|
} a;
|
|
|
|
in_port_t tap_port;
|
|
|
|
in_port_t sock_port;
|
2021-10-04 20:01:16 +00:00
|
|
|
int local;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
enum tcp_state state;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
|
|
|
uint32_t seq_to_tap;
|
|
|
|
uint32_t seq_ack_from_tap;
|
|
|
|
uint32_t seq_from_tap;
|
|
|
|
uint32_t seq_ack_to_tap;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
uint32_t seq_dup_ack;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
uint32_t seq_init_from_tap;
|
2021-07-26 05:30:57 +00:00
|
|
|
uint32_t seq_init_to_tap;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
uint16_t ws_tap;
|
|
|
|
uint16_t ws;
|
|
|
|
uint32_t wnd_from_tap;
|
|
|
|
uint32_t wnd_to_tap;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
int window_clamped;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int snd_buf;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
struct timespec ts_sock_act;
|
|
|
|
struct timespec ts_tap_act;
|
|
|
|
struct timespec ts_ack_from_tap;
|
|
|
|
struct timespec ts_ack_to_tap;
|
|
|
|
struct timespec tap_data_noack;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-19 22:05:11 +00:00
|
|
|
unsigned int mss_guest;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
|
|
|
uint32_t events;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
};
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
/**
|
|
|
|
* struct tcp_splice_conn - Descriptor for a spliced TCP connection
|
|
|
|
* @from: File descriptor number of socket for accepted connection
|
|
|
|
* @pipe_from_to: Pipe ends for splice() from @from to @to
|
|
|
|
* @to: File descriptor number of peer connected socket
|
|
|
|
* @pipe_to_from: Pipe ends for splice() from @to to @from
|
|
|
|
* @state: TCP connection state
|
|
|
|
*/
|
|
|
|
struct tcp_splice_conn {
|
|
|
|
int from;
|
|
|
|
int pipe_from_to[2];
|
|
|
|
int to;
|
|
|
|
int pipe_to_from[2];
|
|
|
|
enum tcp_state state;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
int from_fin_sent;
|
|
|
|
int to_fin_sent;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
int v6;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
uint64_t from_read;
|
|
|
|
uint64_t from_written;
|
|
|
|
uint64_t to_read;
|
|
|
|
uint64_t to_written;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
};
|
|
|
|
|
2021-08-12 13:42:43 +00:00
|
|
|
/* Port re-mappings as delta, indexed by original destination port */
|
|
|
|
static in_port_t tcp_port_delta_to_tap [USHRT_MAX];
|
|
|
|
static in_port_t tcp_port_delta_to_init [USHRT_MAX];
|
|
|
|
|
2021-09-27 03:24:30 +00:00
|
|
|
/* Listening sockets, used for automatic port forwarding in pasta mode only */
|
|
|
|
static int tcp_sock_init_lo [USHRT_MAX][IP_VERSIONS];
|
|
|
|
static int tcp_sock_init_ext [USHRT_MAX][IP_VERSIONS];
|
|
|
|
static int tcp_sock_ns [USHRT_MAX][IP_VERSIONS];
|
|
|
|
|
2021-10-04 20:01:16 +00:00
|
|
|
/* Table of destinations with very low RTT (assumed to be local), LRU */
|
|
|
|
static struct in6_addr low_rtt_dst[LOW_RTT_TABLE_SIZE];
|
|
|
|
|
2021-08-12 13:42:43 +00:00
|
|
|
/**
|
|
|
|
* tcp_remap_to_tap() - Set delta for port translation toward guest/tap
|
|
|
|
* @port: Original destination port, host order
|
|
|
|
* @delta: Delta to be added to original destination port
|
|
|
|
*/
|
|
|
|
void tcp_remap_to_tap(in_port_t port, in_port_t delta)
|
|
|
|
{
|
|
|
|
tcp_port_delta_to_tap[port] = delta;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_remap_to_tap() - Set delta for port translation toward init namespace
|
|
|
|
* @port: Original destination port, host order
|
|
|
|
* @delta: Delta to be added to original destination port
|
|
|
|
*/
|
|
|
|
void tcp_remap_to_init(in_port_t port, in_port_t delta)
|
|
|
|
{
|
|
|
|
tcp_port_delta_to_init[port] = delta;
|
|
|
|
}
|
|
|
|
|
2021-07-26 12:20:36 +00:00
|
|
|
/* Static buffers */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp4_l2_buf_t - Pre-cooked IPv4 packet buffers for tap connections
|
|
|
|
* @psum: Partial IP header checksum (excluding tot_len and saddr)
|
2021-08-12 13:42:43 +00:00
|
|
|
* @tsum: Partial TCP header checksum (excluding length and saddr)
|
|
|
|
* @pad: Align TCP header to 32 bytes, for AVX2 checksum calculation only
|
2021-07-26 12:20:36 +00:00
|
|
|
* @vnet_len: 4-byte qemu vnet buffer length descriptor, only for passt mode
|
|
|
|
* @eh: Pre-filled Ethernet header
|
|
|
|
* @iph: Pre-filled IP header (except for tot_len and saddr)
|
|
|
|
* @uh: Headroom for TCP header
|
|
|
|
* @data: Storage for TCP payload
|
|
|
|
*/
|
2021-10-05 19:15:01 +00:00
|
|
|
static struct tcp4_l2_buf_t {
|
2021-07-26 12:20:36 +00:00
|
|
|
uint32_t psum; /* 0 */
|
|
|
|
uint32_t tsum; /* 4 */
|
|
|
|
#ifdef __AVX2__
|
|
|
|
uint8_t pad[18]; /* 8, align th to 32 bytes */
|
2021-10-14 10:10:24 +00:00
|
|
|
#else
|
|
|
|
uint8_t pad[2]; /* align iph to 4 bytes 8 */
|
2021-07-26 12:20:36 +00:00
|
|
|
#endif
|
2021-10-14 10:10:24 +00:00
|
|
|
uint32_t vnet_len; /* 26 10 */
|
|
|
|
struct ethhdr eh; /* 30 14 */
|
|
|
|
struct iphdr iph; /* 44 28 */
|
|
|
|
struct tcphdr th; /* 64 48 */
|
2021-10-15 15:09:37 +00:00
|
|
|
uint8_t data[MSS4]; /* 84 68 */
|
|
|
|
/* 65541 65525 */
|
2021-07-26 12:20:36 +00:00
|
|
|
#ifdef __AVX2__
|
|
|
|
} __attribute__ ((packed, aligned(32)))
|
|
|
|
#else
|
|
|
|
} __attribute__ ((packed, aligned(__alignof__(unsigned int))))
|
|
|
|
#endif
|
2021-10-05 19:15:01 +00:00
|
|
|
tcp4_l2_buf[TCP_TAP_FRAMES];
|
2021-07-26 12:20:36 +00:00
|
|
|
|
2021-10-15 15:13:23 +00:00
|
|
|
static unsigned int tcp4_l2_buf_used;
|
|
|
|
static size_t tcp4_l2_buf_bytes;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp6_l2_buf_t - Pre-cooked IPv6 packet buffers for tap connections
|
2021-08-12 13:42:43 +00:00
|
|
|
* @pad: Align IPv6 header for checksum calculation to 32B (AVX2) or 4B
|
2021-07-26 12:20:36 +00:00
|
|
|
* @vnet_len: 4-byte qemu vnet buffer length descriptor, only for passt mode
|
|
|
|
* @eh: Pre-filled Ethernet header
|
|
|
|
* @ip6h: Pre-filled IP header (except for payload_len and addresses)
|
|
|
|
* @th: Headroom for TCP header
|
|
|
|
* @data: Storage for TCP payload
|
|
|
|
*/
|
2021-10-05 19:15:01 +00:00
|
|
|
struct tcp6_l2_buf_t {
|
2021-07-26 12:20:36 +00:00
|
|
|
#ifdef __AVX2__
|
|
|
|
uint8_t pad[14]; /* 0 align ip6h to 32 bytes */
|
|
|
|
#else
|
|
|
|
uint8_t pad[2]; /* align ip6h to 4 bytes 0 */
|
|
|
|
#endif
|
|
|
|
uint32_t vnet_len; /* 14 2 */
|
|
|
|
struct ethhdr eh; /* 18 6 */
|
|
|
|
struct ipv6hdr ip6h; /* 32 20 */
|
|
|
|
struct tcphdr th; /* 72 60 */
|
2021-10-15 15:09:37 +00:00
|
|
|
uint8_t data[MSS6]; /* 92 80 */
|
|
|
|
/* 65639 65627 */
|
2021-07-26 12:20:36 +00:00
|
|
|
#ifdef __AVX2__
|
|
|
|
} __attribute__ ((packed, aligned(32)))
|
|
|
|
#else
|
|
|
|
} __attribute__ ((packed, aligned(__alignof__(unsigned int))))
|
|
|
|
#endif
|
2021-10-05 19:15:01 +00:00
|
|
|
tcp6_l2_buf[TCP_TAP_FRAMES];
|
2021-07-26 12:20:36 +00:00
|
|
|
|
2021-10-15 15:13:23 +00:00
|
|
|
static unsigned int tcp6_l2_buf_used;
|
|
|
|
static size_t tcp6_l2_buf_bytes;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
/* recvmsg()/sendmsg() data for tap */
|
2021-07-26 12:20:36 +00:00
|
|
|
static char tcp_buf_discard [MAX_WINDOW];
|
2021-10-15 15:13:23 +00:00
|
|
|
static struct iovec iov_sock [TCP_TAP_FRAMES + 1];
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
static struct iovec tcp4_l2_iov_tap [TCP_TAP_FRAMES];
|
|
|
|
static struct iovec tcp6_l2_iov_tap [TCP_TAP_FRAMES];
|
2021-10-05 17:46:59 +00:00
|
|
|
static struct iovec tcp4_l2_flags_iov_tap [TCP_TAP_FRAMES];
|
|
|
|
static struct iovec tcp6_l2_flags_iov_tap [TCP_TAP_FRAMES];
|
2021-07-26 12:20:36 +00:00
|
|
|
|
2021-10-05 19:15:01 +00:00
|
|
|
static struct mmsghdr tcp_l2_mh_tap [TCP_TAP_FRAMES];
|
2021-03-17 09:57:40 +00:00
|
|
|
|
2021-07-26 23:09:45 +00:00
|
|
|
/* sendmsg() to socket */
|
2021-09-26 21:38:22 +00:00
|
|
|
static struct iovec tcp_tap_iov [UIO_MAXIOV];
|
2021-07-26 23:09:45 +00:00
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
/**
|
|
|
|
* tcp4_l2_flags_buf_t - IPv4 packet buffers for segments without data (flags)
|
|
|
|
* @psum: Partial IP header checksum (excluding tot_len and saddr)
|
|
|
|
* @tsum: Partial TCP header checksum (excluding length and saddr)
|
|
|
|
* @pad: Align TCP header to 32 bytes, for AVX2 checksum calculation only
|
|
|
|
* @vnet_len: 4-byte qemu vnet buffer length descriptor, only for passt mode
|
|
|
|
* @eh: Pre-filled Ethernet header
|
|
|
|
* @iph: Pre-filled IP header (except for tot_len and saddr)
|
|
|
|
* @th: Headroom for TCP header
|
|
|
|
* @opts: Headroom for TCP options
|
|
|
|
*/
|
2021-10-05 19:15:01 +00:00
|
|
|
static struct tcp4_l2_flags_buf_t {
|
2021-10-05 17:46:59 +00:00
|
|
|
uint32_t psum; /* 0 */
|
|
|
|
uint32_t tsum; /* 4 */
|
|
|
|
#ifdef __AVX2__
|
|
|
|
uint8_t pad[18]; /* 8, align th to 32 bytes */
|
2021-10-14 10:10:24 +00:00
|
|
|
#else
|
|
|
|
uint8_t pad[2]; /* align iph to 4 bytes 8 */
|
2021-10-05 17:46:59 +00:00
|
|
|
#endif
|
2021-10-14 10:10:24 +00:00
|
|
|
uint32_t vnet_len; /* 26 10 */
|
|
|
|
struct ethhdr eh; /* 30 14 */
|
|
|
|
struct iphdr iph; /* 44 28 */
|
|
|
|
struct tcphdr th; /* 64 48 */
|
2021-10-05 17:46:59 +00:00
|
|
|
char opts[OPT_MSS_LEN + OPT_WS_LEN + 1];
|
|
|
|
#ifdef __AVX2__
|
|
|
|
} __attribute__ ((packed, aligned(32)))
|
|
|
|
#else
|
|
|
|
} __attribute__ ((packed, aligned(__alignof__(unsigned int))))
|
|
|
|
#endif
|
2021-10-05 19:15:01 +00:00
|
|
|
tcp4_l2_flags_buf[TCP_TAP_FRAMES];
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
static int tcp4_l2_flags_buf_used;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp6_l2_flags_buf_t - IPv6 packet buffers for segments without data (flags)
|
|
|
|
* @pad: Align IPv6 header for checksum calculation to 32B (AVX2) or 4B
|
|
|
|
* @vnet_len: 4-byte qemu vnet buffer length descriptor, only for passt mode
|
|
|
|
* @eh: Pre-filled Ethernet header
|
|
|
|
* @ip6h: Pre-filled IP header (except for payload_len and addresses)
|
|
|
|
* @th: Headroom for TCP header
|
|
|
|
* @opts: Headroom for TCP options
|
|
|
|
*/
|
2021-10-05 19:15:01 +00:00
|
|
|
static struct tcp6_l2_flags_buf_t {
|
2021-10-05 17:46:59 +00:00
|
|
|
#ifdef __AVX2__
|
|
|
|
uint8_t pad[14]; /* 0 align ip6h to 32 bytes */
|
|
|
|
#else
|
|
|
|
uint8_t pad[2]; /* align ip6h to 4 bytes 0 */
|
|
|
|
#endif
|
|
|
|
uint32_t vnet_len; /* 14 2 */
|
|
|
|
struct ethhdr eh; /* 18 6 */
|
|
|
|
struct ipv6hdr ip6h; /* 32 20 */
|
|
|
|
struct tcphdr th /* 72 */ __attribute__ ((aligned(4))); /* 60 */
|
|
|
|
char opts[OPT_MSS_LEN + OPT_WS_LEN + 1];
|
|
|
|
#ifdef __AVX2__
|
|
|
|
} __attribute__ ((packed, aligned(32)))
|
|
|
|
#else
|
|
|
|
} __attribute__ ((packed, aligned(__alignof__(unsigned int))))
|
|
|
|
#endif
|
2021-10-05 19:15:01 +00:00
|
|
|
tcp6_l2_flags_buf[TCP_TAP_FRAMES];
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
static int tcp6_l2_flags_buf_used;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
/* SO_RCVLOWAT set on source ([0]) or destination ([1]) socket, and activity */
|
|
|
|
static uint8_t splice_rcvlowat_set[MAX_SPLICE_CONNS / 8][2];
|
|
|
|
static uint8_t splice_rcvlowat_act[MAX_SPLICE_CONNS / 8][2];
|
2021-03-17 09:57:40 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
/* TCP connections */
|
|
|
|
static struct tcp_tap_conn tt[MAX_TAP_CONNS];
|
|
|
|
static struct tcp_splice_conn ts[MAX_SPLICE_CONNS];
|
2021-03-17 09:57:40 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
/* Table for lookup from remote address, local port, remote port */
|
|
|
|
static struct tcp_tap_conn *tt_hash[TCP_HASH_TABLE_SIZE];
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
/* Pools for pre-opened sockets and pipes */
|
|
|
|
static int splice_pipe_pool [TCP_SPLICE_PIPE_POOL_SIZE][2][2];
|
|
|
|
static int init_sock_pool4 [TCP_SOCK_POOL_SIZE];
|
|
|
|
static int init_sock_pool6 [TCP_SOCK_POOL_SIZE];
|
|
|
|
static int ns_sock_pool4 [TCP_SOCK_POOL_SIZE];
|
|
|
|
static int ns_sock_pool6 [TCP_SOCK_POOL_SIZE];
|
|
|
|
|
2021-10-04 20:01:16 +00:00
|
|
|
/**
|
|
|
|
* tcp_rtt_dst_low() - Check if low RTT was seen for connection endpoint
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* Return: 1 if destination is in low RTT table, 0 otherwise
|
|
|
|
*/
|
|
|
|
static int tcp_rtt_dst_low(struct tcp_tap_conn *conn)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < LOW_RTT_TABLE_SIZE; i++)
|
|
|
|
if (!memcmp(&conn->a.a6, low_rtt_dst + i, sizeof(conn->a.a6)))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_rtt_dst_check() - Check tcpi_min_rtt, insert endpoint in table if low
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @info: Pointer to struct tcp_info for socket
|
|
|
|
*/
|
|
|
|
static void tcp_rtt_dst_check(struct tcp_tap_conn *conn, struct tcp_info *info)
|
|
|
|
{
|
|
|
|
int i, hole = -1;
|
|
|
|
|
|
|
|
if (!info->tcpi_min_rtt || (int)info->tcpi_min_rtt > LOW_RTT_THRESHOLD)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < LOW_RTT_TABLE_SIZE; i++) {
|
|
|
|
if (!memcmp(&conn->a.a6, low_rtt_dst + i, sizeof(conn->a.a6)))
|
|
|
|
return;
|
|
|
|
if (hole == -1 && IN6_IS_ADDR_UNSPECIFIED(low_rtt_dst + i))
|
|
|
|
hole = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(low_rtt_dst + hole++, &conn->a.a6, sizeof(conn->a.a6));
|
|
|
|
if (hole == LOW_RTT_TABLE_SIZE)
|
|
|
|
hole = 0;
|
|
|
|
memcpy(low_rtt_dst + hole, &in6addr_any, sizeof(conn->a.a6));
|
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_tap_state() - Set given TCP state for tap connection, report to stderr
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @state: New TCP state to be set
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_tap_state(struct tcp_tap_conn *conn, enum tcp_state state)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
debug("TCP: socket %i: %s -> %s",
|
|
|
|
conn->sock, tcp_state_str[conn->state], tcp_state_str[state]);
|
|
|
|
conn->state = state;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_splice_state() - Set state for spliced connection, report to stderr
|
|
|
|
* @conn: Connection pointer
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* @state: New TCP state to be set
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_splice_state(struct tcp_splice_conn *conn, enum tcp_state state)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
debug("TCP: index %i: %s -> %s",
|
|
|
|
conn - ts, tcp_state_str[conn->state], tcp_state_str[state]);
|
|
|
|
conn->state = state;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
2021-10-04 19:50:05 +00:00
|
|
|
/**
|
|
|
|
* tcp_get_sndbuf() - Get, scale SO_SNDBUF between thresholds (1 to 0.5 usage)
|
|
|
|
* @conn: Connection pointer
|
|
|
|
*/
|
|
|
|
static void tcp_get_sndbuf(struct tcp_tap_conn *conn)
|
|
|
|
{
|
|
|
|
int s = conn->sock, v;
|
|
|
|
socklen_t sl;
|
|
|
|
|
|
|
|
sl = sizeof(v);
|
|
|
|
if (getsockopt(s, SOL_SOCKET, SO_SNDBUF, &v, &sl)) {
|
|
|
|
conn->snd_buf = WINDOW_DEFAULT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (v >= SNDBUF_BIG)
|
|
|
|
v /= 2;
|
|
|
|
else if (v > SNDBUF_SMALL)
|
|
|
|
v -= v * (v - SNDBUF_SMALL) / (SNDBUF_BIG - SNDBUF_SMALL) / 2;
|
|
|
|
|
|
|
|
conn->snd_buf = v;
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
/**
|
|
|
|
* tcp_sock_set_bufsize() - Set SO_RCVBUF and SO_SNDBUF to maximum values
|
|
|
|
* @s: Socket, can be -1 to avoid check in the caller
|
|
|
|
*/
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
static void tcp_sock_set_bufsize(struct ctx *c, int s)
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
{
|
|
|
|
int v = INT_MAX / 2; /* Kernel clamps and rounds, no need to check */
|
|
|
|
|
|
|
|
if (s == -1)
|
|
|
|
return;
|
|
|
|
|
2021-10-05 17:27:04 +00:00
|
|
|
if (!c->low_rmem)
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
setsockopt(s, SOL_SOCKET, SO_RCVBUF, &v, sizeof(v));
|
|
|
|
|
2021-10-05 17:27:04 +00:00
|
|
|
if (!c->low_wmem)
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
setsockopt(s, SOL_SOCKET, SO_SNDBUF, &v, sizeof(v));
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
}
|
|
|
|
|
2021-07-26 12:20:36 +00:00
|
|
|
/**
|
|
|
|
* tcp_update_check_ip4() - Update IPv4 with variable parts from stored one
|
|
|
|
* @buf: L2 packet buffer with final IPv4 header
|
|
|
|
*/
|
|
|
|
static void tcp_update_check_ip4(struct tcp4_l2_buf_t *buf)
|
|
|
|
{
|
|
|
|
uint32_t sum = buf->psum;
|
|
|
|
|
|
|
|
sum += buf->iph.tot_len;
|
|
|
|
sum += (buf->iph.saddr >> 16) & 0xffff;
|
|
|
|
sum += buf->iph.saddr & 0xffff;
|
|
|
|
|
|
|
|
buf->iph.check = (uint16_t)~csum_fold(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_update_check_tcp4() - Update TCP checksum from stored one
|
|
|
|
* @buf: L2 packet buffer with final IPv4 header
|
|
|
|
*/
|
|
|
|
static void tcp_update_check_tcp4(struct tcp4_l2_buf_t *buf)
|
|
|
|
{
|
|
|
|
uint16_t tlen = ntohs(buf->iph.tot_len) - 20;
|
|
|
|
uint32_t sum = buf->tsum;
|
|
|
|
|
|
|
|
sum += (buf->iph.saddr >> 16) & 0xffff;
|
|
|
|
sum += buf->iph.saddr & 0xffff;
|
|
|
|
sum += htons(ntohs(buf->iph.tot_len) - 20);
|
|
|
|
|
|
|
|
buf->th.check = 0;
|
|
|
|
buf->th.check = csum(&buf->th, tlen, sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_update_check_tcp6() - Calculate TCP checksum for IPv6
|
|
|
|
* @buf: L2 packet buffer with final IPv6 header
|
|
|
|
*/
|
|
|
|
static void tcp_update_check_tcp6(struct tcp6_l2_buf_t *buf)
|
|
|
|
{
|
|
|
|
int len = ntohs(buf->ip6h.payload_len) + sizeof(struct ipv6hdr);
|
|
|
|
|
|
|
|
buf->ip6h.hop_limit = IPPROTO_TCP;
|
|
|
|
buf->ip6h.version = 0;
|
|
|
|
buf->ip6h.nexthdr = 0;
|
|
|
|
|
|
|
|
buf->th.check = 0;
|
|
|
|
buf->th.check = csum(&buf->ip6h, len, 0);
|
|
|
|
|
|
|
|
buf->ip6h.hop_limit = 255;
|
|
|
|
buf->ip6h.version = 6;
|
|
|
|
buf->ip6h.nexthdr = IPPROTO_TCP;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_update_l2_buf() - Update L2 buffers with Ethernet and IPv4 addresses
|
|
|
|
* @eth_d: Ethernet destination address, NULL if unchanged
|
|
|
|
* @eth_s: Ethernet source address, NULL if unchanged
|
|
|
|
* @ip_da: Pointer to IPv4 destination address, NULL if unchanged
|
|
|
|
*/
|
|
|
|
void tcp_update_l2_buf(unsigned char *eth_d, unsigned char *eth_s,
|
2021-10-19 22:05:11 +00:00
|
|
|
const uint32_t *ip_da)
|
2021-07-26 12:20:36 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < TCP_TAP_FRAMES; i++) {
|
2021-10-05 17:46:59 +00:00
|
|
|
struct tcp4_l2_flags_buf_t *b4f = &tcp4_l2_flags_buf[i];
|
|
|
|
struct tcp6_l2_flags_buf_t *b6f = &tcp6_l2_flags_buf[i];
|
2021-07-26 12:20:36 +00:00
|
|
|
struct tcp4_l2_buf_t *b4 = &tcp4_l2_buf[i];
|
|
|
|
struct tcp6_l2_buf_t *b6 = &tcp6_l2_buf[i];
|
|
|
|
|
|
|
|
if (eth_d) {
|
|
|
|
memcpy(b4->eh.h_dest, eth_d, ETH_ALEN);
|
|
|
|
memcpy(b6->eh.h_dest, eth_d, ETH_ALEN);
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
memcpy(b4f->eh.h_dest, eth_d, ETH_ALEN);
|
|
|
|
memcpy(b6f->eh.h_dest, eth_d, ETH_ALEN);
|
2021-07-26 12:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (eth_s) {
|
|
|
|
memcpy(b4->eh.h_source, eth_s, ETH_ALEN);
|
|
|
|
memcpy(b6->eh.h_source, eth_s, ETH_ALEN);
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
memcpy(b4f->eh.h_source, eth_s, ETH_ALEN);
|
|
|
|
memcpy(b6f->eh.h_source, eth_s, ETH_ALEN);
|
2021-07-26 12:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (ip_da) {
|
2021-10-05 17:46:59 +00:00
|
|
|
b4f->iph.daddr = b4->iph.daddr = *ip_da;
|
2021-07-26 12:20:36 +00:00
|
|
|
if (!i) {
|
2021-10-05 17:46:59 +00:00
|
|
|
b4f->iph.saddr = b4->iph.saddr = 0;
|
|
|
|
b4f->iph.tot_len = b4->iph.tot_len = 0;
|
|
|
|
b4f->iph.check = b4->iph.check = 0;
|
|
|
|
b4f->psum = b4->psum = sum_16b(&b4->iph, 20);
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
b4->tsum = ((*ip_da >> 16) & 0xffff) +
|
|
|
|
(*ip_da & 0xffff) +
|
|
|
|
htons(IPPROTO_TCP);
|
2021-10-05 17:46:59 +00:00
|
|
|
b4f->tsum = b4->tsum;
|
2021-07-26 12:20:36 +00:00
|
|
|
} else {
|
2021-10-05 17:46:59 +00:00
|
|
|
b4f->psum = b4->psum = tcp4_l2_buf[0].psum;
|
|
|
|
b4f->tsum = b4->tsum = tcp4_l2_buf[0].tsum;
|
2021-07-26 12:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_sock4_iov_init() - Initialise scatter-gather L2 buffers for IPv4 sockets
|
|
|
|
*/
|
|
|
|
static void tcp_sock4_iov_init(void)
|
|
|
|
{
|
|
|
|
struct iovec *iov;
|
|
|
|
int i;
|
|
|
|
|
2021-10-05 19:15:01 +00:00
|
|
|
for (i = 0; i < ARRAY_SIZE(tcp4_l2_buf); i++) {
|
|
|
|
tcp4_l2_buf[i] = (struct tcp4_l2_buf_t) { 0, 0,
|
|
|
|
{ 0 },
|
|
|
|
0, L2_BUF_ETH_IP4_INIT, L2_BUF_IP4_INIT(IPPROTO_TCP),
|
|
|
|
{ .doff = sizeof(struct tcphdr) / 4, .ack = 1 }, { 0 },
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tcp4_l2_flags_buf); i++) {
|
|
|
|
tcp4_l2_flags_buf[i] = (struct tcp4_l2_flags_buf_t) { 0, 0,
|
|
|
|
{ 0 },
|
|
|
|
0, L2_BUF_ETH_IP4_INIT, L2_BUF_IP4_INIT(IPPROTO_TCP),
|
|
|
|
{ 0 }, { 0 },
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2021-07-26 12:20:36 +00:00
|
|
|
for (i = 0, iov = tcp4_l2_iov_tap; i < TCP_TAP_FRAMES; i++, iov++) {
|
|
|
|
iov->iov_base = &tcp4_l2_buf[i].vnet_len;
|
|
|
|
iov->iov_len = MSS_DEFAULT;
|
|
|
|
}
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
for (i = 0, iov = tcp4_l2_flags_iov_tap; i < TCP_TAP_FRAMES; i++, iov++)
|
|
|
|
iov->iov_base = &tcp4_l2_flags_buf[i].vnet_len;
|
2021-07-26 12:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_sock6_iov_init() - Initialise scatter-gather L2 buffers for IPv6 sockets
|
|
|
|
*/
|
|
|
|
static void tcp_sock6_iov_init(void)
|
|
|
|
{
|
|
|
|
struct iovec *iov;
|
|
|
|
int i;
|
|
|
|
|
2021-10-05 19:15:01 +00:00
|
|
|
for (i = 0; i < ARRAY_SIZE(tcp6_l2_buf); i++) {
|
|
|
|
tcp6_l2_buf[i] = (struct tcp6_l2_buf_t) {
|
|
|
|
{ 0 },
|
|
|
|
0, L2_BUF_ETH_IP6_INIT, L2_BUF_IP6_INIT(IPPROTO_TCP),
|
|
|
|
{ .doff = sizeof(struct tcphdr) / 4, .ack = 1 }, { 0 },
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tcp6_l2_flags_buf); i++) {
|
|
|
|
tcp6_l2_flags_buf[i] = (struct tcp6_l2_flags_buf_t) {
|
|
|
|
{ 0 },
|
|
|
|
0, L2_BUF_ETH_IP6_INIT, L2_BUF_IP6_INIT(IPPROTO_TCP),
|
|
|
|
{ 0 }, { 0 },
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2021-07-26 12:20:36 +00:00
|
|
|
for (i = 0, iov = tcp6_l2_iov_tap; i < TCP_TAP_FRAMES; i++, iov++) {
|
|
|
|
iov->iov_base = &tcp6_l2_buf[i].vnet_len;
|
|
|
|
iov->iov_len = MSS_DEFAULT;
|
|
|
|
}
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
for (i = 0, iov = tcp6_l2_flags_iov_tap; i < TCP_TAP_FRAMES; i++, iov++)
|
|
|
|
iov->iov_base = &tcp6_l2_flags_buf[i].vnet_len;
|
2021-07-26 12:20:36 +00:00
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
|
|
|
* tcp_opt_get() - Get option, and value if any, from TCP header
|
|
|
|
* @th: Pointer to TCP header
|
|
|
|
* @len: Length of buffer, including TCP header
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* @__type: Option type to look for
|
|
|
|
* @__optlen: Optional, filled with option length if passed
|
|
|
|
* @__value: Optional, set to start of option value if passed
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
|
|
|
* Return: Option value, meaningful for up to 4 bytes, -1 if not found
|
|
|
|
*/
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
static int tcp_opt_get(struct tcphdr *th, size_t len, uint8_t __type,
|
|
|
|
uint8_t *__optlen, char **__value)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
uint8_t type, optlen;
|
|
|
|
char *p;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
if (len > th->doff * 4)
|
|
|
|
len = th->doff * 4;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
len -= sizeof(*th);
|
|
|
|
p = (char *)(th + 1);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
for (; len >= 2; p += optlen, len -= optlen) {
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
switch (*p) {
|
|
|
|
case OPT_EOL:
|
|
|
|
return -1;
|
|
|
|
case OPT_NOP:
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
optlen = 1;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
|
|
|
default:
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
type = *(p++);
|
|
|
|
optlen = *(p++) - 2;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
len -= 2;
|
|
|
|
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
if (type != __type)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (__optlen)
|
|
|
|
*__optlen = optlen;
|
|
|
|
if (__value)
|
|
|
|
*__value = p;
|
|
|
|
|
|
|
|
switch (optlen) {
|
|
|
|
case 0:
|
|
|
|
return 0;
|
|
|
|
case 1:
|
|
|
|
return *p;
|
|
|
|
case 2:
|
|
|
|
return ntohs(*(uint16_t *)p);
|
|
|
|
default:
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return ntohl(*(uint32_t *)p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_hash_match() - Check if a connection entry matches address and ports
|
2021-03-17 09:57:40 +00:00
|
|
|
* @conn: Connection entry to match against
|
|
|
|
* @af: Address family, AF_INET or AF_INET6
|
|
|
|
* @addr: Remote address, pointer to sin_addr or sin6_addr
|
|
|
|
* @tap_port: tap-facing port
|
|
|
|
* @sock_port: Socket-facing port
|
|
|
|
*
|
|
|
|
* Return: 1 on match, 0 otherwise
|
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static int tcp_hash_match(struct tcp_tap_conn *conn, int af, void *addr,
|
|
|
|
in_port_t tap_port, in_port_t sock_port)
|
2021-03-17 09:57:40 +00:00
|
|
|
{
|
2021-10-05 17:46:59 +00:00
|
|
|
if (af == AF_INET && CONN_V4(conn) &&
|
2021-03-17 09:57:40 +00:00
|
|
|
!memcmp(&conn->a.a4.a, addr, sizeof(conn->a.a4.a)) &&
|
|
|
|
conn->tap_port == tap_port && conn->sock_port == sock_port)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (af == AF_INET6 &&
|
|
|
|
!memcmp(&conn->a.a6, addr, sizeof(conn->a.a6)) &&
|
|
|
|
conn->tap_port == tap_port && conn->sock_port == sock_port)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_hash() - Calculate hash value for connection given address and ports
|
2021-03-17 09:57:41 +00:00
|
|
|
* @c: Execution context
|
2021-03-17 09:57:40 +00:00
|
|
|
* @af: Address family, AF_INET or AF_INET6
|
|
|
|
* @addr: Remote address, pointer to sin_addr or sin6_addr
|
|
|
|
* @tap_port: tap-facing port
|
|
|
|
* @sock_port: Socket-facing port
|
|
|
|
*
|
|
|
|
* Return: hash value, already modulo size of the hash table
|
|
|
|
*/
|
2021-10-19 15:28:18 +00:00
|
|
|
#if TCP_HASH_NOINLINE
|
|
|
|
__attribute__((__noinline__)) /* See comment in Makefile */
|
|
|
|
#endif
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static unsigned int tcp_hash(struct ctx *c, int af, void *addr,
|
|
|
|
in_port_t tap_port, in_port_t sock_port)
|
2021-03-17 09:57:40 +00:00
|
|
|
{
|
2021-04-22 11:39:36 +00:00
|
|
|
uint64_t b = 0;
|
2021-03-17 09:57:40 +00:00
|
|
|
|
|
|
|
if (af == AF_INET) {
|
|
|
|
struct {
|
|
|
|
struct in_addr addr;
|
|
|
|
in_port_t tap_port;
|
|
|
|
in_port_t sock_port;
|
|
|
|
} __attribute__((__packed__)) in = {
|
|
|
|
.addr = *(struct in_addr *)addr,
|
|
|
|
.tap_port = tap_port,
|
|
|
|
.sock_port = sock_port,
|
|
|
|
};
|
|
|
|
|
2021-03-17 09:57:41 +00:00
|
|
|
b = siphash_8b((uint8_t *)&in, c->tcp.hash_secret);
|
2021-03-17 09:57:40 +00:00
|
|
|
} else if (af == AF_INET6) {
|
|
|
|
struct {
|
|
|
|
struct in6_addr addr;
|
|
|
|
in_port_t tap_port;
|
|
|
|
in_port_t sock_port;
|
|
|
|
} __attribute__((__packed__)) in = {
|
|
|
|
.addr = *(struct in6_addr *)addr,
|
|
|
|
.tap_port = tap_port,
|
|
|
|
.sock_port = sock_port,
|
|
|
|
};
|
|
|
|
|
2021-03-17 09:57:41 +00:00
|
|
|
b = siphash_20b((uint8_t *)&in, c->tcp.hash_secret);
|
2021-03-17 09:57:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return (unsigned int)(b % TCP_HASH_TABLE_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_hash_insert() - Insert connection into hash table, chain link
|
2021-03-17 09:57:41 +00:00
|
|
|
* @c: Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @conn: Connection pointer
|
2021-03-17 09:57:40 +00:00
|
|
|
* @af: Address family, AF_INET or AF_INET6
|
|
|
|
* @addr: Remote address, pointer to sin_addr or sin6_addr
|
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_hash_insert(struct ctx *c, struct tcp_tap_conn *conn,
|
|
|
|
int af, void *addr)
|
2021-03-17 09:57:40 +00:00
|
|
|
{
|
|
|
|
int b;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
b = tcp_hash(c, af, addr, conn->tap_port, conn->sock_port);
|
|
|
|
conn->next = tt_hash[b];
|
|
|
|
tt_hash[b] = conn;
|
|
|
|
conn->hash_bucket = b;
|
|
|
|
|
|
|
|
debug("TCP: hash table insert: index %i, sock %i, bucket: %i, next: %p",
|
|
|
|
conn - tt, conn->sock, b, conn->next);
|
2021-03-17 09:57:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_hash_remove() - Drop connection from hash table, chain unlink
|
|
|
|
* @conn: Connection pointer
|
2021-03-17 09:57:40 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_hash_remove(struct tcp_tap_conn *conn)
|
2021-03-17 09:57:40 +00:00
|
|
|
{
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct tcp_tap_conn *entry, *prev = NULL;
|
|
|
|
int b = conn->hash_bucket;
|
2021-03-17 09:57:40 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
for (entry = tt_hash[b]; entry; prev = entry, entry = entry->next) {
|
|
|
|
if (entry == conn) {
|
2021-03-17 09:57:40 +00:00
|
|
|
if (prev)
|
|
|
|
prev->next = conn->next;
|
|
|
|
else
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tt_hash[b] = conn->next;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
debug("TCP: hash table remove: index %i, sock %i, bucket: %i, new: %p",
|
|
|
|
conn - tt, conn->sock, b, prev ? prev->next : tt_hash[b]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_hash_update() - Update pointer for given connection
|
|
|
|
* @old: Old connection pointer
|
|
|
|
* @new: New connection pointer
|
|
|
|
*/
|
|
|
|
static void tcp_hash_update(struct tcp_tap_conn *old, struct tcp_tap_conn *new)
|
|
|
|
{
|
|
|
|
struct tcp_tap_conn *entry, *prev = NULL;
|
|
|
|
int b = old->hash_bucket;
|
|
|
|
|
|
|
|
for (entry = tt_hash[b]; entry; prev = entry, entry = entry->next) {
|
|
|
|
if (entry == old) {
|
|
|
|
if (prev)
|
|
|
|
prev->next = new;
|
|
|
|
else
|
|
|
|
tt_hash[b] = new;
|
|
|
|
break;
|
2021-03-17 09:57:40 +00:00
|
|
|
}
|
|
|
|
}
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
debug("TCP: hash table update: old index %i, new index %i, sock %i, "
|
|
|
|
"bucket: %i, old: %p, new: %p",
|
|
|
|
old - tt, new - tt, new->sock, b, old, new);
|
2021-03-17 09:57:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_hash_lookup() - Look up connection given remote address and ports
|
2021-03-17 09:57:41 +00:00
|
|
|
* @c: Execution context
|
2021-03-17 09:57:40 +00:00
|
|
|
* @af: Address family, AF_INET or AF_INET6
|
|
|
|
* @addr: Remote address, pointer to sin_addr or sin6_addr
|
|
|
|
* @tap_port: tap-facing port
|
|
|
|
* @sock_port: Socket-facing port
|
|
|
|
*
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* Return: connection pointer, if found, -ENOENT otherwise
|
2021-03-17 09:57:40 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static struct tcp_tap_conn *tcp_hash_lookup(struct ctx *c, int af, void *addr,
|
|
|
|
in_port_t tap_port,
|
|
|
|
in_port_t sock_port)
|
2021-03-17 09:57:40 +00:00
|
|
|
{
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
int b = tcp_hash(c, af, addr, tap_port, sock_port);
|
|
|
|
struct tcp_tap_conn *conn;
|
2021-03-17 09:57:40 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
for (conn = tt_hash[b]; conn; conn = conn->next) {
|
|
|
|
if (tcp_hash_match(conn, af, addr, tap_port, sock_port))
|
|
|
|
return conn;
|
2021-03-17 09:57:40 +00:00
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
return NULL;
|
2021-03-17 09:57:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* tcp_tap_epoll_mask() - Set new epoll event mask given a connection
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @events: New epoll event bitmap
|
|
|
|
*/
|
|
|
|
static void tcp_tap_epoll_mask(struct ctx *c, struct tcp_tap_conn *conn,
|
|
|
|
uint32_t events)
|
|
|
|
{
|
|
|
|
union epoll_ref ref = { .proto = IPPROTO_TCP, .s = conn->sock,
|
|
|
|
.tcp.index = conn - tt,
|
2021-10-05 17:46:59 +00:00
|
|
|
.tcp.v6 = CONN_V6(conn) };
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
struct epoll_event ev = { .data.u64 = ref.u64, .events = events };
|
|
|
|
|
|
|
|
if (conn->events == events)
|
|
|
|
return;
|
|
|
|
|
|
|
|
conn->events = events;
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_MOD, conn->sock, &ev);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_table_tap_compact() - Perform compaction on tap connection table
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @c: Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @hole: Pointer to recently closed connection
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_table_tap_compact(struct ctx *c, struct tcp_tap_conn *hole)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct tcp_tap_conn *from, *to;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
uint32_t events;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
if ((hole - tt) == --c->tcp.tap_conn_count) {
|
|
|
|
debug("TCP: hash table compaction: index %i (%p) was max index",
|
|
|
|
hole - tt, hole);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
from = &tt[c->tcp.tap_conn_count];
|
|
|
|
memcpy(hole, from, sizeof(*hole));
|
|
|
|
from->state = CLOSED;
|
|
|
|
|
|
|
|
to = hole;
|
|
|
|
tcp_hash_update(from, to);
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
events = hole->events;
|
|
|
|
hole->events = UINT_MAX;
|
|
|
|
tcp_tap_epoll_mask(c, hole, events);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
debug("TCP: hash table compaction: old index %i, new index %i, "
|
|
|
|
"sock %i, from: %p, to: %p",
|
|
|
|
from - tt, to - tt, from->sock, from, to);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_tap_destroy() - Close tap connection, drop from hash table and epoll
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @c: Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @conn: Connection pointer
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_tap_destroy(struct ctx *c, struct tcp_tap_conn *conn)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (conn->state == CLOSED)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->sock, NULL);
|
|
|
|
tcp_tap_state(conn, CLOSED);
|
|
|
|
close(conn->sock);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
|
|
|
|
/* Removal from hash table and connection table compaction deferred to
|
|
|
|
* timer.
|
|
|
|
*/
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_rst(struct ctx *c, struct tcp_tap_conn *conn);
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
/**
|
|
|
|
* tcp_l2_flags_buf_flush() - Send out buffers for segments with no data (flags)
|
|
|
|
* @c: Execution context
|
|
|
|
*/
|
|
|
|
static void tcp_l2_flags_buf_flush(struct ctx *c)
|
|
|
|
{
|
|
|
|
struct msghdr mh = { 0 };
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
mh.msg_iov = tcp6_l2_flags_iov_tap;
|
|
|
|
if ((mh.msg_iovlen = tcp6_l2_flags_buf_used)) {
|
|
|
|
if (c->mode == MODE_PASST) {
|
|
|
|
sendmsg(c->fd_tap, &mh, MSG_NOSIGNAL | MSG_DONTWAIT);
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < mh.msg_iovlen; i++) {
|
|
|
|
struct iovec *iov = &mh.msg_iov[i];
|
|
|
|
|
2021-10-19 15:28:18 +00:00
|
|
|
if (write(c->fd_tap, (char *)iov->iov_base + 4,
|
|
|
|
iov->iov_len - 4) < 0)
|
|
|
|
debug("tap write: %s", strerror(errno));
|
2021-10-05 17:46:59 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
tcp6_l2_flags_buf_used = 0;
|
|
|
|
pcapm(&mh);
|
|
|
|
}
|
|
|
|
|
|
|
|
mh.msg_iov = tcp4_l2_flags_iov_tap;
|
|
|
|
if ((mh.msg_iovlen = tcp4_l2_flags_buf_used)) {
|
|
|
|
if (c->mode == MODE_PASST) {
|
|
|
|
sendmsg(c->fd_tap, &mh, MSG_NOSIGNAL | MSG_DONTWAIT);
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < mh.msg_iovlen; i++) {
|
|
|
|
struct iovec *iov = &mh.msg_iov[i];
|
|
|
|
|
2021-10-19 15:28:18 +00:00
|
|
|
if (write(c->fd_tap, (char *)iov->iov_base + 4,
|
|
|
|
iov->iov_len - 4) < 0)
|
|
|
|
debug("tap write: %s", strerror(errno));
|
2021-10-05 17:46:59 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
tcp4_l2_flags_buf_used = 0;
|
|
|
|
pcapm(&mh);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-10-15 15:13:23 +00:00
|
|
|
/**
|
|
|
|
* tcp_l2_buf_flush_part() - Ensure a complete last message on partial sendmsg()
|
|
|
|
* @c: Execution context
|
|
|
|
* @mh: Message header that was partially sent by sendmsg()
|
|
|
|
* @sent: Bytes already sent
|
|
|
|
*/
|
|
|
|
static void tcp_l2_buf_flush_part(struct ctx *c, struct msghdr *mh, size_t sent)
|
|
|
|
{
|
|
|
|
size_t end = 0, missing;
|
|
|
|
struct iovec *iov;
|
|
|
|
unsigned int i;
|
|
|
|
char *p;
|
|
|
|
|
|
|
|
for (i = 0, iov = mh->msg_iov; i < mh->msg_iovlen; i++, iov++) {
|
|
|
|
end += iov->iov_len;
|
|
|
|
if (end >= sent)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
missing = end - sent;
|
|
|
|
p = (char *)iov->iov_base + iov->iov_len - missing;
|
|
|
|
send(c->fd_tap, p, missing, MSG_NOSIGNAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_l2_flags_buf() - Send out buffers for segments with data
|
|
|
|
* @c: Execution context
|
|
|
|
*/
|
|
|
|
static void tcp_l2_buf_flush(struct ctx *c)
|
|
|
|
{
|
|
|
|
struct msghdr mh = { 0 };
|
|
|
|
size_t i, n;
|
|
|
|
|
|
|
|
mh.msg_iov = tcp6_l2_iov_tap;
|
|
|
|
if (!(mh.msg_iovlen = tcp6_l2_buf_used))
|
|
|
|
goto v4;
|
|
|
|
|
|
|
|
if (c->mode == MODE_PASST) {
|
|
|
|
n = sendmsg(c->fd_tap, &mh, MSG_NOSIGNAL | MSG_DONTWAIT);
|
|
|
|
if (n > 0 && n < tcp6_l2_buf_bytes)
|
|
|
|
tcp_l2_buf_flush_part(c, &mh, n);
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < mh.msg_iovlen; i++) {
|
|
|
|
struct iovec *iov = &mh.msg_iov[i];
|
|
|
|
|
2021-10-19 15:28:18 +00:00
|
|
|
if (write(c->fd_tap, (char *)iov->iov_base + 4,
|
|
|
|
iov->iov_len - 4) < 0)
|
|
|
|
debug("tap write: %s", strerror(errno));
|
2021-10-15 15:13:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
tcp6_l2_buf_used = tcp6_l2_buf_bytes = 0;
|
|
|
|
pcapm(&mh);
|
|
|
|
|
|
|
|
v4:
|
|
|
|
mh.msg_iov = tcp4_l2_iov_tap;
|
|
|
|
if (!(mh.msg_iovlen = tcp4_l2_buf_used))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (c->mode == MODE_PASST) {
|
|
|
|
n = sendmsg(c->fd_tap, &mh, MSG_NOSIGNAL | MSG_DONTWAIT);
|
|
|
|
|
|
|
|
if (n > 0 && n < tcp4_l2_buf_bytes)
|
|
|
|
tcp_l2_buf_flush_part(c, &mh, n);
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < mh.msg_iovlen; i++) {
|
|
|
|
struct iovec *iov = &mh.msg_iov[i];
|
|
|
|
|
2021-10-19 15:28:18 +00:00
|
|
|
if (write(c->fd_tap, (char *)iov->iov_base + 4,
|
|
|
|
iov->iov_len - 4) < 0)
|
|
|
|
debug("tap write: %s", strerror(errno));
|
2021-10-15 15:13:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
tcp4_l2_buf_used = tcp4_l2_buf_bytes = 0;
|
|
|
|
pcapm(&mh);
|
|
|
|
}
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
/**
|
|
|
|
* tcp_defer_handler() - Handler for TCP deferred tasks
|
|
|
|
* @c: Execution context
|
|
|
|
*/
|
|
|
|
void tcp_defer_handler(struct ctx *c)
|
|
|
|
{
|
|
|
|
tcp_l2_flags_buf_flush(c);
|
2021-10-15 15:13:23 +00:00
|
|
|
tcp_l2_buf_flush(c);
|
2021-10-05 17:46:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_l2_buf_fill_headers() - Fill 802.3, IP, TCP headers in pre-cooked buffers
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @p: Pointer to any type of TCP pre-cooked buffer
|
|
|
|
* @plen: Payload length (including TCP header options)
|
|
|
|
* @check: Checksum, if already known
|
|
|
|
* @seq: Sequence number for this segment
|
|
|
|
*
|
|
|
|
* Return: 802.3 length, host order.
|
|
|
|
*/
|
|
|
|
static size_t tcp_l2_buf_fill_headers(struct ctx *c, struct tcp_tap_conn *conn,
|
|
|
|
void *p, size_t plen,
|
2021-10-19 22:05:11 +00:00
|
|
|
const uint16_t *check, uint32_t seq)
|
2021-10-05 17:46:59 +00:00
|
|
|
{
|
|
|
|
size_t ip_len, eth_len;
|
|
|
|
|
|
|
|
#define SET_TCP_HEADER_COMMON_V4_V6(b, conn, seq) \
|
|
|
|
do { \
|
|
|
|
b->th.source = htons(conn->sock_port); \
|
|
|
|
b->th.dest = htons(conn->tap_port); \
|
|
|
|
b->th.seq = htonl(seq); \
|
|
|
|
b->th.ack_seq = htonl(conn->seq_ack_to_tap); \
|
|
|
|
\
|
|
|
|
/* First value sent by receiver is not scaled */ \
|
|
|
|
if (b->th.syn) { \
|
|
|
|
b->th.window = htons(MIN(conn->wnd_to_tap, \
|
|
|
|
USHRT_MAX)); \
|
|
|
|
} else { \
|
|
|
|
b->th.window = htons(MIN(conn->wnd_to_tap >> \
|
|
|
|
conn->ws, \
|
|
|
|
USHRT_MAX)); \
|
|
|
|
} \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
if (CONN_V6(conn)) {
|
|
|
|
struct tcp6_l2_buf_t *b = (struct tcp6_l2_buf_t *)p;
|
|
|
|
uint32_t flow = conn->seq_init_to_tap;
|
|
|
|
|
|
|
|
ip_len = plen + sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
|
|
|
|
|
|
|
|
b->ip6h.payload_len = htons(plen + sizeof(struct tcphdr));
|
|
|
|
b->ip6h.saddr = conn->a.a6;
|
|
|
|
if (IN6_IS_ADDR_LINKLOCAL(&b->ip6h.saddr))
|
|
|
|
b->ip6h.daddr = c->addr6_ll_seen;
|
|
|
|
else
|
|
|
|
b->ip6h.daddr = c->addr6_seen;
|
|
|
|
|
|
|
|
memset(b->ip6h.flow_lbl, 0, 3);
|
|
|
|
|
|
|
|
SET_TCP_HEADER_COMMON_V4_V6(b, conn, seq);
|
|
|
|
|
|
|
|
tcp_update_check_tcp6(b);
|
|
|
|
|
|
|
|
b->ip6h.flow_lbl[0] = (flow >> 16) & 0xf;
|
|
|
|
b->ip6h.flow_lbl[1] = (flow >> 8) & 0xff;
|
|
|
|
b->ip6h.flow_lbl[2] = (flow >> 0) & 0xff;
|
|
|
|
|
|
|
|
eth_len = ip_len + sizeof(struct ethhdr);
|
|
|
|
if (c->mode == MODE_PASST)
|
|
|
|
b->vnet_len = htonl(eth_len);
|
|
|
|
} else {
|
|
|
|
struct tcp4_l2_buf_t *b = (struct tcp4_l2_buf_t *)p;
|
|
|
|
|
|
|
|
ip_len = plen + sizeof(struct iphdr) + sizeof(struct tcphdr);
|
|
|
|
b->iph.tot_len = htons(ip_len);
|
|
|
|
b->iph.saddr = conn->a.a4.a.s_addr;
|
|
|
|
b->iph.daddr = c->addr4_seen;
|
|
|
|
|
|
|
|
if (check)
|
|
|
|
b->iph.check = *check;
|
|
|
|
else
|
|
|
|
tcp_update_check_ip4(b);
|
|
|
|
|
|
|
|
SET_TCP_HEADER_COMMON_V4_V6(b, conn, seq);
|
|
|
|
|
|
|
|
tcp_update_check_tcp4(b);
|
|
|
|
|
|
|
|
eth_len = ip_len + sizeof(struct ethhdr);
|
|
|
|
if (c->mode == MODE_PASST)
|
|
|
|
b->vnet_len = htonl(eth_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef SET_TCP_HEADER_COMMON_V4_V6
|
|
|
|
|
|
|
|
return eth_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_update_seqack_wnd() - Update ACK sequence and window to guest/tap
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @flags: TCP header flags we are about to send, if any
|
|
|
|
* @info: tcp_info from kernel, can be NULL if not pre-fetched
|
|
|
|
*
|
|
|
|
* Return: 1 if sequence or window were updated, 0 otherwise
|
|
|
|
*/
|
|
|
|
static int tcp_update_seqack_wnd(struct ctx *c, struct tcp_tap_conn *conn,
|
|
|
|
int flags, struct tcp_info *info)
|
|
|
|
{
|
|
|
|
uint32_t prev_ack_to_tap = conn->seq_ack_to_tap;
|
|
|
|
uint32_t prev_wnd_to_tap = conn->wnd_to_tap;
|
|
|
|
socklen_t sl = sizeof(*info);
|
|
|
|
struct tcp_info __info;
|
|
|
|
int s = conn->sock;
|
|
|
|
|
|
|
|
if (conn->state > ESTABLISHED || (flags & (DUP_ACK | FORCE_ACK)) ||
|
|
|
|
conn->local || tcp_rtt_dst_low(conn) ||
|
|
|
|
conn->snd_buf < SNDBUF_SMALL) {
|
|
|
|
conn->seq_ack_to_tap = conn->seq_from_tap;
|
|
|
|
} else if (conn->seq_ack_to_tap != conn->seq_from_tap) {
|
|
|
|
if (!info) {
|
|
|
|
info = &__info;
|
|
|
|
if (getsockopt(s, SOL_TCP, TCP_INFO, info, &sl))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
conn->seq_ack_to_tap = info->tcpi_bytes_acked +
|
|
|
|
conn->seq_init_from_tap;
|
|
|
|
|
|
|
|
if (SEQ_LT(conn->seq_ack_to_tap, prev_ack_to_tap))
|
|
|
|
conn->seq_ack_to_tap = prev_ack_to_tap;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!c->tcp.kernel_snd_wnd) {
|
|
|
|
tcp_get_sndbuf(conn);
|
|
|
|
conn->wnd_to_tap = MIN(conn->snd_buf, MAX_WINDOW);
|
2021-10-19 07:13:53 +00:00
|
|
|
goto out;
|
2021-10-05 17:46:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!info) {
|
|
|
|
if (conn->wnd_to_tap > WINDOW_DEFAULT)
|
2021-10-19 07:13:53 +00:00
|
|
|
goto out;
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
info = &__info;
|
|
|
|
if (getsockopt(s, SOL_TCP, TCP_INFO, info, &sl))
|
2021-10-19 07:13:53 +00:00
|
|
|
goto out;
|
2021-10-05 17:46:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (conn->local || tcp_rtt_dst_low(conn)) {
|
|
|
|
conn->wnd_to_tap = info->tcpi_snd_wnd;
|
|
|
|
} else {
|
|
|
|
tcp_get_sndbuf(conn);
|
2021-10-19 22:05:11 +00:00
|
|
|
conn->wnd_to_tap = MIN((int)info->tcpi_snd_wnd, conn->snd_buf);
|
2021-10-05 17:46:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
conn->wnd_to_tap = MIN(conn->wnd_to_tap, MAX_WINDOW);
|
|
|
|
|
2021-10-19 07:13:53 +00:00
|
|
|
out:
|
2021-10-05 17:46:59 +00:00
|
|
|
return conn->wnd_to_tap != prev_wnd_to_tap ||
|
|
|
|
conn->seq_ack_to_tap != prev_ack_to_tap;
|
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
|
|
|
* tcp_send_to_tap() - Send segment to tap, with options and values from socket
|
|
|
|
* @c: Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @conn: Connection pointer
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @flags: TCP flags to set
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @now: Current timestamp, can be NULL
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* Return: negative error code on connection reset, 0 otherwise
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
static int tcp_send_to_tap(struct ctx *c, struct tcp_tap_conn *conn, int flags,
|
|
|
|
struct timespec *now)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
uint32_t prev_ack_to_tap = conn->seq_ack_to_tap;
|
2021-10-04 20:14:13 +00:00
|
|
|
uint32_t prev_wnd_to_tap = conn->wnd_to_tap;
|
2021-10-05 17:46:59 +00:00
|
|
|
struct tcp4_l2_flags_buf_t *b4 = NULL;
|
|
|
|
struct tcp6_l2_flags_buf_t *b6 = NULL;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
struct tcp_info info = { 0 };
|
|
|
|
socklen_t sl = sizeof(info);
|
2021-10-05 17:46:59 +00:00
|
|
|
size_t optlen = 0, eth_len;
|
2021-10-04 19:50:05 +00:00
|
|
|
int s = conn->sock;
|
2021-10-05 17:46:59 +00:00
|
|
|
struct iovec *iov;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
struct tcphdr *th;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
char *data;
|
2021-10-05 17:46:59 +00:00
|
|
|
void *p;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (SEQ_GE(conn->seq_ack_to_tap, conn->seq_from_tap) &&
|
|
|
|
!flags && conn->wnd_to_tap)
|
|
|
|
return 0;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
2021-10-04 19:50:05 +00:00
|
|
|
if (getsockopt(s, SOL_TCP, TCP_INFO, &info, &sl)) {
|
2021-10-19 22:05:11 +00:00
|
|
|
tcp_tap_destroy(c, conn);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
return -ECONNRESET;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
2021-10-04 20:14:13 +00:00
|
|
|
if (!conn->local)
|
|
|
|
tcp_rtt_dst_check(conn, &info);
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
if (!tcp_update_seqack_wnd(c, conn, flags, &info) && !flags)
|
|
|
|
return 0;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
if (CONN_V4(conn)) {
|
|
|
|
iov = tcp4_l2_flags_iov_tap + tcp4_l2_flags_buf_used;
|
|
|
|
p = b4 = tcp4_l2_flags_buf + tcp4_l2_flags_buf_used++;
|
|
|
|
th = &b4->th;
|
2021-10-19 15:28:18 +00:00
|
|
|
|
|
|
|
/* gcc 11.2 would complain on data = (char *)(th + 1); */
|
|
|
|
data = b4->opts;
|
2021-10-04 20:14:13 +00:00
|
|
|
} else {
|
2021-10-05 17:46:59 +00:00
|
|
|
iov = tcp6_l2_flags_iov_tap + tcp6_l2_flags_buf_used;
|
|
|
|
p = b6 = tcp6_l2_flags_buf + tcp6_l2_flags_buf_used++;
|
|
|
|
th = &b6->th;
|
2021-10-19 15:28:18 +00:00
|
|
|
data = b6->opts;
|
2021-10-04 20:14:13 +00:00
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (flags & SYN) {
|
2021-09-29 14:46:58 +00:00
|
|
|
uint16_t mss;
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
/* Options: MSS, NOP and window scale (8 bytes) */
|
|
|
|
optlen = OPT_MSS_LEN + 1 + OPT_WS_LEN;
|
|
|
|
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
*data++ = OPT_MSS;
|
|
|
|
*data++ = OPT_MSS_LEN;
|
2021-09-29 14:46:58 +00:00
|
|
|
|
|
|
|
if (c->mtu == -1) {
|
|
|
|
mss = info.tcpi_snd_mss;
|
|
|
|
} else {
|
2021-10-19 22:05:11 +00:00
|
|
|
mss = c->mtu - sizeof(struct tcphdr);
|
2021-10-05 17:46:59 +00:00
|
|
|
if (CONN_V4(conn))
|
2021-09-29 14:46:58 +00:00
|
|
|
mss -= sizeof(struct iphdr);
|
|
|
|
else
|
|
|
|
mss -= sizeof(struct ipv6hdr);
|
2021-10-04 20:01:16 +00:00
|
|
|
|
2021-10-05 17:27:04 +00:00
|
|
|
if (c->low_wmem &&
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
!conn->local && !tcp_rtt_dst_low(conn))
|
2021-10-04 20:01:16 +00:00
|
|
|
mss = MIN(mss, PAGE_SIZE);
|
|
|
|
else
|
|
|
|
mss = ROUND_DOWN(mss, PAGE_SIZE);
|
2021-09-29 14:46:58 +00:00
|
|
|
}
|
|
|
|
*(uint16_t *)data = htons(mss);
|
|
|
|
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
data += OPT_MSS_LEN - 2;
|
|
|
|
th->doff += OPT_MSS_LEN / 4;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (!c->tcp.kernel_snd_wnd && info.tcpi_snd_wnd)
|
|
|
|
c->tcp.kernel_snd_wnd = 1;
|
tcp: Add support for kernels not exporting tcpi_snd_wnd via TCP_INFO
Before commit 8f7baad7f035 ("tcp: Add snd_wnd to TCP_INFO"), the
kernel didn't export tcpi_snd_wnd via TCP_INFO, which means we don't
know what's the window size of the receiver, socket-side.
To get TCP connections working in that case, ignore this value if
it's zero during handshake, and use the initial window value as
suggested by RFC 6928 (14 600 bytes, instead of 4 380 bytes), to
keep network performance usable.
To make the TCP dynamic responsive enough in this case, also check
the socket for available data whenever we get an ACK segment from
tap, instead of waiting until all the data from the tap is dequeued.
While at it, fix the window scaling value sent for SYN and SYN, ACK
segments: we want to increase the data pointer after writing the
option, not the value itself.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-06-08 00:20:28 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->ws = MIN(MAX_WS, info.tcpi_snd_wscale);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
*data++ = OPT_NOP;
|
|
|
|
*data++ = OPT_WS;
|
|
|
|
*data++ = OPT_WS_LEN;
|
|
|
|
*data++ = conn->ws;
|
|
|
|
|
|
|
|
th->ack = !!(flags & ACK);
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
conn->wnd_to_tap = WINDOW_DEFAULT;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
} else {
|
2021-10-04 20:14:13 +00:00
|
|
|
th->ack = !!(flags & (ACK | FORCE_ACK | DUP_ACK)) ||
|
2021-10-05 17:46:59 +00:00
|
|
|
conn->seq_ack_to_tap != prev_ack_to_tap ||
|
|
|
|
!prev_wnd_to_tap;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
th->doff = (sizeof(*th) + optlen) / 4;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
|
|
|
th->rst = !!(flags & RST);
|
|
|
|
th->syn = !!(flags & SYN);
|
|
|
|
th->fin = !!(flags & FIN);
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
eth_len = tcp_l2_buf_fill_headers(c, conn, p, optlen,
|
|
|
|
NULL, conn->seq_to_tap);
|
|
|
|
iov->iov_len = eth_len + sizeof(uint32_t);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (th->ack && now)
|
|
|
|
conn->ts_ack_to_tap = *now;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-05 21:21:40 +00:00
|
|
|
if (th->fin && now)
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->tap_data_noack = *now;
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
/* RFC 793, 3.1: "[...] and the first data octet is ISN+1." */
|
|
|
|
if (th->fin || th->syn)
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
conn->seq_to_tap++;
|
2021-10-05 17:46:59 +00:00
|
|
|
|
|
|
|
if (CONN_V4(conn)) {
|
|
|
|
if (flags & DUP_ACK) {
|
|
|
|
memcpy(b4 + 1, b4, sizeof(*b4));
|
|
|
|
(iov + 1)->iov_len = iov->iov_len;
|
|
|
|
tcp4_l2_flags_buf_used++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tcp4_l2_flags_buf_used > ARRAY_SIZE(tcp4_l2_flags_buf) - 2)
|
|
|
|
tcp_l2_flags_buf_flush(c);
|
|
|
|
} else {
|
|
|
|
if (flags & DUP_ACK) {
|
|
|
|
memcpy(b6 + 1, b6, sizeof(*b6));
|
|
|
|
(iov + 1)->iov_len = iov->iov_len;
|
|
|
|
tcp6_l2_flags_buf_used++;
|
|
|
|
}
|
|
|
|
if (tcp6_l2_flags_buf_used > ARRAY_SIZE(tcp6_l2_flags_buf) - 2)
|
|
|
|
tcp_l2_flags_buf_flush(c);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
}
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
/**
|
|
|
|
* tcp_rst() - Reset a tap connection: send RST segment to tap, close socket
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
*/
|
|
|
|
static void tcp_rst(struct ctx *c, struct tcp_tap_conn *conn)
|
|
|
|
{
|
|
|
|
if (conn->state == CLOSED)
|
|
|
|
return;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_send_to_tap(c, conn, RST, NULL);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_destroy(c, conn);
|
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
|
|
|
* tcp_clamp_window() - Set window and scaling from option, clamp on socket
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @conn: Connection pointer
|
2021-09-01 14:43:13 +00:00
|
|
|
* @th: TCP header, from tap, can be NULL if window is passed
|
|
|
|
* @len: Buffer length, at L4, can be 0 if no header is passed
|
|
|
|
* @window: Window value, host order, unscaled, if no header is passed
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* @init: Set if this is the very first segment from tap
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_clamp_window(struct tcp_tap_conn *conn, struct tcphdr *th,
|
2021-09-01 14:43:13 +00:00
|
|
|
int len, unsigned int window, int init)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
if (init) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int ws = tcp_opt_get(th, len, OPT_WS, NULL, NULL);
|
|
|
|
|
|
|
|
conn->ws_tap = ws;
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
|
|
|
|
/* RFC 7323, 2.2: first value is not scaled. Also, don't clamp
|
|
|
|
* yet, to avoid getting a zero scale just because we set a
|
|
|
|
* small window now.
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->wnd_from_tap = ntohs(th->window);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->window_clamped = 0;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
} else {
|
2021-09-01 14:43:13 +00:00
|
|
|
if (th)
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
window = ntohs(th->window) << conn->ws_tap;
|
2021-09-01 14:43:13 +00:00
|
|
|
else
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
window <<= conn->ws_tap;
|
|
|
|
|
|
|
|
window = MIN(MAX_WINDOW, window);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-07-26 12:20:36 +00:00
|
|
|
if (conn->window_clamped) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (conn->wnd_from_tap == window)
|
2021-07-26 12:20:36 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
/* Discard +/- 1% updates to spare some syscalls. */
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if ((window > conn->wnd_from_tap &&
|
|
|
|
window * 99 / 100 < conn->wnd_from_tap) ||
|
|
|
|
(window < conn->wnd_from_tap &&
|
|
|
|
window * 101 / 100 > conn->wnd_from_tap)) {
|
|
|
|
conn->wnd_from_tap = window;
|
2021-07-26 12:20:36 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->wnd_from_tap = window;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (window < 256)
|
|
|
|
window = 256;
|
|
|
|
setsockopt(conn->sock, SOL_TCP, TCP_WINDOW_CLAMP,
|
|
|
|
&window, sizeof(window));
|
|
|
|
conn->window_clamped = 1;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-17 09:57:36 +00:00
|
|
|
/**
|
|
|
|
* tcp_seq_init() - Calculate initial sequence number according to RFC 6528
|
|
|
|
* @c: Execution context
|
|
|
|
* @af: Address family, AF_INET or AF_INET6
|
|
|
|
* @addr: Remote address, pointer to sin_addr or sin6_addr
|
|
|
|
* @dstport: Destination port, connection-wise, network order
|
|
|
|
* @srcport: Source port, connection-wise, network order
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
* @now: Current timestamp
|
2021-03-17 09:57:36 +00:00
|
|
|
*
|
|
|
|
* Return: initial TCP sequence
|
|
|
|
*/
|
|
|
|
static uint32_t tcp_seq_init(struct ctx *c, int af, void *addr,
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
in_port_t dstport, in_port_t srcport,
|
|
|
|
struct timespec *now)
|
2021-03-17 09:57:36 +00:00
|
|
|
{
|
2021-04-22 11:39:36 +00:00
|
|
|
uint32_t ns, seq = 0;
|
2021-03-17 09:57:36 +00:00
|
|
|
|
|
|
|
if (af == AF_INET) {
|
|
|
|
struct {
|
|
|
|
struct in_addr src;
|
|
|
|
in_port_t srcport;
|
|
|
|
struct in_addr dst;
|
|
|
|
in_port_t dstport;
|
|
|
|
} __attribute__((__packed__)) in = {
|
|
|
|
.src = *(struct in_addr *)addr,
|
|
|
|
.srcport = srcport,
|
2021-03-20 20:11:14 +00:00
|
|
|
.dst = { c->addr4 },
|
2021-03-17 09:57:36 +00:00
|
|
|
.dstport = dstport,
|
|
|
|
};
|
|
|
|
|
2021-03-17 09:57:41 +00:00
|
|
|
seq = siphash_12b((uint8_t *)&in, c->tcp.hash_secret);
|
2021-03-17 09:57:36 +00:00
|
|
|
} else if (af == AF_INET6) {
|
|
|
|
struct {
|
|
|
|
struct in6_addr src;
|
|
|
|
in_port_t srcport;
|
|
|
|
struct in6_addr dst;
|
|
|
|
in_port_t dstport;
|
|
|
|
} __attribute__((__packed__)) in = {
|
|
|
|
.src = *(struct in6_addr *)addr,
|
|
|
|
.srcport = srcport,
|
|
|
|
.dst = c->addr6,
|
|
|
|
.dstport = dstport,
|
|
|
|
};
|
|
|
|
|
2021-03-17 09:57:41 +00:00
|
|
|
seq = siphash_36b((uint8_t *)&in, c->tcp.hash_secret);
|
2021-03-17 09:57:36 +00:00
|
|
|
}
|
|
|
|
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
ns = now->tv_sec * 1E9;
|
|
|
|
ns += now->tv_nsec >> 5; /* 32ns ticks, overflows 32 bits every 137s */
|
2021-03-17 09:57:36 +00:00
|
|
|
|
|
|
|
return seq + ns;
|
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
|
|
|
* tcp_conn_from_tap() - Handle connection request (SYN segment) from tap
|
|
|
|
* @c: Execution context
|
|
|
|
* @af: Address family, AF_INET or AF_INET6
|
|
|
|
* @addr: Remote address, pointer to sin_addr or sin6_addr
|
|
|
|
* @th: TCP header from tap
|
|
|
|
* @len: Packet length at L4
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
* @now: Current timestamp
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
|
|
|
static void tcp_conn_from_tap(struct ctx *c, int af, void *addr,
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
struct tcphdr *th, size_t len,
|
|
|
|
struct timespec *now)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
|
|
|
struct sockaddr_in addr4 = {
|
|
|
|
.sin_family = AF_INET,
|
|
|
|
.sin_port = th->dest,
|
|
|
|
.sin_addr = *(struct in_addr *)addr,
|
|
|
|
};
|
|
|
|
struct sockaddr_in6 addr6 = {
|
|
|
|
.sin6_family = AF_INET6,
|
|
|
|
.sin6_port = th->dest,
|
|
|
|
.sin6_addr = *(struct in6_addr *)addr,
|
|
|
|
};
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
union epoll_ref ref = { .proto = IPPROTO_TCP };
|
2021-10-19 22:05:11 +00:00
|
|
|
int i, s, *sock_pool_p, mss;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
const struct sockaddr *sa;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct tcp_tap_conn *conn;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
struct epoll_event ev;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
socklen_t sl;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (c->tcp.tap_conn_count >= MAX_TAP_CONNS)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
for (i = 0; i < TCP_SOCK_POOL_SIZE; i++) {
|
|
|
|
if (af == AF_INET6)
|
|
|
|
sock_pool_p = &init_sock_pool6[i];
|
|
|
|
else
|
|
|
|
sock_pool_p = &init_sock_pool4[i];
|
2021-10-15 18:42:11 +00:00
|
|
|
if ((ref.s = s = *sock_pool_p) >= 0) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
*sock_pool_p = -1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s < 0)
|
|
|
|
ref.s = s = socket(af, SOCK_STREAM | SOCK_NONBLOCK,
|
|
|
|
IPPROTO_TCP);
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (s < 0)
|
2021-05-21 09:14:50 +00:00
|
|
|
return;
|
|
|
|
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
tcp_sock_set_bufsize(c, s);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
|
2021-10-14 03:26:37 +00:00
|
|
|
if (af == AF_INET && addr4.sin_addr.s_addr == c->gw4 && !c->no_map_gw)
|
2021-08-28 01:19:25 +00:00
|
|
|
addr4.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
2021-10-14 03:26:37 +00:00
|
|
|
else if (af == AF_INET6 && !memcmp(addr, &c->gw6, sizeof(c->gw6)) &&
|
|
|
|
!c->no_map_gw)
|
2021-08-28 01:19:25 +00:00
|
|
|
addr6.sin6_addr = in6addr_loopback;
|
|
|
|
|
2021-08-12 13:42:43 +00:00
|
|
|
if (af == AF_INET6 && IN6_IS_ADDR_LINKLOCAL(&addr6.sin6_addr)) {
|
|
|
|
struct sockaddr_in6 addr6_ll = {
|
|
|
|
.sin6_family = AF_INET6,
|
|
|
|
.sin6_addr = c->addr6_ll,
|
2021-10-11 10:01:31 +00:00
|
|
|
.sin6_scope_id = c->ifi,
|
2021-08-12 13:42:43 +00:00
|
|
|
};
|
2021-10-19 22:05:11 +00:00
|
|
|
if (bind(s, (struct sockaddr *)&addr6_ll, sizeof(addr6_ll))) {
|
|
|
|
close(s);
|
|
|
|
return;
|
|
|
|
}
|
2021-08-12 13:42:43 +00:00
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn = &tt[c->tcp.tap_conn_count++];
|
|
|
|
conn->sock = s;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->events = 0;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->wnd_to_tap = WINDOW_DEFAULT;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
2021-10-19 22:05:11 +00:00
|
|
|
if ((mss = tcp_opt_get(th, len, OPT_MSS, NULL, NULL)) < 0)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->mss_guest = MSS_DEFAULT;
|
2021-10-19 22:05:11 +00:00
|
|
|
else
|
|
|
|
conn->mss_guest = mss;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
2021-10-15 15:09:37 +00:00
|
|
|
/* Don't upset qemu */
|
tcp: Proper error handling for sendmmsg() to UNIX domain socket
As data from socket is forwarded to the guest, sendmmsg() might send
fewer bytes than requested in three different ways:
- failing altogether with a negative error code -- ignore that,
we'll get an error on the UNIX domain socket later if there's
really an issue with it and reset the connection to the guest
- sending less than 'vlen' messages -- instead of assuming success
in that case and waiting for the guest to send a duplicate ACK
indicating missing data, update the sequence number according to
what was actually sent and spare some retransmissions
- somewhat unexpectedly to me, sending 'vlen' or less than 'vlen'
messages, returning up to 'vlen', with the last message being
partially sent, and no further indication of errors other than
the returned msg_len for the last partially sent message being
less than iov_len.
In this case, we would assume success and proceed as nothing
happened. However, qemu would fail to parse any further message,
having received a partial descriptor, and eventually close the
connection, logging:
serious error: oversized packet received,connection terminated.
as the length descriptor for the next message would be sourced
from the middle of the next successfully sent message, not from
its header.
Handle this by checking the msg_len returned for the last (even
partially) sent message, and force re-sending the missing bytes,
if any, with a blocking sendmsg() -- qemu must not receive
anything else than that anyway.
While at it, allow to send up to 64KiB for each message, the
previous 32KiB limit isn't actually required, and just switch to a
new message at each iteration on sending buffers, they are already
MSS-sized anyway, so the check in the loop isn't really needed.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-08-26 12:37:48 +00:00
|
|
|
if (c->mode == MODE_PASST) {
|
2021-10-15 15:09:37 +00:00
|
|
|
if (af == AF_INET)
|
|
|
|
conn->mss_guest = MIN(MSS4, conn->mss_guest);
|
|
|
|
else
|
|
|
|
conn->mss_guest = MIN(MSS6, conn->mss_guest);
|
tcp: Proper error handling for sendmmsg() to UNIX domain socket
As data from socket is forwarded to the guest, sendmmsg() might send
fewer bytes than requested in three different ways:
- failing altogether with a negative error code -- ignore that,
we'll get an error on the UNIX domain socket later if there's
really an issue with it and reset the connection to the guest
- sending less than 'vlen' messages -- instead of assuming success
in that case and waiting for the guest to send a duplicate ACK
indicating missing data, update the sequence number according to
what was actually sent and spare some retransmissions
- somewhat unexpectedly to me, sending 'vlen' or less than 'vlen'
messages, returning up to 'vlen', with the last message being
partially sent, and no further indication of errors other than
the returned msg_len for the last partially sent message being
less than iov_len.
In this case, we would assume success and proceed as nothing
happened. However, qemu would fail to parse any further message,
having received a partial descriptor, and eventually close the
connection, logging:
serious error: oversized packet received,connection terminated.
as the length descriptor for the next message would be sourced
from the middle of the next successfully sent message, not from
its header.
Handle this by checking the msg_len returned for the last (even
partially) sent message, and force re-sending the missing bytes,
if any, with a blocking sendmsg() -- qemu must not receive
anything else than that anyway.
While at it, allow to send up to 64KiB for each message, the
previous 32KiB limit isn't actually required, and just switch to a
new message at each iteration on sending buffers, they are already
MSS-sized anyway, so the check in the loop isn't really needed.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-08-26 12:37:48 +00:00
|
|
|
}
|
2021-07-26 12:20:36 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
sl = sizeof(conn->mss_guest);
|
|
|
|
setsockopt(s, SOL_TCP, TCP_MAXSEG, &conn->mss_guest, sl);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-09-01 14:43:13 +00:00
|
|
|
tcp_clamp_window(conn, th, len, 0, 1);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
|
|
|
if (af == AF_INET) {
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
sa = (struct sockaddr *)&addr4;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
sl = sizeof(addr4);
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
memset(&conn->a.a4.zero, 0, sizeof(conn->a.a4.zero));
|
|
|
|
memset(&conn->a.a4.one, 0xff, sizeof(conn->a.a4.one));
|
|
|
|
memcpy(&conn->a.a4.a, addr, sizeof(conn->a.a4.a));
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
} else {
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
sa = (struct sockaddr *)&addr6;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
sl = sizeof(addr6);
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
memcpy(&conn->a.a6, addr, sizeof(conn->a.a6));
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->sock_port = ntohs(th->dest);
|
|
|
|
conn->tap_port = ntohs(th->source);
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->ts_sock_act = conn->ts_tap_act = *now;
|
|
|
|
conn->ts_ack_to_tap = conn->ts_ack_from_tap = *now;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->seq_init_from_tap = ntohl(th->seq);
|
|
|
|
conn->seq_from_tap = conn->seq_init_from_tap + 1;
|
|
|
|
conn->seq_ack_to_tap = conn->seq_from_tap;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->seq_to_tap = tcp_seq_init(c, af, addr, th->dest, th->source, now);
|
2021-07-26 05:30:57 +00:00
|
|
|
conn->seq_init_to_tap = conn->seq_to_tap;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->seq_ack_from_tap = conn->seq_to_tap + 1;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_hash_insert(c, conn, af, addr);
|
2021-03-17 09:57:40 +00:00
|
|
|
|
2021-10-04 20:01:16 +00:00
|
|
|
if (!bind(s, sa, sl))
|
|
|
|
tcp_rst(c, conn); /* Nobody is listening then */
|
|
|
|
if (errno != EADDRNOTAVAIL)
|
|
|
|
conn->local = 1;
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
if (connect(s, sa, sl)) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_state(conn, TAP_SYN_SENT);
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
if (errno != EINPROGRESS) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
ev.events = EPOLLOUT | EPOLLRDHUP;
|
2021-10-04 19:50:05 +00:00
|
|
|
|
|
|
|
tcp_get_sndbuf(conn);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
} else {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_state(conn, TAP_SYN_RCVD);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-04 19:50:05 +00:00
|
|
|
tcp_get_sndbuf(conn);
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (tcp_send_to_tap(c, conn, SYN | ACK, now))
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
return;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
|
|
|
ev.events = EPOLLIN | EPOLLRDHUP;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
conn->events = ev.events;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
ref.tcp.index = conn - tt;
|
|
|
|
ev.data.u64 = ref.u64;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_ADD, s, &ev);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* tcp_table_splice_compact - Compact spliced connection table
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @c: Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @hole: Pointer to recently closed connection
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_table_splice_compact(struct ctx *c,
|
|
|
|
struct tcp_splice_conn *hole)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
2021-09-15 08:41:31 +00:00
|
|
|
union epoll_ref ref_from = { .proto = IPPROTO_TCP, .tcp.splice = 1,
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
.tcp.index = hole - ts };
|
2021-09-15 08:41:31 +00:00
|
|
|
union epoll_ref ref_to = { .proto = IPPROTO_TCP, .tcp.splice = 1,
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
.tcp.index = hole - ts };
|
|
|
|
struct tcp_splice_conn *move;
|
|
|
|
struct epoll_event ev_from;
|
|
|
|
struct epoll_event ev_to;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
hole->from_fin_sent = hole->to_fin_sent = 0;
|
|
|
|
hole->from_read = hole->from_written = 0;
|
|
|
|
hole->to_read = hole->to_written = 0;
|
|
|
|
|
|
|
|
bitmap_clear(splice_rcvlowat_set[0], hole - ts);
|
|
|
|
bitmap_clear(splice_rcvlowat_set[1], hole - ts);
|
|
|
|
bitmap_clear(splice_rcvlowat_act[0], hole - ts);
|
|
|
|
bitmap_clear(splice_rcvlowat_act[1], hole - ts);
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if ((hole - ts) == --c->tcp.splice_conn_count)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
move = &ts[c->tcp.splice_conn_count];
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (move->state == CLOSED)
|
|
|
|
return;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
memcpy(hole, move, sizeof(*hole));
|
|
|
|
move->state = CLOSED;
|
|
|
|
move = hole;
|
|
|
|
|
|
|
|
ref_from.s = move->from;
|
|
|
|
ref_from.tcp.v6 = move->v6;
|
|
|
|
ref_to.s = move->to;
|
|
|
|
ref_to.tcp.v6 = move->v6;
|
|
|
|
|
|
|
|
if (move->state == SPLICE_ACCEPTED) {
|
|
|
|
ev_from.events = ev_to.events = 0;
|
|
|
|
} else if (move->state == SPLICE_CONNECT) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
ev_from.events = 0;
|
|
|
|
ev_to.events = EPOLLOUT;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
} else {
|
2021-09-16 06:17:18 +00:00
|
|
|
ev_from.events = EPOLLIN | EPOLLOUT | EPOLLRDHUP;
|
|
|
|
ev_to.events = EPOLLIN | EPOLLOUT | EPOLLRDHUP;
|
2021-05-21 09:14:50 +00:00
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
ev_from.data.u64 = ref_from.u64;
|
|
|
|
ev_to.data.u64 = ref_to.u64;
|
2021-04-22 15:03:43 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_MOD, move->from, &ev_from);
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_MOD, move->to, &ev_to);
|
|
|
|
}
|
2021-03-17 09:57:40 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
/**
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* tcp_splice_destroy() - Close spliced connection and pipes, drop from epoll
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
*/
|
|
|
|
static void tcp_splice_destroy(struct ctx *c, struct tcp_splice_conn *conn)
|
|
|
|
{
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int epoll_del_done = 0;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
switch (conn->state) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
case CLOSED:
|
|
|
|
epoll_del_done = 1;
|
|
|
|
/* Falls through */
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case SPLICE_FIN_BOTH:
|
|
|
|
case SPLICE_FIN_FROM:
|
|
|
|
case SPLICE_FIN_TO:
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
case SPLICE_ESTABLISHED:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
/* Flushing might need to block: don't recycle them. */
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (conn->pipe_from_to[0] != -1) {
|
|
|
|
close(conn->pipe_from_to[0]);
|
2021-09-16 06:19:39 +00:00
|
|
|
conn->pipe_from_to[0] = -1;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
close(conn->pipe_from_to[1]);
|
2021-09-16 06:19:39 +00:00
|
|
|
conn->pipe_from_to[1] = -1;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
if (conn->pipe_to_from[0] != -1) {
|
|
|
|
close(conn->pipe_to_from[0]);
|
2021-09-16 06:19:39 +00:00
|
|
|
conn->pipe_to_from[0] = -1;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
close(conn->pipe_to_from[1]);
|
2021-09-16 06:19:39 +00:00
|
|
|
conn->pipe_to_from[1] = -1;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
/* Falls through */
|
|
|
|
case SPLICE_CONNECT:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (!epoll_del_done) {
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->from, NULL);
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->to, NULL);
|
|
|
|
}
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
close(conn->to);
|
|
|
|
/* Falls through */
|
|
|
|
case SPLICE_ACCEPTED:
|
|
|
|
close(conn->from);
|
|
|
|
tcp_splice_state(conn, CLOSED);
|
|
|
|
tcp_table_splice_compact(c, conn);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
break;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
default:
|
|
|
|
return;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2021-03-17 09:57:39 +00:00
|
|
|
* tcp_sock_consume() - Consume (discard) data from buffer, update ACK sequence
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @conn: Connection pointer
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @ack_seq: ACK sequence, host order
|
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_sock_consume(struct tcp_tap_conn *conn, uint32_t ack_seq)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
2021-03-17 09:57:39 +00:00
|
|
|
/* Simply ignore out-of-order ACKs: we already consumed the data we
|
|
|
|
* needed from the buffer, and we won't rewind back to a lower ACK
|
|
|
|
* sequence.
|
|
|
|
*/
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (SEQ_LE(ack_seq, conn->seq_ack_from_tap))
|
2021-03-17 09:57:39 +00:00
|
|
|
return;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
recv(conn->sock, NULL, ack_seq - conn->seq_ack_from_tap,
|
|
|
|
MSG_DONTWAIT | MSG_TRUNC);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->seq_ack_from_tap = ack_seq;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_data_from_sock() - Handle new data from socket, queue to tap, in window
|
|
|
|
* @c: Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @conn: Connection pointer
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
* @now: Current timestamp
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*
|
2021-07-26 12:20:36 +00:00
|
|
|
* Return: negative on connection reset, 0 otherwise
|
2021-10-13 20:25:03 +00:00
|
|
|
*
|
|
|
|
* #syscalls recvmsg
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static int tcp_data_from_sock(struct ctx *c, struct tcp_tap_conn *conn,
|
|
|
|
struct timespec *now)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
2021-10-15 15:13:23 +00:00
|
|
|
int fill_bufs, send_bufs = 0, last_len, iov_rem = 0;
|
2021-10-05 17:46:59 +00:00
|
|
|
int send, len, plen, v4 = CONN_V4(conn);
|
tcp: Proper error handling for sendmmsg() to UNIX domain socket
As data from socket is forwarded to the guest, sendmmsg() might send
fewer bytes than requested in three different ways:
- failing altogether with a negative error code -- ignore that,
we'll get an error on the UNIX domain socket later if there's
really an issue with it and reset the connection to the guest
- sending less than 'vlen' messages -- instead of assuming success
in that case and waiting for the guest to send a duplicate ACK
indicating missing data, update the sequence number according to
what was actually sent and spare some retransmissions
- somewhat unexpectedly to me, sending 'vlen' or less than 'vlen'
messages, returning up to 'vlen', with the last message being
partially sent, and no further indication of errors other than
the returned msg_len for the last partially sent message being
less than iov_len.
In this case, we would assume success and proceed as nothing
happened. However, qemu would fail to parse any further message,
having received a partial descriptor, and eventually close the
connection, logging:
serious error: oversized packet received,connection terminated.
as the length descriptor for the next message would be sourced
from the middle of the next successfully sent message, not from
its header.
Handle this by checking the msg_len returned for the last (even
partially) sent message, and force re-sending the missing bytes,
if any, with a blocking sendmsg() -- qemu must not receive
anything else than that anyway.
While at it, allow to send up to 64KiB for each message, the
previous 32KiB limit isn't actually required, and just switch to a
new message at each iteration on sending buffers, they are already
MSS-sized anyway, so the check in the loop isn't really needed.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-08-26 12:37:48 +00:00
|
|
|
uint32_t seq_to_tap = conn->seq_to_tap;
|
2021-07-26 12:20:36 +00:00
|
|
|
int s = conn->sock, i, ret = 0;
|
2021-10-15 15:13:23 +00:00
|
|
|
struct msghdr mh_sock = { 0 };
|
2021-07-26 12:20:36 +00:00
|
|
|
uint32_t already_sent;
|
2021-10-15 15:13:23 +00:00
|
|
|
struct iovec *iov;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
already_sent = conn->seq_to_tap - conn->seq_ack_from_tap;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (SEQ_LT(already_sent, 0)) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
/* RFC 761, section 2.1. */
|
|
|
|
seq_to_tap = conn->seq_to_tap = conn->seq_ack_from_tap;
|
|
|
|
already_sent = 0;
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (!conn->wnd_from_tap || already_sent >= conn->wnd_from_tap) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
tcp_tap_epoll_mask(c, conn, conn->events | EPOLLET);
|
2021-10-16 14:58:16 +00:00
|
|
|
conn->tap_data_noack = *now;
|
2021-08-03 23:35:45 +00:00
|
|
|
return 0;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
}
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
fill_bufs = DIV_ROUND_UP(conn->wnd_from_tap - already_sent,
|
2021-07-26 12:20:36 +00:00
|
|
|
conn->mss_guest);
|
2021-08-03 23:35:45 +00:00
|
|
|
if (fill_bufs > TCP_TAP_FRAMES) {
|
2021-07-26 12:20:36 +00:00
|
|
|
fill_bufs = TCP_TAP_FRAMES;
|
2021-08-03 23:35:45 +00:00
|
|
|
iov_rem = 0;
|
|
|
|
} else {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
iov_rem = (conn->wnd_from_tap - already_sent) % conn->mss_guest;
|
2021-08-03 23:35:45 +00:00
|
|
|
}
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-15 15:13:23 +00:00
|
|
|
mh_sock.msg_iov = iov_sock;
|
|
|
|
mh_sock.msg_iovlen = fill_bufs + 1;
|
|
|
|
|
|
|
|
iov_sock[0].iov_base = tcp_buf_discard;
|
|
|
|
iov_sock[0].iov_len = already_sent;
|
|
|
|
|
2021-10-19 22:05:11 +00:00
|
|
|
if (( v4 && tcp4_l2_buf_used + fill_bufs > ARRAY_SIZE(tcp4_l2_buf)) ||
|
|
|
|
(!v4 && tcp6_l2_buf_used + fill_bufs > ARRAY_SIZE(tcp6_l2_buf)))
|
2021-10-15 15:13:23 +00:00
|
|
|
tcp_l2_buf_flush(c);
|
|
|
|
|
|
|
|
for (i = 0, iov = iov_sock + 1; i < fill_bufs; i++, iov++) {
|
|
|
|
if (v4)
|
|
|
|
iov->iov_base = &tcp4_l2_buf[tcp4_l2_buf_used + i].data;
|
|
|
|
else
|
|
|
|
iov->iov_base = &tcp6_l2_buf[tcp6_l2_buf_used + i].data;
|
|
|
|
iov->iov_len = conn->mss_guest;
|
2021-07-26 12:20:36 +00:00
|
|
|
}
|
2021-08-03 23:35:45 +00:00
|
|
|
if (iov_rem)
|
2021-10-15 15:13:23 +00:00
|
|
|
iov_sock[fill_bufs].iov_len = iov_rem;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-07-26 12:20:36 +00:00
|
|
|
/* Don't dequeue until acknowledged by guest. */
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
recvmsg:
|
2021-10-15 15:13:23 +00:00
|
|
|
len = recvmsg(s, &mh_sock, MSG_PEEK);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (len < 0) {
|
|
|
|
if (errno == EINTR)
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
goto recvmsg;
|
2021-07-26 12:20:36 +00:00
|
|
|
goto err;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
}
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-07-26 12:20:36 +00:00
|
|
|
if (!len)
|
|
|
|
goto zero_len;
|
|
|
|
|
|
|
|
send = len - already_sent;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (send <= 0) {
|
|
|
|
tcp_tap_epoll_mask(c, conn, conn->events | EPOLLET);
|
2021-10-15 15:13:23 +00:00
|
|
|
return 0;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
tcp_tap_epoll_mask(c, conn, conn->events & ~EPOLLET);
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
send_bufs = DIV_ROUND_UP(send, conn->mss_guest);
|
|
|
|
last_len = send - (send_bufs - 1) * conn->mss_guest;
|
|
|
|
|
|
|
|
/* Likely, some new data was acked too. */
|
2021-10-05 17:46:59 +00:00
|
|
|
tcp_update_seqack_wnd(c, conn, 0, NULL);
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
plen = conn->mss_guest;
|
2021-10-15 15:13:23 +00:00
|
|
|
for (i = 0; i < send_bufs; i++) {
|
2021-10-05 17:46:59 +00:00
|
|
|
ssize_t eth_len;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
if (i == send_bufs - 1)
|
|
|
|
plen = last_len;
|
|
|
|
|
|
|
|
if (v4) {
|
2021-10-15 15:13:23 +00:00
|
|
|
struct tcp4_l2_buf_t *b = &tcp4_l2_buf[tcp4_l2_buf_used];
|
2021-10-05 17:46:59 +00:00
|
|
|
uint16_t *check = NULL;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
2021-10-15 15:13:23 +00:00
|
|
|
if (i && i != send_bufs - 1 && tcp4_l2_buf_used)
|
|
|
|
check = &(b - 1)->iph.check;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
eth_len = tcp_l2_buf_fill_headers(c, conn, b, plen,
|
|
|
|
check, seq_to_tap);
|
2021-07-26 12:20:36 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (c->mode == MODE_PASST) {
|
2021-10-15 15:13:23 +00:00
|
|
|
iov = tcp4_l2_iov_tap + tcp4_l2_buf_used++;
|
|
|
|
iov->iov_len = eth_len + sizeof(uint32_t);
|
|
|
|
tcp4_l2_buf_bytes += iov->iov_len;
|
|
|
|
|
|
|
|
if (tcp4_l2_buf_used >
|
|
|
|
ARRAY_SIZE(tcp4_l2_buf) - 1)
|
|
|
|
tcp_l2_buf_flush(c);
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
seq_to_tap += plen;
|
2021-07-26 12:20:36 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
pcap((char *)&b->eh, eth_len);
|
|
|
|
ret = write(c->fd_tap, &b->eh, eth_len);
|
2021-07-26 12:20:36 +00:00
|
|
|
} else {
|
2021-10-15 15:13:23 +00:00
|
|
|
struct tcp6_l2_buf_t *b = &tcp6_l2_buf[tcp6_l2_buf_used];
|
2021-07-26 12:20:36 +00:00
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
eth_len = tcp_l2_buf_fill_headers(c, conn, b, plen,
|
|
|
|
NULL, seq_to_tap);
|
2021-07-26 12:20:36 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (c->mode == MODE_PASST) {
|
2021-10-15 15:13:23 +00:00
|
|
|
iov = tcp6_l2_iov_tap + tcp6_l2_buf_used++;
|
|
|
|
iov->iov_len = eth_len + sizeof(uint32_t);
|
|
|
|
tcp6_l2_buf_bytes += iov->iov_len;
|
|
|
|
|
|
|
|
if (tcp6_l2_buf_used >
|
|
|
|
ARRAY_SIZE(tcp6_l2_buf) - 1)
|
|
|
|
tcp_l2_buf_flush(c);
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
seq_to_tap += plen;
|
2021-07-26 12:20:36 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
pcap((char *)&b->eh, eth_len);
|
|
|
|
ret = write(c->fd_tap, &b->eh, eth_len);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
}
|
|
|
|
|
2021-10-05 17:46:59 +00:00
|
|
|
if (ret < eth_len) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (ret < 0) {
|
|
|
|
if (errno == EAGAIN || errno == EWOULDBLOCK)
|
|
|
|
return 0;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tap_handler(c, EPOLLERR, now);
|
|
|
|
}
|
|
|
|
|
|
|
|
i--;
|
|
|
|
continue;
|
2021-07-26 12:20:36 +00:00
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->seq_to_tap += plen;
|
2021-07-26 12:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (c->mode == MODE_PASTA)
|
2021-10-15 15:13:23 +00:00
|
|
|
return ret;
|
tcp: Proper error handling for sendmmsg() to UNIX domain socket
As data from socket is forwarded to the guest, sendmmsg() might send
fewer bytes than requested in three different ways:
- failing altogether with a negative error code -- ignore that,
we'll get an error on the UNIX domain socket later if there's
really an issue with it and reset the connection to the guest
- sending less than 'vlen' messages -- instead of assuming success
in that case and waiting for the guest to send a duplicate ACK
indicating missing data, update the sequence number according to
what was actually sent and spare some retransmissions
- somewhat unexpectedly to me, sending 'vlen' or less than 'vlen'
messages, returning up to 'vlen', with the last message being
partially sent, and no further indication of errors other than
the returned msg_len for the last partially sent message being
less than iov_len.
In this case, we would assume success and proceed as nothing
happened. However, qemu would fail to parse any further message,
having received a partial descriptor, and eventually close the
connection, logging:
serious error: oversized packet received,connection terminated.
as the length descriptor for the next message would be sourced
from the middle of the next successfully sent message, not from
its header.
Handle this by checking the msg_len returned for the last (even
partially) sent message, and force re-sending the missing bytes,
if any, with a blocking sendmsg() -- qemu must not receive
anything else than that anyway.
While at it, allow to send up to 64KiB for each message, the
previous 32KiB limit isn't actually required, and just switch to a
new message at each iteration on sending buffers, they are already
MSS-sized anyway, so the check in the loop isn't really needed.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-08-26 12:37:48 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->tap_data_noack = *now;
|
2021-10-15 15:13:23 +00:00
|
|
|
conn->seq_to_tap += conn->mss_guest * (send_bufs - 1) + last_len;
|
tcp: Proper error handling for sendmmsg() to UNIX domain socket
As data from socket is forwarded to the guest, sendmmsg() might send
fewer bytes than requested in three different ways:
- failing altogether with a negative error code -- ignore that,
we'll get an error on the UNIX domain socket later if there's
really an issue with it and reset the connection to the guest
- sending less than 'vlen' messages -- instead of assuming success
in that case and waiting for the guest to send a duplicate ACK
indicating missing data, update the sequence number according to
what was actually sent and spare some retransmissions
- somewhat unexpectedly to me, sending 'vlen' or less than 'vlen'
messages, returning up to 'vlen', with the last message being
partially sent, and no further indication of errors other than
the returned msg_len for the last partially sent message being
less than iov_len.
In this case, we would assume success and proceed as nothing
happened. However, qemu would fail to parse any further message,
having received a partial descriptor, and eventually close the
connection, logging:
serious error: oversized packet received,connection terminated.
as the length descriptor for the next message would be sourced
from the middle of the next successfully sent message, not from
its header.
Handle this by checking the msg_len returned for the last (even
partially) sent message, and force re-sending the missing bytes,
if any, with a blocking sendmsg() -- qemu must not receive
anything else than that anyway.
While at it, allow to send up to 64KiB for each message, the
previous 32KiB limit isn't actually required, and just switch to a
new message at each iteration on sending buffers, they are already
MSS-sized anyway, so the check in the loop isn't really needed.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-08-26 12:37:48 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->ts_ack_to_tap = *now;
|
|
|
|
|
2021-10-15 15:13:23 +00:00
|
|
|
return 0;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
err:
|
|
|
|
if (errno != EAGAIN && errno != EWOULDBLOCK) {
|
|
|
|
tcp_rst(c, conn);
|
|
|
|
ret = -errno;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
2021-10-15 15:13:23 +00:00
|
|
|
return ret;
|
2021-07-26 12:20:36 +00:00
|
|
|
|
|
|
|
zero_len:
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (conn->state == ESTABLISHED_SOCK_FIN) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_tap_epoll_mask(c, conn, EPOLLET);
|
|
|
|
tcp_send_to_tap(c, conn, FIN | ACK, now);
|
|
|
|
tcp_tap_state(conn, ESTABLISHED_SOCK_FIN_SENT);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
}
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-15 15:13:23 +00:00
|
|
|
return 0;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
2021-07-26 23:09:45 +00:00
|
|
|
/**
|
|
|
|
* tcp_data_from_tap() - tap data in ESTABLISHED{,SOCK_FIN}, CLOSE_WAIT states
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @msg: Array of messages from tap
|
|
|
|
* @count: Count of messages
|
|
|
|
* @now: Current timestamp
|
2021-10-13 20:25:03 +00:00
|
|
|
*
|
|
|
|
* #syscalls sendmsg
|
2021-07-26 23:09:45 +00:00
|
|
|
*/
|
|
|
|
static void tcp_data_from_tap(struct ctx *c, struct tcp_tap_conn *conn,
|
2021-09-26 21:38:22 +00:00
|
|
|
struct tap_l4_msg *msg, int count,
|
2021-07-26 23:09:45 +00:00
|
|
|
struct timespec *now)
|
|
|
|
{
|
2021-10-05 17:51:03 +00:00
|
|
|
int i, iov_i, ack = 0, fin = 0, retr = 0, keep = -1;
|
2021-07-26 23:09:45 +00:00
|
|
|
struct msghdr mh = { .msg_iov = tcp_tap_iov };
|
|
|
|
uint32_t max_ack_seq = conn->seq_ack_from_tap;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
uint16_t max_ack_seq_wnd = conn->wnd_from_tap;
|
2021-07-26 23:09:45 +00:00
|
|
|
uint32_t seq_from_tap = conn->seq_from_tap;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int partial_send = 0;
|
|
|
|
uint16_t len;
|
|
|
|
ssize_t n;
|
2021-07-26 23:09:45 +00:00
|
|
|
|
|
|
|
for (i = 0, iov_i = 0; i < count; i++) {
|
|
|
|
uint32_t seq, seq_offset, ack_seq;
|
2021-09-26 21:38:22 +00:00
|
|
|
struct tcphdr *th;
|
2021-07-26 23:09:45 +00:00
|
|
|
char *data;
|
2021-09-26 21:38:22 +00:00
|
|
|
size_t off;
|
|
|
|
|
|
|
|
th = (struct tcphdr *)(pkt_buf + msg[i].pkt_buf_offset);
|
|
|
|
len = msg[i].l4_len;
|
2021-07-26 23:09:45 +00:00
|
|
|
|
|
|
|
if (len < sizeof(*th)) {
|
|
|
|
tcp_rst(c, conn);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
off = th->doff * 4;
|
|
|
|
if (off < sizeof(*th) || off > len) {
|
|
|
|
tcp_rst(c, conn);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (th->rst) {
|
|
|
|
tcp_tap_destroy(c, conn);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
len -= off;
|
|
|
|
data = (char *)th + off;
|
|
|
|
|
|
|
|
seq = ntohl(th->seq);
|
|
|
|
ack_seq = ntohl(th->ack_seq);
|
|
|
|
|
|
|
|
if (th->ack) {
|
|
|
|
ack = 1;
|
2021-08-03 23:35:45 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (SEQ_GE(ack_seq, conn->seq_ack_from_tap) &&
|
|
|
|
SEQ_GE(ack_seq, max_ack_seq)) {
|
2021-08-03 23:35:45 +00:00
|
|
|
/* Fast re-transmit */
|
2021-09-14 14:50:09 +00:00
|
|
|
retr = !len && !th->fin &&
|
|
|
|
ack_seq == max_ack_seq &&
|
2021-10-16 14:58:16 +00:00
|
|
|
ntohs(th->window) == max_ack_seq_wnd;
|
2021-08-03 23:35:45 +00:00
|
|
|
|
|
|
|
max_ack_seq_wnd = ntohs(th->window);
|
2021-07-26 23:09:45 +00:00
|
|
|
max_ack_seq = ack_seq;
|
2021-08-03 23:35:45 +00:00
|
|
|
}
|
2021-07-26 23:09:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (th->fin)
|
|
|
|
fin = 1;
|
|
|
|
|
2021-08-03 23:35:45 +00:00
|
|
|
if (!len)
|
|
|
|
continue;
|
|
|
|
|
2021-07-26 23:09:45 +00:00
|
|
|
seq_offset = seq_from_tap - seq;
|
|
|
|
/* Use data from this buffer only in these two cases:
|
|
|
|
*
|
|
|
|
* , seq_from_tap , seq_from_tap
|
|
|
|
* |--------| <-- len |--------| <-- len
|
|
|
|
* '----' <-- offset ' <-- offset
|
|
|
|
* ^ seq ^ seq
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* (offset >= 0, seq + len > seq_from_tap)
|
2021-07-26 23:09:45 +00:00
|
|
|
*
|
|
|
|
* discard in these two cases:
|
|
|
|
* , seq_from_tap , seq_from_tap
|
|
|
|
* |--------| <-- len |--------| <-- len
|
|
|
|
* '--------' <-- offset '-----| <- offset
|
|
|
|
* ^ seq ^ seq
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* (offset >= 0, seq + len <= seq_from_tap)
|
2021-07-26 23:09:45 +00:00
|
|
|
*
|
|
|
|
* keep, look for another buffer, then go back, in this case:
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
* , seq_from_tap
|
|
|
|
* |--------| <-- len
|
|
|
|
* '===' <-- offset
|
|
|
|
* ^ seq
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* (offset < 0)
|
2021-07-26 23:09:45 +00:00
|
|
|
*/
|
2021-10-05 17:51:03 +00:00
|
|
|
if (SEQ_GE(seq_offset, 0) && SEQ_LE(seq + len, seq_from_tap))
|
2021-07-26 23:09:45 +00:00
|
|
|
continue;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (SEQ_LT(seq_offset, 0)) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (keep == -1)
|
2021-07-26 23:09:45 +00:00
|
|
|
keep = i;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
tcp_tap_iov[iov_i].iov_base = data + seq_offset;
|
|
|
|
tcp_tap_iov[iov_i].iov_len = len - seq_offset;
|
|
|
|
seq_from_tap += tcp_tap_iov[iov_i].iov_len;
|
|
|
|
iov_i++;
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (keep == i)
|
2021-07-26 23:09:45 +00:00
|
|
|
keep = -1;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
|
|
|
if (keep != -1)
|
|
|
|
i = keep - 1;
|
2021-07-26 23:09:45 +00:00
|
|
|
}
|
|
|
|
|
2021-09-01 14:43:13 +00:00
|
|
|
tcp_clamp_window(conn, NULL, 0, max_ack_seq_wnd, 0);
|
|
|
|
|
2021-07-26 23:09:45 +00:00
|
|
|
if (ack) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->ts_ack_from_tap = *now;
|
2021-10-16 14:58:16 +00:00
|
|
|
if (max_ack_seq == conn->seq_to_tap)
|
|
|
|
conn->tap_data_noack = ((struct timespec) { 0, 0 });
|
2021-07-26 23:09:45 +00:00
|
|
|
tcp_sock_consume(conn, max_ack_seq);
|
|
|
|
}
|
|
|
|
|
2021-08-03 23:35:45 +00:00
|
|
|
if (retr) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->seq_ack_from_tap = max_ack_seq;
|
2021-08-03 23:35:45 +00:00
|
|
|
conn->seq_to_tap = max_ack_seq;
|
|
|
|
tcp_data_from_sock(c, conn, now);
|
|
|
|
}
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (!iov_i)
|
2021-09-14 05:15:08 +00:00
|
|
|
goto out;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
2021-07-26 23:09:45 +00:00
|
|
|
mh.msg_iovlen = iov_i;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
eintr:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
n = sendmsg(conn->sock, &mh, MSG_DONTWAIT | MSG_NOSIGNAL);
|
|
|
|
if (n < 0) {
|
|
|
|
if (errno == EPIPE) {
|
|
|
|
/* Here's the wrap, said the tap.
|
|
|
|
* In my pocket, said the socket.
|
|
|
|
* Then swiftly looked away and left.
|
|
|
|
*/
|
|
|
|
conn->seq_from_tap = seq_from_tap;
|
|
|
|
tcp_send_to_tap(c, conn, FORCE_ACK, now);
|
|
|
|
}
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (errno == EINTR)
|
|
|
|
goto eintr;
|
|
|
|
|
2021-07-26 23:09:45 +00:00
|
|
|
if (errno == EAGAIN || errno == EWOULDBLOCK) {
|
2021-10-05 17:51:03 +00:00
|
|
|
tcp_send_to_tap(c, conn, 0, now);
|
2021-07-26 23:09:45 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
tcp_rst(c, conn);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2021-10-05 17:51:03 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (n < (seq_from_tap - conn->seq_from_tap)) {
|
|
|
|
partial_send = 1;
|
2021-10-05 17:51:03 +00:00
|
|
|
conn->seq_from_tap += n;
|
|
|
|
tcp_send_to_tap(c, conn, 0, now);
|
|
|
|
} else {
|
|
|
|
conn->seq_from_tap += n;
|
2021-07-26 23:09:45 +00:00
|
|
|
}
|
|
|
|
|
2021-09-14 05:15:08 +00:00
|
|
|
out:
|
|
|
|
if (keep != -1) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (conn->seq_dup_ack != conn->seq_from_tap) {
|
|
|
|
conn->seq_dup_ack = conn->seq_from_tap;
|
|
|
|
tcp_send_to_tap(c, conn, DUP_ACK, now);
|
|
|
|
}
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
return;
|
2021-09-14 05:15:08 +00:00
|
|
|
}
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
|
|
|
if (ack) {
|
|
|
|
if (conn->state == ESTABLISHED_SOCK_FIN_SENT &&
|
|
|
|
conn->seq_ack_from_tap == conn->seq_to_tap)
|
|
|
|
tcp_tap_state(conn, CLOSE_WAIT);
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (fin && !partial_send) {
|
|
|
|
conn->seq_from_tap++;
|
|
|
|
|
|
|
|
if (conn->state == ESTABLISHED) {
|
|
|
|
shutdown(conn->sock, SHUT_WR);
|
|
|
|
tcp_tap_state(conn, FIN_WAIT_1);
|
|
|
|
tcp_send_to_tap(c, conn, ACK, now);
|
|
|
|
} else if (conn->state == CLOSE_WAIT) {
|
|
|
|
shutdown(conn->sock, SHUT_WR);
|
|
|
|
tcp_tap_state(conn, LAST_ACK);
|
|
|
|
tcp_send_to_tap(c, conn, ACK, now);
|
|
|
|
}
|
|
|
|
} else {
|
2021-10-05 17:51:03 +00:00
|
|
|
tcp_send_to_tap(c, conn, 0, now);
|
2021-07-26 23:09:45 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
|
|
|
* tcp_tap_handler() - Handle packets from tap and state transitions
|
|
|
|
* @c: Execution context
|
|
|
|
* @af: Address family, AF_INET or AF_INET6
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @addr: Destination address
|
2021-04-22 11:39:36 +00:00
|
|
|
* @msg: Input messages
|
|
|
|
* @count: Message count
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
* @now: Current timestamp
|
2021-04-22 11:39:36 +00:00
|
|
|
*
|
|
|
|
* Return: count of consumed packets
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
2021-04-22 11:39:36 +00:00
|
|
|
int tcp_tap_handler(struct ctx *c, int af, void *addr,
|
2021-09-26 21:38:22 +00:00
|
|
|
struct tap_l4_msg *msg, int count, struct timespec *now)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
2021-09-26 21:38:22 +00:00
|
|
|
struct tcphdr *th = (struct tcphdr *)(pkt_buf + msg[0].pkt_buf_offset);
|
|
|
|
uint16_t len = msg[0].l4_len;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct tcp_tap_conn *conn;
|
2021-10-19 22:05:11 +00:00
|
|
|
int mss;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn = tcp_hash_lookup(c, af, addr, htons(th->source), htons(th->dest));
|
|
|
|
if (!conn) {
|
2021-07-21 15:48:33 +00:00
|
|
|
if (th->syn && !th->ack)
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
tcp_conn_from_tap(c, af, addr, th, len, now);
|
2021-04-22 11:39:36 +00:00
|
|
|
return 1;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (th->rst) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_destroy(c, conn);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
return count;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->ts_tap_act = *now;
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
switch (conn->state) {
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
case SOCK_SYN_SENT:
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
if (!th->syn || !th->ack) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
return count;
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
}
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-09-01 14:43:13 +00:00
|
|
|
tcp_clamp_window(conn, th, len, 0, 1);
|
|
|
|
|
2021-10-19 22:05:11 +00:00
|
|
|
if ((mss = tcp_opt_get(th, len, OPT_MSS, NULL, NULL)) < 0)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->mss_guest = MSS_DEFAULT;
|
2021-10-19 22:05:11 +00:00
|
|
|
else
|
|
|
|
conn->mss_guest = mss;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-15 15:09:37 +00:00
|
|
|
/* Don't upset qemu */
|
tcp: Proper error handling for sendmmsg() to UNIX domain socket
As data from socket is forwarded to the guest, sendmmsg() might send
fewer bytes than requested in three different ways:
- failing altogether with a negative error code -- ignore that,
we'll get an error on the UNIX domain socket later if there's
really an issue with it and reset the connection to the guest
- sending less than 'vlen' messages -- instead of assuming success
in that case and waiting for the guest to send a duplicate ACK
indicating missing data, update the sequence number according to
what was actually sent and spare some retransmissions
- somewhat unexpectedly to me, sending 'vlen' or less than 'vlen'
messages, returning up to 'vlen', with the last message being
partially sent, and no further indication of errors other than
the returned msg_len for the last partially sent message being
less than iov_len.
In this case, we would assume success and proceed as nothing
happened. However, qemu would fail to parse any further message,
having received a partial descriptor, and eventually close the
connection, logging:
serious error: oversized packet received,connection terminated.
as the length descriptor for the next message would be sourced
from the middle of the next successfully sent message, not from
its header.
Handle this by checking the msg_len returned for the last (even
partially) sent message, and force re-sending the missing bytes,
if any, with a blocking sendmsg() -- qemu must not receive
anything else than that anyway.
While at it, allow to send up to 64KiB for each message, the
previous 32KiB limit isn't actually required, and just switch to a
new message at each iteration on sending buffers, they are already
MSS-sized anyway, so the check in the loop isn't really needed.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-08-26 12:37:48 +00:00
|
|
|
if (c->mode == MODE_PASST) {
|
2021-10-15 15:09:37 +00:00
|
|
|
if (af == AF_INET)
|
|
|
|
conn->mss_guest = MIN(MSS4, conn->mss_guest);
|
|
|
|
else
|
|
|
|
conn->mss_guest = MIN(MSS6, conn->mss_guest);
|
tcp: Proper error handling for sendmmsg() to UNIX domain socket
As data from socket is forwarded to the guest, sendmmsg() might send
fewer bytes than requested in three different ways:
- failing altogether with a negative error code -- ignore that,
we'll get an error on the UNIX domain socket later if there's
really an issue with it and reset the connection to the guest
- sending less than 'vlen' messages -- instead of assuming success
in that case and waiting for the guest to send a duplicate ACK
indicating missing data, update the sequence number according to
what was actually sent and spare some retransmissions
- somewhat unexpectedly to me, sending 'vlen' or less than 'vlen'
messages, returning up to 'vlen', with the last message being
partially sent, and no further indication of errors other than
the returned msg_len for the last partially sent message being
less than iov_len.
In this case, we would assume success and proceed as nothing
happened. However, qemu would fail to parse any further message,
having received a partial descriptor, and eventually close the
connection, logging:
serious error: oversized packet received,connection terminated.
as the length descriptor for the next message would be sourced
from the middle of the next successfully sent message, not from
its header.
Handle this by checking the msg_len returned for the last (even
partially) sent message, and force re-sending the missing bytes,
if any, with a blocking sendmsg() -- qemu must not receive
anything else than that anyway.
While at it, allow to send up to 64KiB for each message, the
previous 32KiB limit isn't actually required, and just switch to a
new message at each iteration on sending buffers, they are already
MSS-sized anyway, so the check in the loop isn't really needed.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-08-26 12:37:48 +00:00
|
|
|
}
|
2021-07-26 12:20:36 +00:00
|
|
|
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
/* info.tcpi_bytes_acked already includes one byte for SYN, but
|
|
|
|
* not for incoming connections.
|
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->seq_init_from_tap = ntohl(th->seq) + 1;
|
|
|
|
conn->seq_from_tap = conn->seq_init_from_tap;
|
|
|
|
conn->seq_ack_to_tap = conn->seq_from_tap;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_state(conn, ESTABLISHED);
|
2021-04-25 08:46:42 +00:00
|
|
|
|
|
|
|
/* The client might have sent data already, which we didn't
|
|
|
|
* dequeue waiting for SYN,ACK from tap -- check now.
|
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_data_from_sock(c, conn, now);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_send_to_tap(c, conn, 0, now);
|
2021-04-25 08:46:42 +00:00
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
tcp_tap_epoll_mask(c, conn, EPOLLIN | EPOLLRDHUP);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
|
|
|
case TAP_SYN_RCVD:
|
|
|
|
if (th->fin) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->seq_from_tap++;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
shutdown(conn->sock, SHUT_WR);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_send_to_tap(c, conn, ACK, now);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_state(conn, FIN_WAIT_1);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!th->ack) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
return count;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
2021-09-01 14:43:13 +00:00
|
|
|
tcp_clamp_window(conn, th, len, 0, 0);
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_state(conn, ESTABLISHED);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (count == 1)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Falls through */
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
case ESTABLISHED:
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
case ESTABLISHED_SOCK_FIN:
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case ESTABLISHED_SOCK_FIN_SENT:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_tap_epoll_mask(c, conn, conn->events & ~EPOLLET);
|
|
|
|
tcp_data_from_tap(c, conn, msg, count, now);
|
|
|
|
return count;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
case CLOSE_WAIT:
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case FIN_WAIT_1_SOCK_FIN:
|
|
|
|
case FIN_WAIT_1:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (th->ack) {
|
|
|
|
conn->tap_data_noack = ((struct timespec) { 0, 0 });
|
|
|
|
conn->ts_ack_from_tap = *now;
|
|
|
|
}
|
|
|
|
|
|
|
|
tcp_sock_consume(conn, ntohl(th->ack_seq));
|
|
|
|
if (conn->state == FIN_WAIT_1_SOCK_FIN &&
|
|
|
|
conn->seq_ack_from_tap == conn->seq_to_tap) {
|
|
|
|
tcp_tap_destroy(c, conn);
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
tcp_tap_epoll_mask(c, conn, conn->events & ~EPOLLET);
|
2021-07-26 23:09:45 +00:00
|
|
|
return count;
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
case TAP_SYN_SENT:
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
case LAST_ACK:
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
case SPLICE_ACCEPTED:
|
|
|
|
case SPLICE_CONNECT:
|
|
|
|
case SPLICE_ESTABLISHED:
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case SPLICE_FIN_FROM:
|
|
|
|
case SPLICE_FIN_TO:
|
|
|
|
case SPLICE_FIN_BOTH:
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
case CLOSED: /* ;) */
|
|
|
|
break;
|
|
|
|
}
|
2021-04-22 11:39:36 +00:00
|
|
|
|
|
|
|
return 1;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_connect_finish() - Handle completion of connect() from EPOLLOUT event
|
|
|
|
* @c: Execution context
|
|
|
|
* @s: File descriptor number for socket
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
* @now: Current timestamp
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
static void tcp_connect_finish(struct ctx *c, struct tcp_tap_conn *conn,
|
|
|
|
struct timespec *now)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
|
|
|
socklen_t sl;
|
|
|
|
int so;
|
|
|
|
|
2021-10-05 17:52:24 +00:00
|
|
|
/* Drop EPOLLOUT, only used to wait for connect() to complete */
|
|
|
|
tcp_tap_epoll_mask(c, conn, EPOLLIN | EPOLLRDHUP);
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
sl = sizeof(so);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (getsockopt(conn->sock, SOL_SOCKET, SO_ERROR, &so, &sl) || so) {
|
|
|
|
tcp_rst(c, conn);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (tcp_send_to_tap(c, conn, SYN | ACK, now))
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_state(conn, TAP_SYN_RCVD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_splice_connect_finish() - Completion of connect() or call on success
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @v6: Set on IPv6 connection
|
|
|
|
*/
|
|
|
|
static void tcp_splice_connect_finish(struct ctx *c,
|
|
|
|
struct tcp_splice_conn *conn, int v6)
|
|
|
|
{
|
|
|
|
union epoll_ref ref_from = { .proto = IPPROTO_TCP, .s = conn->from,
|
|
|
|
.tcp = { .splice = 1, .v6 = v6,
|
|
|
|
.index = conn - ts } };
|
|
|
|
union epoll_ref ref_to = { .proto = IPPROTO_TCP, .s = conn->to,
|
|
|
|
.tcp = { .splice = 1, .v6 = v6,
|
|
|
|
.index = conn - ts } };
|
|
|
|
struct epoll_event ev_from, ev_to;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int i;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->pipe_from_to[0] = conn->pipe_to_from[0] = -1;
|
|
|
|
conn->pipe_from_to[1] = conn->pipe_to_from[1] = -1;
|
|
|
|
for (i = 0; i < TCP_SPLICE_PIPE_POOL_SIZE; i++) {
|
|
|
|
if (splice_pipe_pool[i][0][0] > 0) {
|
|
|
|
SWAP(conn->pipe_from_to[0], splice_pipe_pool[i][0][0]);
|
|
|
|
SWAP(conn->pipe_from_to[1], splice_pipe_pool[i][0][1]);
|
|
|
|
|
|
|
|
SWAP(conn->pipe_to_from[0], splice_pipe_pool[i][1][0]);
|
|
|
|
SWAP(conn->pipe_to_from[1], splice_pipe_pool[i][1][1]);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if (conn->pipe_from_to[0] < 0) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (pipe2(conn->pipe_to_from, O_NONBLOCK) ||
|
|
|
|
pipe2(conn->pipe_from_to, O_NONBLOCK)) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_splice_destroy(c, conn);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
fcntl(conn->pipe_from_to[0], F_SETPIPE_SZ, c->tcp.pipe_size);
|
|
|
|
fcntl(conn->pipe_to_from[0], F_SETPIPE_SZ, c->tcp.pipe_size);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (conn->state == SPLICE_CONNECT) {
|
|
|
|
tcp_splice_state(conn, SPLICE_ESTABLISHED);
|
|
|
|
|
2021-09-16 06:17:18 +00:00
|
|
|
ev_from.events = ev_to.events = EPOLLIN | EPOLLRDHUP;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
ev_from.data.u64 = ref_from.u64;
|
|
|
|
ev_to.data.u64 = ref_to.u64;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_ADD, conn->from, &ev_from);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_MOD, conn->to, &ev_to);
|
|
|
|
}
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_splice_connect() - Create and connect socket for new spliced connection
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @v6: Set on IPv6 connection
|
|
|
|
* @port: Destination port, host order
|
|
|
|
*
|
|
|
|
* Return: 0 for connect() succeeded or in progress, negative value on error
|
|
|
|
*/
|
|
|
|
static int tcp_splice_connect(struct ctx *c, struct tcp_splice_conn *conn,
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int s, int v6, in_port_t port)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
{
|
2021-10-15 18:42:11 +00:00
|
|
|
int sock_conn = (s >= 0) ? s : socket(v6 ? AF_INET6 : AF_INET,
|
|
|
|
SOCK_STREAM | SOCK_NONBLOCK,
|
|
|
|
IPPROTO_TCP);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
union epoll_ref ref_accept = { .proto = IPPROTO_TCP, .s = conn->from,
|
|
|
|
.tcp = { .splice = 1, .v6 = v6,
|
|
|
|
.index = conn - ts } };
|
|
|
|
union epoll_ref ref_conn = { .proto = IPPROTO_TCP, .s = sock_conn,
|
|
|
|
.tcp = { .splice = 1, .v6 = v6,
|
|
|
|
.index = conn - ts } };
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
struct epoll_event ev_accept = { .data.u64 = ref_accept.u64 };
|
|
|
|
struct epoll_event ev_conn = { .data.u64 = ref_conn.u64 };
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct sockaddr_in6 addr6 = {
|
|
|
|
.sin6_family = AF_INET6,
|
|
|
|
.sin6_port = htons(port),
|
|
|
|
.sin6_addr = IN6ADDR_LOOPBACK_INIT,
|
|
|
|
};
|
|
|
|
struct sockaddr_in addr4 = {
|
|
|
|
.sin_family = AF_INET,
|
|
|
|
.sin_port = htons(port),
|
|
|
|
.sin_addr = { .s_addr = htonl(INADDR_LOOPBACK) },
|
|
|
|
};
|
|
|
|
const struct sockaddr *sa;
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
int ret, one = 1;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
socklen_t sl;
|
|
|
|
|
|
|
|
conn->to = sock_conn;
|
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if (s < 0)
|
|
|
|
tcp_sock_set_bufsize(c, conn->to);
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
setsockopt(conn->to, SOL_TCP, TCP_QUICKACK, &one, sizeof(one));
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (v6) {
|
|
|
|
sa = (struct sockaddr *)&addr6;
|
|
|
|
sl = sizeof(addr6);
|
|
|
|
} else {
|
|
|
|
sa = (struct sockaddr *)&addr4;
|
|
|
|
sl = sizeof(addr4);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (connect(conn->to, sa, sl)) {
|
|
|
|
if (errno != EINPROGRESS) {
|
|
|
|
ret = -errno;
|
|
|
|
close(sock_conn);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
tcp_splice_state(conn, SPLICE_CONNECT);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
ev_conn.events = EPOLLOUT;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
} else {
|
|
|
|
tcp_splice_state(conn, SPLICE_ESTABLISHED);
|
|
|
|
tcp_splice_connect_finish(c, conn, v6);
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
ev_accept.events = EPOLLIN | EPOLLOUT | EPOLLRDHUP;
|
|
|
|
ev_conn.events = EPOLLIN | EPOLLOUT | EPOLLRDHUP;
|
|
|
|
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_ADD, conn->from, &ev_accept);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_ADD, conn->to, &ev_conn);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct tcp_splice_connect_ns_arg - Arguments for tcp_splice_connect_ns()
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Accepted inbound connection
|
|
|
|
* @v6: Set for inbound IPv6 connection
|
|
|
|
* @port: Destination port, host order
|
|
|
|
* @ret: Return value of tcp_splice_connect_ns()
|
|
|
|
*/
|
|
|
|
struct tcp_splice_connect_ns_arg {
|
|
|
|
struct ctx *c;
|
|
|
|
struct tcp_splice_conn *conn;
|
|
|
|
int v6;
|
|
|
|
in_port_t port;
|
|
|
|
int ret;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_splice_connect_ns() - Enter namespace and call tcp_splice_connect()
|
|
|
|
* @arg: See struct tcp_splice_connect_ns_arg
|
|
|
|
*
|
|
|
|
* Return: 0
|
|
|
|
*/
|
|
|
|
static int tcp_splice_connect_ns(void *arg)
|
|
|
|
{
|
|
|
|
struct tcp_splice_connect_ns_arg *a;
|
|
|
|
|
|
|
|
a = (struct tcp_splice_connect_ns_arg *)arg;
|
2021-09-29 14:11:06 +00:00
|
|
|
ns_enter(a->c);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
a->ret = tcp_splice_connect(a->c, a->conn, -1, a->v6, a->port);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_splice_new() - Handle new inbound, spliced connection
|
|
|
|
* @c: Execution context
|
|
|
|
* @conn: Connection pointer
|
|
|
|
* @v6: Set for IPv6 connection
|
|
|
|
* @port: Destination port, host order
|
|
|
|
*
|
|
|
|
* Return: return code from connect()
|
|
|
|
*/
|
|
|
|
static int tcp_splice_new(struct ctx *c, struct tcp_splice_conn *conn,
|
|
|
|
int v6, in_port_t port)
|
|
|
|
{
|
|
|
|
struct tcp_splice_connect_ns_arg ns_arg = { c, conn, v6, port, 0 };
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int *sock_pool_p, i, s = -1;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (bitmap_isset(c->tcp.port_to_tap, port))
|
|
|
|
sock_pool_p = v6 ? ns_sock_pool6 : ns_sock_pool4;
|
|
|
|
else
|
|
|
|
sock_pool_p = v6 ? init_sock_pool6 : init_sock_pool4;
|
|
|
|
|
|
|
|
for (i = 0; i < TCP_SOCK_POOL_SIZE; i++, sock_pool_p++) {
|
2021-10-15 18:42:11 +00:00
|
|
|
if ((s = *sock_pool_p) >= 0) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
*sock_pool_p = -1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if (s < 0 && bitmap_isset(c->tcp.port_to_tap, port)) {
|
2021-08-12 13:42:43 +00:00
|
|
|
NS_CALL(tcp_splice_connect_ns, &ns_arg);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
return ns_arg.ret;
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
return tcp_splice_connect(c, conn, s, v6, port);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_conn_from_sock() - Handle new connection request from listening socket
|
|
|
|
* @c: Execution context
|
|
|
|
* @ref: epoll reference of listening socket
|
|
|
|
* @now: Current timestamp
|
|
|
|
*/
|
|
|
|
static void tcp_conn_from_sock(struct ctx *c, union epoll_ref ref,
|
|
|
|
struct timespec *now)
|
|
|
|
{
|
|
|
|
union epoll_ref ref_conn = { .proto = IPPROTO_TCP,
|
|
|
|
.tcp.v6 = ref.tcp.v6 };
|
|
|
|
struct sockaddr_storage sa;
|
|
|
|
struct tcp_tap_conn *conn;
|
|
|
|
struct epoll_event ev;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
socklen_t sl;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
int s;
|
|
|
|
|
|
|
|
if (c->tcp.tap_conn_count >= MAX_TAP_CONNS)
|
|
|
|
return;
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
sl = sizeof(sa);
|
|
|
|
s = accept4(ref.s, (struct sockaddr *)&sa, &sl, SOCK_NONBLOCK);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (s < 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
conn = &tt[c->tcp.tap_conn_count++];
|
|
|
|
ref_conn.tcp.index = conn - tt;
|
|
|
|
ref_conn.s = conn->sock = s;
|
|
|
|
|
|
|
|
if (ref.tcp.v6) {
|
2021-10-19 17:18:04 +00:00
|
|
|
struct sockaddr_in6 sa6;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
memcpy(&sa6, &sa, sizeof(sa6));
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
if (IN6_IS_ADDR_LOOPBACK(&sa6.sin6_addr) ||
|
|
|
|
!memcmp(&sa6.sin6_addr, &c->addr6_seen, sizeof(c->gw6)) ||
|
2021-10-20 09:10:23 +00:00
|
|
|
!memcmp(&sa6.sin6_addr, &c->addr6, sizeof(c->gw6))) {
|
|
|
|
struct in6_addr *src;
|
|
|
|
|
|
|
|
if (IN6_IS_ADDR_LINKLOCAL(&c->gw6))
|
|
|
|
src = &c->gw6;
|
|
|
|
else
|
|
|
|
src = &c->addr6_ll;
|
|
|
|
|
|
|
|
memcpy(&sa6.sin6_addr, src, sizeof(*src));
|
|
|
|
}
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
memcpy(&conn->a.a6, &sa6.sin6_addr, sizeof(conn->a.a6));
|
|
|
|
|
|
|
|
conn->sock_port = ntohs(sa6.sin6_port);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->tap_port = ref.tcp.index;
|
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
conn->seq_to_tap = tcp_seq_init(c, AF_INET6, &sa6.sin6_addr,
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->sock_port,
|
|
|
|
conn->tap_port,
|
|
|
|
now);
|
2021-07-26 05:30:57 +00:00
|
|
|
conn->seq_init_to_tap = conn->seq_to_tap;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
tcp_hash_insert(c, conn, AF_INET6, &sa6.sin6_addr);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
} else {
|
2021-10-19 17:18:04 +00:00
|
|
|
struct sockaddr_in sa4;
|
|
|
|
in_addr_t s_addr;
|
|
|
|
|
|
|
|
memcpy(&sa4, &sa, sizeof(sa4));
|
2021-10-19 22:05:11 +00:00
|
|
|
s_addr = ntohl(sa4.sin_addr.s_addr);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
memset(&conn->a.a4.zero, 0, sizeof(conn->a.a4.zero));
|
|
|
|
memset(&conn->a.a4.one, 0xff, sizeof(conn->a.a4.one));
|
|
|
|
|
2021-07-26 16:20:01 +00:00
|
|
|
if (s_addr >> IN_CLASSA_NSHIFT == IN_LOOPBACKNET ||
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
s_addr == INADDR_ANY || s_addr == htonl(c->addr4_seen))
|
2021-10-19 17:18:04 +00:00
|
|
|
sa4.sin_addr.s_addr = c->gw4;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
memcpy(&conn->a.a4.a, &s_addr, sizeof(conn->a.a4.a));
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
conn->sock_port = ntohs(sa4.sin_port);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->tap_port = ref.tcp.index;
|
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
conn->seq_to_tap = tcp_seq_init(c, AF_INET, &s_addr,
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn->sock_port,
|
|
|
|
conn->tap_port,
|
|
|
|
now);
|
2021-07-26 05:30:57 +00:00
|
|
|
conn->seq_init_to_tap = conn->seq_to_tap;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-10-19 17:18:04 +00:00
|
|
|
tcp_hash_insert(c, conn, AF_INET, &s_addr);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
conn->seq_ack_from_tap = conn->seq_to_tap + 1;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->wnd_from_tap = WINDOW_DEFAULT;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->ts_sock_act = conn->ts_tap_act = *now;
|
|
|
|
conn->ts_ack_from_tap = conn->ts_ack_to_tap = *now;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_send_to_tap(c, conn, SYN, now);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
conn->events = ev.events = EPOLLRDHUP;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
ev.data.u64 = ref_conn.u64;
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_ADD, conn->sock, &ev);
|
|
|
|
|
|
|
|
tcp_tap_state(conn, SOCK_SYN_SENT);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
|
2021-10-04 19:50:05 +00:00
|
|
|
tcp_get_sndbuf(conn);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_sock_handler_splice() - Handler for socket mapped to spliced connection
|
|
|
|
* @c: Execution context
|
|
|
|
* @ref: epoll reference
|
|
|
|
* @events: epoll events bitmap
|
2021-10-13 20:25:03 +00:00
|
|
|
*
|
|
|
|
* #syscalls splice
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
*/
|
|
|
|
void tcp_sock_handler_splice(struct ctx *c, union epoll_ref ref,
|
|
|
|
uint32_t events)
|
|
|
|
{
|
2021-09-16 06:26:01 +00:00
|
|
|
int move_from, move_to, *pipes, eof, never_read;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
uint8_t *rcvlowat_set, *rcvlowat_act;
|
|
|
|
uint64_t *seq_read, *seq_write;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct tcp_splice_conn *conn;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
struct epoll_event ev;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
if (ref.tcp.listen) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int s, one = 1;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
if (c->tcp.splice_conn_count >= MAX_SPLICE_CONNS)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if ((s = accept4(ref.s, NULL, NULL, SOCK_NONBLOCK)) < 0)
|
|
|
|
return;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
setsockopt(s, SOL_TCP, TCP_QUICKACK, &one, sizeof(one));
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn = &ts[c->tcp.splice_conn_count++];
|
|
|
|
conn->from = s;
|
|
|
|
tcp_splice_state(conn, SPLICE_ACCEPTED);
|
|
|
|
|
|
|
|
if (tcp_splice_new(c, conn, ref.tcp.v6, ref.tcp.index))
|
|
|
|
tcp_splice_destroy(c, conn);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
conn = &ts[ref.tcp.index];
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (events & EPOLLERR)
|
|
|
|
goto close;
|
|
|
|
|
|
|
|
if (conn->state == SPLICE_CONNECT && (events & EPOLLHUP))
|
|
|
|
goto close;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
if (events & EPOLLOUT) {
|
|
|
|
struct epoll_event ev = {
|
2021-09-16 06:17:18 +00:00
|
|
|
.events = EPOLLIN | EPOLLRDHUP,
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
.data.u64 = ref.u64,
|
|
|
|
};
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (conn->state == SPLICE_CONNECT)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_splice_connect_finish(c, conn, ref.tcp.v6);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
else if (conn->state == SPLICE_ESTABLISHED)
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_MOD, ref.s, &ev);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
move_to = ref.s;
|
|
|
|
if (ref.s == conn->to) {
|
|
|
|
move_from = conn->from;
|
|
|
|
pipes = conn->pipe_from_to;
|
|
|
|
} else {
|
|
|
|
move_from = conn->to;
|
|
|
|
pipes = conn->pipe_to_from;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
move_from = ref.s;
|
|
|
|
if (ref.s == conn->from) {
|
|
|
|
move_to = conn->to;
|
|
|
|
pipes = conn->pipe_from_to;
|
|
|
|
} else {
|
|
|
|
move_to = conn->from;
|
|
|
|
pipes = conn->pipe_to_from;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-09-16 06:27:06 +00:00
|
|
|
if (events & EPOLLRDHUP) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (ref.s == conn->from) {
|
|
|
|
if (conn->state == SPLICE_ESTABLISHED)
|
|
|
|
tcp_splice_state(conn, SPLICE_FIN_FROM);
|
|
|
|
else if (conn->state == SPLICE_FIN_TO)
|
|
|
|
tcp_splice_state(conn, SPLICE_FIN_BOTH);
|
|
|
|
} else {
|
|
|
|
if (conn->state == SPLICE_ESTABLISHED)
|
|
|
|
tcp_splice_state(conn, SPLICE_FIN_TO);
|
|
|
|
else if (conn->state == SPLICE_FIN_FROM)
|
|
|
|
tcp_splice_state(conn, SPLICE_FIN_BOTH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
swap:
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
eof = 0;
|
2021-09-16 06:26:01 +00:00
|
|
|
never_read = 1;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (move_from == conn->from) {
|
|
|
|
seq_read = &conn->from_read;
|
|
|
|
seq_write = &conn->from_written;
|
|
|
|
rcvlowat_set = splice_rcvlowat_set[0];
|
|
|
|
rcvlowat_act = splice_rcvlowat_act[0];
|
|
|
|
} else {
|
|
|
|
seq_read = &conn->to_read;
|
|
|
|
seq_write = &conn->to_written;
|
|
|
|
rcvlowat_set = splice_rcvlowat_set[1];
|
|
|
|
rcvlowat_act = splice_rcvlowat_act[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
while (1) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int retry_write = 0, more = 0;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
ssize_t read, to_write = 0, written;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
|
|
|
retry:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
read = splice(move_from, NULL, pipes[1], NULL, c->tcp.pipe_size,
|
2021-10-19 07:19:50 +00:00
|
|
|
SPLICE_F_MOVE | SPLICE_F_NONBLOCK);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (read < 0) {
|
|
|
|
if (errno == EINTR)
|
|
|
|
goto retry;
|
|
|
|
|
|
|
|
if (errno != EAGAIN)
|
|
|
|
goto close;
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
to_write = c->tcp.pipe_size;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
} else if (!read) {
|
|
|
|
eof = 1;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
to_write = c->tcp.pipe_size;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
} else {
|
|
|
|
never_read = 0;
|
|
|
|
to_write += read;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (read >= (long)c->tcp.pipe_size * 90 / 100)
|
|
|
|
more = SPLICE_F_MORE;
|
|
|
|
|
|
|
|
if (bitmap_isset(rcvlowat_set, conn - ts))
|
|
|
|
bitmap_set(rcvlowat_act, conn - ts);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
eintr:
|
|
|
|
written = splice(pipes[0], NULL, move_to, NULL, to_write,
|
2021-10-19 07:19:50 +00:00
|
|
|
SPLICE_F_MOVE | more | SPLICE_F_NONBLOCK);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
/* Most common case: skip updating counters. */
|
|
|
|
if (read > 0 && read == written) {
|
|
|
|
if (read >= (long)c->tcp.pipe_size * 10 / 100)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!bitmap_isset(rcvlowat_set, conn - ts) &&
|
|
|
|
read > (long)c->tcp.pipe_size / 10) {
|
|
|
|
int lowat = c->tcp.pipe_size / 4;
|
|
|
|
|
|
|
|
setsockopt(move_from, SOL_SOCKET, SO_RCVLOWAT,
|
|
|
|
&lowat, sizeof(lowat));
|
|
|
|
|
|
|
|
bitmap_set(rcvlowat_set, conn - ts);
|
|
|
|
bitmap_set(rcvlowat_act, conn - ts);
|
2021-09-16 06:29:38 +00:00
|
|
|
}
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
|
|
|
|
break;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
*seq_read += read > 0 ? read : 0;
|
|
|
|
*seq_write += written > 0 ? written : 0;
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (written < 0) {
|
|
|
|
if (errno == EINTR)
|
|
|
|
goto eintr;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (errno != EAGAIN)
|
|
|
|
goto close;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (never_read)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
break;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
|
|
|
if (retry_write--)
|
|
|
|
goto retry;
|
|
|
|
|
2021-09-16 06:17:18 +00:00
|
|
|
ev.events = EPOLLIN | EPOLLOUT | EPOLLRDHUP;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
ref.s = move_to;
|
|
|
|
ev.data.u64 = ref.u64,
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_MOD, move_to, &ev);
|
|
|
|
break;
|
2021-10-19 22:05:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (never_read && written == (long)(c->tcp.pipe_size))
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
goto retry;
|
2021-10-19 22:05:11 +00:00
|
|
|
|
|
|
|
if (!never_read && written < to_write) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
to_write -= written;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (eof)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (*seq_read == *seq_write) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (move_from == conn->from &&
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
(conn->state == SPLICE_FIN_FROM ||
|
|
|
|
conn->state == SPLICE_FIN_BOTH)) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (!conn->from_fin_sent) {
|
2021-09-16 06:41:19 +00:00
|
|
|
shutdown(conn->to, SHUT_WR);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
conn->from_fin_sent = 1;
|
2021-09-16 06:41:19 +00:00
|
|
|
|
|
|
|
ev.events = 0;
|
|
|
|
ref.s = move_from;
|
|
|
|
ev.data.u64 = ref.u64,
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_MOD,
|
|
|
|
move_from, &ev);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
|
|
|
if (conn->to_fin_sent)
|
|
|
|
goto close;
|
|
|
|
} else if (move_from == conn->to &&
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
(conn->state == SPLICE_FIN_TO ||
|
|
|
|
conn->state == SPLICE_FIN_BOTH)) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (!conn->to_fin_sent) {
|
2021-09-16 06:41:19 +00:00
|
|
|
shutdown(conn->from, SHUT_WR);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
conn->to_fin_sent = 1;
|
2021-09-16 06:41:19 +00:00
|
|
|
|
|
|
|
ev.events = 0;
|
|
|
|
ref.s = move_from;
|
|
|
|
ev.data.u64 = ref.u64,
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_MOD,
|
|
|
|
move_from, &ev);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (conn->from_fin_sent)
|
|
|
|
goto close;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((events & (EPOLLIN | EPOLLOUT)) == (EPOLLIN | EPOLLOUT)) {
|
|
|
|
events = EPOLLIN;
|
|
|
|
|
|
|
|
SWAP(move_from, move_to);
|
|
|
|
if (pipes == conn->pipe_from_to)
|
|
|
|
pipes = conn->pipe_to_from;
|
|
|
|
else
|
|
|
|
pipes = conn->pipe_from_to;
|
|
|
|
|
|
|
|
goto swap;
|
|
|
|
}
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
close:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->from, NULL);
|
|
|
|
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->to, NULL);
|
|
|
|
conn->state = CLOSED;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_sock_handler() - Handle new data from socket
|
|
|
|
* @c: Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @ref: epoll reference
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @events: epoll events bitmap
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
* @now: Current timestamp
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
void tcp_sock_handler(struct ctx *c, union epoll_ref ref, uint32_t events,
|
udp: Connection tracking for ephemeral, local ports, and related fixes
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 14:59:20 +00:00
|
|
|
struct timespec *now)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
struct tcp_tap_conn *conn;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (ref.tcp.splice) {
|
|
|
|
tcp_sock_handler_splice(c, ref, events);
|
|
|
|
return;
|
|
|
|
}
|
2021-05-21 09:14:51 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (ref.tcp.listen) {
|
|
|
|
tcp_conn_from_sock(c, ref, now);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
conn = &tt[ref.tcp.index];
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
conn->ts_sock_act = *now;
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (events & EPOLLERR) {
|
|
|
|
if (conn->state != CLOSED)
|
|
|
|
tcp_rst(c, conn);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
switch (conn->state) {
|
|
|
|
case TAP_SYN_SENT:
|
|
|
|
if (events & EPOLLOUT)
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_connect_finish(c, conn, now);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
else
|
|
|
|
tcp_rst(c, conn);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case ESTABLISHED_SOCK_FIN:
|
|
|
|
case ESTABLISHED_SOCK_FIN_SENT:
|
|
|
|
case ESTABLISHED:
|
2021-09-16 06:42:45 +00:00
|
|
|
if (events & EPOLLRDHUP) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
if (conn->state == ESTABLISHED)
|
|
|
|
tcp_tap_state(conn, ESTABLISHED_SOCK_FIN);
|
|
|
|
}
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_data_from_sock(c, conn, now);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
return;
|
|
|
|
case LAST_ACK:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_send_to_tap(c, conn, 0, now);
|
|
|
|
if (conn->seq_ack_to_tap == conn->seq_from_tap + 1 ||
|
|
|
|
conn->seq_ack_to_tap == conn->seq_from_tap)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_tap_destroy(c, conn);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
return;
|
|
|
|
case FIN_WAIT_1:
|
|
|
|
if (events & EPOLLIN)
|
|
|
|
tcp_data_from_sock(c, conn, now);
|
|
|
|
if (events & EPOLLRDHUP) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_send_to_tap(c, conn, FIN | ACK, now);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
tcp_tap_state(conn, FIN_WAIT_1_SOCK_FIN);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
case CLOSE_WAIT:
|
|
|
|
case FIN_WAIT_1_SOCK_FIN:
|
|
|
|
if (events & EPOLLIN)
|
|
|
|
tcp_data_from_sock(c, conn, now);
|
|
|
|
if (events & EPOLLHUP) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if ((conn->seq_ack_to_tap == conn->seq_from_tap + 1 ||
|
|
|
|
conn->seq_ack_to_tap == conn->seq_from_tap) &&
|
|
|
|
(conn->seq_ack_from_tap == conn->seq_to_tap - 1 ||
|
|
|
|
conn->seq_ack_from_tap == conn->seq_to_tap)) {
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
tcp_tap_destroy(c, conn);
|
|
|
|
} else {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_send_to_tap(c, conn, ACK, now);
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
}
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
return;
|
|
|
|
case TAP_SYN_RCVD:
|
|
|
|
case SOCK_SYN_SENT:
|
|
|
|
case SPLICE_ACCEPTED:
|
|
|
|
case SPLICE_CONNECT:
|
|
|
|
case SPLICE_ESTABLISHED:
|
|
|
|
case SPLICE_FIN_FROM:
|
|
|
|
case SPLICE_FIN_TO:
|
|
|
|
case SPLICE_FIN_BOTH:
|
|
|
|
case CLOSED:
|
|
|
|
break;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
/**
|
|
|
|
* tcp_set_pipe_size() - Set usable pipe size, probe starting from MAX_PIPE_SIZE
|
|
|
|
* @c: Execution context
|
|
|
|
*/
|
|
|
|
static void tcp_set_pipe_size(struct ctx *c)
|
|
|
|
{
|
|
|
|
int probe_pipe[TCP_SPLICE_PIPE_POOL_SIZE * 2][2], i, j;
|
|
|
|
|
|
|
|
c->tcp.pipe_size = MAX_PIPE_SIZE;
|
|
|
|
|
|
|
|
smaller:
|
|
|
|
for (i = 0; i < TCP_SPLICE_PIPE_POOL_SIZE * 2; i++) {
|
|
|
|
if (pipe(probe_pipe[i])) {
|
|
|
|
i++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fcntl(probe_pipe[i][0], F_SETPIPE_SZ, c->tcp.pipe_size) < 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = i - 1; j >= 0; j--) {
|
|
|
|
close(probe_pipe[j][0]);
|
|
|
|
close(probe_pipe[j][1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == TCP_SPLICE_PIPE_POOL_SIZE * 2)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (!(c->tcp.pipe_size /= 2)) {
|
|
|
|
c->tcp.pipe_size = MAX_PIPE_SIZE;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
goto smaller;
|
|
|
|
}
|
|
|
|
|
2021-09-27 03:24:30 +00:00
|
|
|
/**
|
|
|
|
* tcp_sock_init_one() - Initialise listening sockets for a given port
|
|
|
|
* @c: Execution context
|
|
|
|
* @ns: In pasta mode, if set, bind with loopback address in namespace
|
|
|
|
* @port: Port, host order
|
|
|
|
*/
|
|
|
|
static void tcp_sock_init_one(struct ctx *c, int ns, in_port_t port)
|
|
|
|
{
|
|
|
|
union tcp_epoll_ref tref = { .listen = 1 };
|
|
|
|
int s;
|
|
|
|
|
|
|
|
if (ns)
|
|
|
|
tref.index = (in_port_t)(port + tcp_port_delta_to_init[port]);
|
|
|
|
else
|
|
|
|
tref.index = (in_port_t)(port + tcp_port_delta_to_tap[port]);
|
|
|
|
|
|
|
|
if (c->v4) {
|
|
|
|
tref.v6 = 0;
|
|
|
|
|
|
|
|
tref.splice = 0;
|
|
|
|
if (!ns) {
|
|
|
|
s = sock_l4(c, AF_INET, IPPROTO_TCP, port,
|
|
|
|
c->mode == MODE_PASTA ? BIND_EXT : BIND_ANY,
|
|
|
|
tref.u32);
|
2021-10-15 18:42:11 +00:00
|
|
|
if (s >= 0)
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
tcp_sock_set_bufsize(c, s);
|
2021-09-27 03:24:30 +00:00
|
|
|
else
|
|
|
|
s = -1;
|
|
|
|
|
|
|
|
if (c->tcp.init_detect_ports)
|
|
|
|
tcp_sock_init_ext[port][V4] = s;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (c->mode == MODE_PASTA) {
|
|
|
|
tref.splice = 1;
|
|
|
|
s = sock_l4(c, AF_INET, IPPROTO_TCP, port,
|
|
|
|
BIND_LOOPBACK, tref.u32);
|
2021-10-15 18:42:11 +00:00
|
|
|
if (s >= 0)
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
tcp_sock_set_bufsize(c, s);
|
2021-09-27 03:24:30 +00:00
|
|
|
else
|
|
|
|
s = -1;
|
|
|
|
|
|
|
|
if (c->tcp.ns_detect_ports) {
|
|
|
|
if (ns)
|
|
|
|
tcp_sock_ns[port][V4] = s;
|
|
|
|
else
|
|
|
|
tcp_sock_init_lo[port][V4] = s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (c->v6) {
|
|
|
|
tref.v6 = 1;
|
|
|
|
|
|
|
|
tref.splice = 0;
|
|
|
|
if (!ns) {
|
|
|
|
s = sock_l4(c, AF_INET6, IPPROTO_TCP, port,
|
|
|
|
c->mode == MODE_PASTA ? BIND_EXT : BIND_ANY,
|
|
|
|
tref.u32);
|
2021-10-15 18:42:11 +00:00
|
|
|
if (s >= 0)
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
tcp_sock_set_bufsize(c, s);
|
2021-09-27 03:24:30 +00:00
|
|
|
else
|
|
|
|
s = -1;
|
|
|
|
|
|
|
|
if (c->tcp.init_detect_ports)
|
|
|
|
tcp_sock_init_ext[port][V6] = s;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (c->mode == MODE_PASTA) {
|
|
|
|
tref.splice = 1;
|
|
|
|
s = sock_l4(c, AF_INET6, IPPROTO_TCP, port,
|
|
|
|
BIND_LOOPBACK, tref.u32);
|
2021-10-15 18:42:11 +00:00
|
|
|
if (s >= 0)
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
tcp_sock_set_bufsize(c, s);
|
2021-09-27 03:24:30 +00:00
|
|
|
else
|
|
|
|
s = -1;
|
|
|
|
|
|
|
|
if (c->tcp.ns_detect_ports) {
|
|
|
|
if (ns)
|
|
|
|
tcp_sock_ns[port][V6] = s;
|
|
|
|
else
|
|
|
|
tcp_sock_init_lo[port][V6] = s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
/**
|
|
|
|
* tcp_sock_init_ns() - Bind sockets in namespace for inbound connections
|
|
|
|
* @arg: Execution context
|
|
|
|
*
|
|
|
|
* Return: 0 on success, -1 on failure
|
|
|
|
*/
|
|
|
|
static int tcp_sock_init_ns(void *arg)
|
|
|
|
{
|
|
|
|
struct ctx *c = (struct ctx *)arg;
|
2021-10-19 22:05:11 +00:00
|
|
|
int port;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-09-29 14:11:06 +00:00
|
|
|
ns_enter(c);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-08-12 13:42:43 +00:00
|
|
|
for (port = 0; port < USHRT_MAX; port++) {
|
|
|
|
if (!bitmap_isset(c->tcp.port_to_init, port))
|
|
|
|
continue;
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
2021-09-27 03:24:30 +00:00
|
|
|
tcp_sock_init_one(c, 1, port);
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
/**
|
|
|
|
* tcp_splice_pipe_refill() - Refill pool of pre-opened pipes
|
|
|
|
* @c: Execution context
|
|
|
|
*/
|
|
|
|
static void tcp_splice_pipe_refill(struct ctx *c)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < TCP_SPLICE_PIPE_POOL_SIZE; i++) {
|
2021-10-15 18:42:11 +00:00
|
|
|
if (splice_pipe_pool[i][0][0] >= 0)
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
break;
|
|
|
|
if (pipe2(splice_pipe_pool[i][0], O_NONBLOCK))
|
|
|
|
continue;
|
|
|
|
if (pipe2(splice_pipe_pool[i][1], O_NONBLOCK)) {
|
|
|
|
close(splice_pipe_pool[i][1][0]);
|
|
|
|
close(splice_pipe_pool[i][1][1]);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
fcntl(splice_pipe_pool[i][0][0], F_SETPIPE_SZ,
|
|
|
|
c->tcp.pipe_size);
|
|
|
|
fcntl(splice_pipe_pool[i][1][0], F_SETPIPE_SZ,
|
|
|
|
c->tcp.pipe_size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct tcp_sock_refill_arg - Arguments for tcp_sock_refill()
|
|
|
|
* @c: Execution context
|
|
|
|
* @ns: Set to refill pool of sockets created in namespace
|
|
|
|
*/
|
|
|
|
struct tcp_sock_refill_arg {
|
|
|
|
struct ctx *c;
|
|
|
|
int ns;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_sock_refill() - Refill pool of pre-opened sockets
|
|
|
|
* @arg: See @tcp_sock_refill_arg
|
|
|
|
*
|
|
|
|
* Return: 0
|
|
|
|
*/
|
|
|
|
static int tcp_sock_refill(void *arg)
|
|
|
|
{
|
|
|
|
struct tcp_sock_refill_arg *a = (struct tcp_sock_refill_arg *)arg;
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
int i, *p4, *p6;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
|
|
|
|
if (a->ns) {
|
2021-09-29 14:11:06 +00:00
|
|
|
if (ns_enter(a->c))
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
return 0;
|
|
|
|
p4 = ns_sock_pool4;
|
|
|
|
p6 = ns_sock_pool6;
|
|
|
|
} else {
|
|
|
|
p4 = init_sock_pool4;
|
|
|
|
p6 = init_sock_pool6;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; a->c->v4 && i < TCP_SOCK_POOL_SIZE; i++, p4++) {
|
2021-10-15 18:42:11 +00:00
|
|
|
if (*p4 >= 0) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
*p4 = socket(AF_INET, SOCK_STREAM | SOCK_NONBLOCK, IPPROTO_TCP);
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
tcp_sock_set_bufsize(a->c, *p4);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; a->c->v6 && i < TCP_SOCK_POOL_SIZE; i++, p6++) {
|
2021-10-15 18:42:11 +00:00
|
|
|
if (*p6 >= 0) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
*p6 = socket(AF_INET6, SOCK_STREAM | SOCK_NONBLOCK,
|
|
|
|
IPPROTO_TCP);
|
tcp: Probe net.core.{r,w}mem_max, don't set SO_{RCV,SND}BUF if low
If net.core.rmem_max and net.core.wmem_max sysctls have low values,
we can get bigger buffers by not trying to set them high -- the
kernel would lock their values to what we get.
Try, instead, to get bigger buffers by queueing as much as possible,
and if maximum values in tcp_wmem and tcp_rmem are bigger than this,
that will work.
While at it, drop QUICKACK option for non-spliced sockets, I set
that earlier by mistake.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-10-04 20:08:24 +00:00
|
|
|
tcp_sock_set_bufsize(a->c, *p6);
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
2021-03-17 09:57:36 +00:00
|
|
|
* tcp_sock_init() - Bind sockets for inbound connections, get key for sequence
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @c: Execution context
|
|
|
|
*
|
|
|
|
* Return: 0 on success, -1 on failure
|
2021-10-13 20:25:03 +00:00
|
|
|
*
|
|
|
|
* #syscalls getrandom
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int tcp_sock_init(struct ctx *c, struct timespec *now)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
struct tcp_sock_refill_arg refill_arg = { c, 0 };
|
2021-10-19 22:05:11 +00:00
|
|
|
int i, port;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-19 15:28:18 +00:00
|
|
|
if (getrandom(&c->tcp.hash_secret, sizeof(c->tcp.hash_secret),
|
|
|
|
GRND_RANDOM) < 0) {
|
|
|
|
perror("TCP initial sequence getrandom");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
passt: Spare some syscalls, add some optimisations from profiling
Avoid a bunch of syscalls on forwarding paths by:
- storing minimum and maximum file descriptor numbers for each
protocol, fall back to SO_PROTOCOL query only on overlaps
- allocating a larger receive buffer -- this can result in more
coalesced packets than sendmmsg() can take (UIO_MAXIOV, i.e. 1024),
so make sure we don't exceed that within a single call to protocol
tap handlers
- nesting the handling loop in tap_handler() in the receive loop,
so that we have better chances of filling our receive buffer in
fewer calls
- skipping the recvfrom() in the UDP handler on EPOLLERR -- there's
nothing to be done in that case
and while at it:
- restore the 20ms timer interval for periodic (TCP) events, I
accidentally changed that to 100ms in an earlier commit
- attempt using SO_ZEROCOPY for UDP -- if it's not available,
sendmmsg() will succeed anyway
- fix the handling of the status code from sendmmsg(), if it fails,
we'll try to discard the first message, hence return 1 from the
UDP handler
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-23 20:22:37 +00:00
|
|
|
|
2021-08-12 13:42:43 +00:00
|
|
|
for (port = 0; port < USHRT_MAX; port++) {
|
|
|
|
if (!bitmap_isset(c->tcp.port_to_tap, port))
|
|
|
|
continue;
|
|
|
|
|
2021-09-27 03:24:30 +00:00
|
|
|
tcp_sock_init_one(c, 0, port);
|
2021-08-12 13:42:43 +00:00
|
|
|
}
|
2021-07-26 12:10:29 +00:00
|
|
|
|
2021-10-05 19:15:01 +00:00
|
|
|
for (i = 0; i < ARRAY_SIZE(tcp_l2_mh_tap); i++)
|
|
|
|
tcp_l2_mh_tap[i] = (struct mmsghdr) { .msg_hdr.msg_iovlen = 1 };
|
|
|
|
|
2021-08-12 13:42:43 +00:00
|
|
|
if (c->v4)
|
|
|
|
tcp_sock4_iov_init();
|
|
|
|
|
|
|
|
if (c->v6)
|
2021-07-26 12:10:29 +00:00
|
|
|
tcp_sock6_iov_init();
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
memset(splice_pipe_pool, 0xff, sizeof(splice_pipe_pool));
|
|
|
|
memset(init_sock_pool4, 0xff, sizeof(init_sock_pool4));
|
|
|
|
memset(init_sock_pool6, 0xff, sizeof(init_sock_pool6));
|
|
|
|
memset(ns_sock_pool4, 0xff, sizeof(ns_sock_pool4));
|
|
|
|
memset(ns_sock_pool6, 0xff, sizeof(ns_sock_pool6));
|
|
|
|
memset(tcp_sock_init_lo, 0xff, sizeof(tcp_sock_init_lo));
|
|
|
|
memset(tcp_sock_init_ext, 0xff, sizeof(tcp_sock_init_ext));
|
|
|
|
memset(tcp_sock_ns, 0xff, sizeof(tcp_sock_ns));
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
c->tcp.refill_ts = *now;
|
|
|
|
tcp_sock_refill(&refill_arg);
|
|
|
|
|
|
|
|
if (c->mode == MODE_PASTA) {
|
|
|
|
tcp_set_pipe_size(c);
|
2021-08-12 13:42:43 +00:00
|
|
|
NS_CALL(tcp_sock_init_ns, c);
|
2021-03-17 09:57:36 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
refill_arg.ns = 1;
|
|
|
|
NS_CALL(tcp_sock_refill, &refill_arg);
|
|
|
|
tcp_splice_pipe_refill(c);
|
2021-09-27 03:24:30 +00:00
|
|
|
|
|
|
|
c->tcp.port_detect_ts = *now;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* tcp_timer_one() - Handler for timed events on one socket
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @c: Execution context
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
* @conn: Connection pointer
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @ts: Timestamp from caller
|
|
|
|
*/
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
static void tcp_timer_one(struct ctx *c, struct tcp_tap_conn *conn,
|
|
|
|
struct timespec *ts)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
int ack_from_tap = timespec_diff_ms(ts, &conn->ts_ack_from_tap);
|
|
|
|
int ack_to_tap = timespec_diff_ms(ts, &conn->ts_ack_to_tap);
|
|
|
|
int sock_act = timespec_diff_ms(ts, &conn->ts_sock_act);
|
|
|
|
int tap_act = timespec_diff_ms(ts, &conn->ts_tap_act);
|
|
|
|
int tap_data_noack;
|
|
|
|
|
2021-10-04 20:17:22 +00:00
|
|
|
if (!memcmp(&conn->tap_data_noack, &((struct timespec){ 0, 0 }),
|
|
|
|
sizeof(struct timespec)))
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tap_data_noack = 0;
|
|
|
|
else
|
|
|
|
tap_data_noack = timespec_diff_ms(ts, &conn->tap_data_noack);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
switch (conn->state) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
case CLOSED:
|
|
|
|
tcp_hash_remove(conn);
|
|
|
|
tcp_table_tap_compact(c, conn);
|
|
|
|
break;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
case SOCK_SYN_SENT:
|
|
|
|
case TAP_SYN_RCVD:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (ack_from_tap > SYN_TIMEOUT)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case ESTABLISHED_SOCK_FIN_SENT:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (tap_data_noack > FIN_TIMEOUT) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Falls through */
|
|
|
|
case ESTABLISHED:
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case ESTABLISHED_SOCK_FIN:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (tap_act > ACT_TIMEOUT && sock_act > ACT_TIMEOUT) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
|
|
|
break;
|
|
|
|
}
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
|
2021-10-19 22:05:11 +00:00
|
|
|
if (!conn->wnd_to_tap || ack_to_tap > ACK_INTERVAL)
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_send_to_tap(c, conn, 0, ts);
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (tap_data_noack > ACK_TIMEOUT) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
if (conn->seq_ack_from_tap < conn->seq_to_tap) {
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (tap_data_noack > LAST_ACK_TIMEOUT) {
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
conn->seq_to_tap = conn->seq_ack_from_tap;
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
tcp_data_from_sock(c, conn, ts);
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
}
|
|
|
|
}
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
|
|
|
case CLOSE_WAIT:
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
case FIN_WAIT_1_SOCK_FIN:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (tap_data_noack > FIN_TIMEOUT)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case FIN_WAIT_1:
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (sock_act > FIN_TIMEOUT)
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
tcp_rst(c, conn);
|
|
|
|
break;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
case LAST_ACK:
|
2021-10-19 22:05:11 +00:00
|
|
|
if (sock_act > LAST_ACK_TIMEOUT || tap_act > LAST_ACK_TIMEOUT)
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
tcp_rst(c, conn);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
case TAP_SYN_SENT:
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
case SPLICE_ACCEPTED:
|
|
|
|
case SPLICE_CONNECT:
|
|
|
|
case SPLICE_ESTABLISHED:
|
tcp: Fixes for closing states, spliced connections, out-of-order packets, etc.
This fixes a number of issues found with some heavier testing with
uperf and neper:
- in most closing states, we can still accept data, check for EPOLLIN
when appropriate
- introduce a new state, ESTABLISHED_SOCK_FIN_SENT, to track the fact
we already sent a FIN segment to the tap device, for proper sequence
number bookkeeping
- for pasta mode only: spliced connections also need tracking of
(inferred) FIN segments and clean half-pipe shutdowns
- streamline resetting epoll_wait bitmaps with a new function,
tcp_tap_epoll_mask(), instead of repeating the logic all over the
place
- set EPOLLET for tap connections too, whenever we are waiting for
EPOLLRDHUP or an event from the tap to proceed with data transfer,
to avoid useless loops with EPOLLIN set
- impose an additional limit on the sending window advertised to the
guest, given by SO_SNDBUF: it makes no sense to completely fill
the sending buffer and send a zero window: stop a bit before we
hit that
- handle *all* interrupted system calls as needed
- simplify the logic for reordering of out-of-order segments received
from tap: it's not a corner case, and the previous logic allowed
for deadloops
- fix comparison of seen IPv4 address when we get a new connection
from a socket directed to the configured guest address
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-09 13:16:46 +00:00
|
|
|
case SPLICE_FIN_FROM:
|
|
|
|
case SPLICE_FIN_TO:
|
|
|
|
case SPLICE_FIN_BOTH:
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-09-27 03:24:30 +00:00
|
|
|
/**
|
|
|
|
* struct tcp_port_detect_arg - Arguments for tcp_port_detect()
|
|
|
|
* @c: Execution context
|
|
|
|
* @detect_in_ns: Detect ports bound in namespace, not in init
|
|
|
|
*/
|
|
|
|
struct tcp_port_detect_arg {
|
|
|
|
struct ctx *c;
|
|
|
|
int detect_in_ns;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_port_detect() - Detect ports bound in namespace or init
|
|
|
|
* @arg: See struct tcp_port_detect_arg
|
|
|
|
*
|
|
|
|
* Return: 0
|
|
|
|
*/
|
|
|
|
static int tcp_port_detect(void *arg)
|
|
|
|
{
|
|
|
|
struct tcp_port_detect_arg *a = (struct tcp_port_detect_arg *)arg;
|
|
|
|
|
|
|
|
if (a->detect_in_ns) {
|
2021-09-29 14:11:06 +00:00
|
|
|
ns_enter(a->c);
|
2021-09-27 03:24:30 +00:00
|
|
|
|
|
|
|
get_bound_ports(a->c, 1, IPPROTO_TCP);
|
|
|
|
} else {
|
|
|
|
get_bound_ports(a->c, 0, IPPROTO_TCP);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct tcp_port_rebind_arg - Arguments for tcp_port_rebind()
|
|
|
|
* @c: Execution context
|
|
|
|
* @bind_in_ns: Rebind ports in namespace, not in init
|
|
|
|
*/
|
|
|
|
struct tcp_port_rebind_arg {
|
|
|
|
struct ctx *c;
|
|
|
|
int bind_in_ns;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcp_port_rebind() - Rebind ports in namespace or init
|
|
|
|
* @arg: See struct tcp_port_rebind_arg
|
|
|
|
*
|
|
|
|
* Return: 0
|
|
|
|
*/
|
|
|
|
static int tcp_port_rebind(void *arg)
|
|
|
|
{
|
|
|
|
struct tcp_port_rebind_arg *a = (struct tcp_port_rebind_arg *)arg;
|
2021-10-19 22:05:11 +00:00
|
|
|
int port;
|
2021-09-27 03:24:30 +00:00
|
|
|
|
|
|
|
if (a->bind_in_ns) {
|
2021-09-29 14:11:06 +00:00
|
|
|
ns_enter(a->c);
|
2021-09-27 03:24:30 +00:00
|
|
|
|
|
|
|
for (port = 0; port < USHRT_MAX; port++) {
|
|
|
|
if (!bitmap_isset(a->c->tcp.port_to_init, port)) {
|
2021-10-15 18:42:11 +00:00
|
|
|
if (tcp_sock_ns[port][V4] >= 0) {
|
2021-09-27 03:24:30 +00:00
|
|
|
close(tcp_sock_ns[port][V4]);
|
2021-10-15 18:42:11 +00:00
|
|
|
tcp_sock_ns[port][V4] = -1;
|
2021-09-27 03:24:30 +00:00
|
|
|
}
|
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if (tcp_sock_ns[port][V6] >= 0) {
|
2021-09-27 03:24:30 +00:00
|
|
|
close(tcp_sock_ns[port][V6]);
|
2021-10-15 18:42:11 +00:00
|
|
|
tcp_sock_ns[port][V6] = -1;
|
2021-09-27 03:24:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Don't loop back our own ports */
|
|
|
|
if (bitmap_isset(a->c->tcp.port_to_tap, port))
|
|
|
|
continue;
|
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if ((a->c->v4 && tcp_sock_ns[port][V4] == -1) ||
|
|
|
|
(a->c->v6 && tcp_sock_ns[port][V6] == -1))
|
2021-09-27 03:24:30 +00:00
|
|
|
tcp_sock_init_one(a->c, 1, port);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (port = 0; port < USHRT_MAX; port++) {
|
|
|
|
if (!bitmap_isset(a->c->tcp.port_to_tap, port)) {
|
2021-10-15 18:42:11 +00:00
|
|
|
if (tcp_sock_init_ext[port][V4] >= 0) {
|
2021-09-27 03:24:30 +00:00
|
|
|
close(tcp_sock_init_ext[port][V4]);
|
2021-10-15 18:42:11 +00:00
|
|
|
tcp_sock_init_ext[port][V4] = -1;
|
2021-09-27 03:24:30 +00:00
|
|
|
}
|
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if (tcp_sock_init_ext[port][V6] >= 0) {
|
2021-09-27 03:24:30 +00:00
|
|
|
close(tcp_sock_init_ext[port][V6]);
|
2021-10-15 18:42:11 +00:00
|
|
|
tcp_sock_init_ext[port][V6] = -1;
|
2021-09-27 03:24:30 +00:00
|
|
|
}
|
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if (tcp_sock_init_lo[port][V4] >= 0) {
|
2021-09-27 03:24:30 +00:00
|
|
|
close(tcp_sock_init_lo[port][V4]);
|
2021-10-15 18:42:11 +00:00
|
|
|
tcp_sock_init_lo[port][V4] = -1;
|
2021-09-27 03:24:30 +00:00
|
|
|
}
|
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if (tcp_sock_init_lo[port][V6] >= 0) {
|
2021-09-27 03:24:30 +00:00
|
|
|
close(tcp_sock_init_lo[port][V6]);
|
2021-10-15 18:42:11 +00:00
|
|
|
tcp_sock_init_lo[port][V6] = -1;
|
2021-09-27 03:24:30 +00:00
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Don't loop back our own ports */
|
|
|
|
if (bitmap_isset(a->c->tcp.port_to_init, port))
|
|
|
|
continue;
|
|
|
|
|
2021-10-15 18:42:11 +00:00
|
|
|
if ((a->c->v4 && tcp_sock_init_ext[port][V4] == -1) ||
|
|
|
|
(a->c->v6 && tcp_sock_init_ext[port][V6] == -1))
|
2021-09-27 03:24:30 +00:00
|
|
|
tcp_sock_init_one(a->c, 0, port);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
/**
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 10:33:38 +00:00
|
|
|
* tcp_timer() - Scan activity bitmap for sockets waiting for timed events
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
* @c: Execution context
|
2021-10-19 22:05:11 +00:00
|
|
|
* @now: Timestamp from caller
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
*/
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
void tcp_timer(struct ctx *c, struct timespec *now)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
{
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
struct tcp_sock_refill_arg refill_arg = { c, 0 };
|
|
|
|
int i;
|
|
|
|
|
2021-09-27 03:24:30 +00:00
|
|
|
if (c->mode == MODE_PASTA) {
|
|
|
|
if (timespec_diff_ms(now, &c->tcp.port_detect_ts) >
|
|
|
|
PORT_DETECT_INTERVAL) {
|
|
|
|
struct tcp_port_detect_arg detect_arg = { c, 0 };
|
|
|
|
struct tcp_port_rebind_arg rebind_arg = { c, 0 };
|
|
|
|
|
|
|
|
if (c->tcp.init_detect_ports) {
|
|
|
|
detect_arg.detect_in_ns = 0;
|
|
|
|
tcp_port_detect(&detect_arg);
|
|
|
|
rebind_arg.bind_in_ns = 1;
|
|
|
|
NS_CALL(tcp_port_rebind, &rebind_arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (c->tcp.ns_detect_ports) {
|
|
|
|
detect_arg.detect_in_ns = 1;
|
|
|
|
NS_CALL(tcp_port_detect, &detect_arg);
|
|
|
|
rebind_arg.bind_in_ns = 0;
|
|
|
|
tcp_port_rebind(&rebind_arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
c->tcp.port_detect_ts = *now;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
if (timespec_diff_ms(now, &c->tcp.refill_ts) > REFILL_INTERVAL) {
|
|
|
|
tcp_sock_refill(&refill_arg);
|
|
|
|
if (c->mode == MODE_PASTA) {
|
|
|
|
refill_arg.ns = 1;
|
2021-10-15 18:42:11 +00:00
|
|
|
if ((c->v4 && ns_sock_pool4[TCP_SOCK_POOL_TSH] < 0) ||
|
|
|
|
(c->v6 && ns_sock_pool6[TCP_SOCK_POOL_TSH] < 0))
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
NS_CALL(tcp_sock_refill, &refill_arg);
|
|
|
|
|
|
|
|
tcp_splice_pipe_refill(c);
|
|
|
|
}
|
|
|
|
}
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
for (i = c->tcp.tap_conn_count - 1; i >= 0; i--)
|
|
|
|
tcp_timer_one(c, tt + i, now);
|
|
|
|
|
|
|
|
if (c->mode == MODE_PASTA) {
|
|
|
|
for (i = c->tcp.splice_conn_count - 1; i >= 0; i--) {
|
|
|
|
if ((ts + i)->state == CLOSED) {
|
|
|
|
tcp_splice_destroy(c, ts + i);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bitmap_isset(splice_rcvlowat_set[0], i) &&
|
|
|
|
!bitmap_isset(splice_rcvlowat_act[0], i)) {
|
|
|
|
int lowat = 1;
|
|
|
|
|
|
|
|
setsockopt((ts + i)->from, SOL_SOCKET,
|
|
|
|
SO_RCVLOWAT, &lowat, sizeof(lowat));
|
|
|
|
bitmap_clear(splice_rcvlowat_set[0], i);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bitmap_isset(splice_rcvlowat_set[1], i) &&
|
|
|
|
!bitmap_isset(splice_rcvlowat_act[1], i)) {
|
|
|
|
int lowat = 1;
|
|
|
|
|
|
|
|
setsockopt((ts + i)->to, SOL_SOCKET,
|
|
|
|
SO_RCVLOWAT, &lowat, sizeof(lowat));
|
|
|
|
bitmap_clear(splice_rcvlowat_set[1], i);
|
|
|
|
}
|
passt: Add PASTA mode, major rework
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 06:34:53 +00:00
|
|
|
|
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes
This introduces a number of fundamental changes that would be quite
messy to split. Summary:
- advertised window scaling can be as big as we want, we just need
to clamp window sizes to avoid exceeding the size of our "discard"
buffer for unacknowledged data from socket
- add macros to compare sequence numbers
- force sending ACK to guest/tap on PSH segments, always in pasta
mode, whenever we see an overlapping segment, or when we reach a
given threshold compared to our window
- we don't actually use recvmmsg() here, fix comments and label
- introduce pools for pre-opened sockets and pipes, to decrease
latency on new connections
- set receiving and sending buffer sizes to the maximum allowed,
kernel will clamp and round appropriately
- defer clean-up of spliced and non-spliced connection to timer
- in tcp_send_to_tap(), there's no need anymore to keep a large
buffer, shrink it down to what we actually need
- introduce SO_RCVLOWAT setting and activity tracking for spliced
connections, to coalesce data moved by splice() calls as much as
possible
- as we now have a compacted connection table, there's no need to
keep sparse bitmaps tracking connection activity -- simply go
through active connections with a loop in the timer handler
- always clamp the advertised window to half our sending buffer,
too, to minimise retransmissions from the guest/tap
- set TCP_QUICKACK for originating socket in spliced connections,
there's no need to delay them
- fix up timeout for unacknowledged data from socket
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 00:29:05 +00:00
|
|
|
bitmap_clear(splice_rcvlowat_act[0], i);
|
|
|
|
bitmap_clear(splice_rcvlowat_act[1], i);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 06:25:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|