mirror of
https://passt.top/passt
synced 2025-01-22 04:05:22 +00:00
tcp, tcp_splice: Helpers for getting sockets from the pools
We maintain pools of ready-to-connect sockets in both the original and (for pasta) guest namespace to reduce latency when starting new TCP connections. If we exhaust those pools we have to take a higher latency path to get a new socket. Currently we open-code that fallback in the places we need it. To improve clarity encapsulate that into helper functions. While we're at it, give those helpers clearer error reporting. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
This commit is contained in:
parent
fbe81decbd
commit
fe27ebce5c
34
tcp.c
34
tcp.c
@ -1792,7 +1792,7 @@ int tcp_conn_pool_sock(int pool[])
|
||||
*
|
||||
* Return: socket number on success, negative code if socket creation failed
|
||||
*/
|
||||
int tcp_conn_new_sock(const struct ctx *c, sa_family_t af)
|
||||
static int tcp_conn_new_sock(const struct ctx *c, sa_family_t af)
|
||||
{
|
||||
int s;
|
||||
|
||||
@ -1811,6 +1811,32 @@ int tcp_conn_new_sock(const struct ctx *c, sa_family_t af)
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
* tcp_conn_sock() - Obtain a connectable socket in the host/init namespace
|
||||
* @c: Execution context
|
||||
* @af: Address family (AF_INET or AF_INET6)
|
||||
*
|
||||
* Return: Socket fd on success, -errno on failure
|
||||
*/
|
||||
int tcp_conn_sock(const struct ctx *c, sa_family_t af)
|
||||
{
|
||||
int *pool = af == AF_INET6 ? init_sock_pool6 : init_sock_pool4;
|
||||
int s;
|
||||
|
||||
if ((s = tcp_conn_pool_sock(pool)) >= 0)
|
||||
return s;
|
||||
|
||||
/* If the pool is empty we just open a new one without refilling the
|
||||
* pool to keep latency down.
|
||||
*/
|
||||
if ((s = tcp_conn_new_sock(c, af)) >= 0)
|
||||
return s;
|
||||
|
||||
err("TCP: Unable to open socket for new connection: %s",
|
||||
strerror(-s));
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* tcp_conn_tap_mss() - Get MSS value advertised by tap/guest
|
||||
* @conn: Connection pointer
|
||||
@ -1909,7 +1935,6 @@ static void tcp_conn_from_tap(struct ctx *c, sa_family_t af,
|
||||
const struct tcphdr *th, const char *opts,
|
||||
size_t optlen, const struct timespec *now)
|
||||
{
|
||||
int *pool = af == AF_INET6 ? init_sock_pool6 : init_sock_pool4;
|
||||
struct sockaddr_in addr4 = {
|
||||
.sin_family = AF_INET,
|
||||
.sin_port = th->dest,
|
||||
@ -1931,9 +1956,8 @@ static void tcp_conn_from_tap(struct ctx *c, sa_family_t af,
|
||||
if (!(flow = flow_alloc()))
|
||||
return;
|
||||
|
||||
if ((s = tcp_conn_pool_sock(pool)) < 0)
|
||||
if ((s = tcp_conn_new_sock(c, af)) < 0)
|
||||
goto cancel;
|
||||
if ((s = tcp_conn_sock(c, af)) < 0)
|
||||
goto cancel;
|
||||
|
||||
if (!c->no_map_gw) {
|
||||
if (af == AF_INET && IN4_ARE_ADDR_EQUAL(daddr, &c->ip4.gw))
|
||||
|
@ -159,7 +159,7 @@ bool tcp_flow_defer(union flow *flow);
|
||||
bool tcp_splice_flow_defer(union flow *flow);
|
||||
void tcp_splice_timer(const struct ctx *c, union flow *flow);
|
||||
int tcp_conn_pool_sock(int pool[]);
|
||||
int tcp_conn_new_sock(const struct ctx *c, sa_family_t af);
|
||||
int tcp_conn_sock(const struct ctx *c, sa_family_t af);
|
||||
int tcp_sock_refill_pool(const struct ctx *c, int pool[], sa_family_t af);
|
||||
void tcp_splice_refill(const struct ctx *c);
|
||||
|
||||
|
55
tcp_splice.c
55
tcp_splice.c
@ -376,6 +376,34 @@ static int tcp_splice_connect(const struct ctx *c, struct tcp_splice_conn *conn,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* tcp_conn_sock_ns() - Obtain a connectable socket in the namespace
|
||||
* @c: Execution context
|
||||
* @af: Address family (AF_INET or AF_INET6)
|
||||
*
|
||||
* Return: Socket fd in the namespace on success, -errno on failure
|
||||
*/
|
||||
static int tcp_conn_sock_ns(const struct ctx *c, sa_family_t af)
|
||||
{
|
||||
int *p = af == AF_INET6 ? ns_sock_pool6 : ns_sock_pool4;
|
||||
int s;
|
||||
|
||||
if ((s = tcp_conn_pool_sock(p)) >= 0)
|
||||
return s;
|
||||
|
||||
/* If the pool is empty we have to incur the latency of entering the ns.
|
||||
* Therefore, we might as well refill the whole pool while we're at it.
|
||||
* This differs from tcp_conn_sock().
|
||||
*/
|
||||
NS_CALL(tcp_sock_refill_ns, c);
|
||||
|
||||
if ((s = tcp_conn_pool_sock(p)) >= 0)
|
||||
return s;
|
||||
|
||||
err("TCP: No available ns sockets for new connection");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* tcp_splice_new() - Handle new spliced connection
|
||||
* @c: Execution context
|
||||
@ -388,38 +416,19 @@ static int tcp_splice_connect(const struct ctx *c, struct tcp_splice_conn *conn,
|
||||
static int tcp_splice_new(const struct ctx *c, struct tcp_splice_conn *conn,
|
||||
in_port_t port, uint8_t pif)
|
||||
{
|
||||
sa_family_t af = CONN_V6(conn) ? AF_INET6 : AF_INET;
|
||||
int s = -1;
|
||||
|
||||
/* If the pool is empty we take slightly different approaches
|
||||
* for init or ns sockets. For init sockets we just open a
|
||||
* new one without refilling the pool to keep latency down.
|
||||
* For ns sockets, we're going to incur the latency of
|
||||
* entering the ns anyway, so we might as well refill the
|
||||
* pool.
|
||||
*/
|
||||
if (pif == PIF_SPLICE) {
|
||||
int *p = CONN_V6(conn) ? init_sock_pool6 : init_sock_pool4;
|
||||
sa_family_t af = CONN_V6(conn) ? AF_INET6 : AF_INET;
|
||||
|
||||
s = tcp_conn_pool_sock(p);
|
||||
if (s < 0)
|
||||
s = tcp_conn_new_sock(c, af);
|
||||
s = tcp_conn_sock(c, af);
|
||||
} else {
|
||||
int *p = CONN_V6(conn) ? ns_sock_pool6 : ns_sock_pool4;
|
||||
|
||||
ASSERT(pif == PIF_HOST);
|
||||
|
||||
/* If pool is empty, refill it first */
|
||||
if (p[TCP_SOCK_POOL_SIZE-1] < 0)
|
||||
NS_CALL(tcp_sock_refill_ns, c);
|
||||
|
||||
s = tcp_conn_pool_sock(p);
|
||||
s = tcp_conn_sock_ns(c, af);
|
||||
}
|
||||
|
||||
if (s < 0) {
|
||||
warn("Couldn't open connectable socket for splice (%d)", s);
|
||||
if (s < 0)
|
||||
return s;
|
||||
}
|
||||
|
||||
return tcp_splice_connect(c, conn, s, port);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user