The tap code passes the IPv4 or IPv6 destination address of packets it
receives to the protocol specific code. Currently that protocol code
doesn't use the source address, but we want it to in future. So, in
preparation, pass the IPv4/IPv6 source address of tap packets to those
functions as well.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
We have different epoll type values for ICMP and ICMPv6 sockets, but they
both call the same handler function, icmp_sock_handler(). However that
function does essentially nothing in common for the two cases. So, split
it into icmp_sock_handler() and icmpv6_sock_handler() and dispatch them
separately from the top level.
While we're there remove some parameters that the function was never using
anyway. Also move the test for c->no_icmp into the functions, so that all
the logic specific to ICMP is within the handler, rather than in the top
level dispatch code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
union epoll_ref has a deeply nested set of structs and unions to let us
subdivide it into the various different fields we want. This means that
referencing elements can involve an awkward long string of intermediate
fields.
Using C11 anonymous structs and unions lets us do this less clumsily.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
In practical terms, passt doesn't benefit from the additional
protection offered by the AGPL over the GPL, because it's not
suitable to be executed over a computer network.
Further, restricting the distribution under the version 3 of the GPL
wouldn't provide any practical advantage either, as long as the passt
codebase is concerned, and might cause unnecessary compatibility
dilemmas.
Change licensing terms to the GNU General Public License Version 2,
or any later version, with written permission from all current and
past contributors, namely: myself, David Gibson, Laine Stump, Andrea
Bolognani, Paul Holzinger, Richard W.M. Jones, Chris Kuhn, Florian
Weimer, Giuseppe Scrivano, Stefan Hajnoczi, and Vasiliy Ulyanov.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
In pasta mode, ICMP and ICMPv6 echo sockets relay back to us any
reply we send: we're on the same host as the target, after all. We
discard them by comparing the last sequence we sent with the sequence
we receive.
However, on the first reply for a given identifier, the sequence
might be zero, depending on the implementation of ping(8): we need
another value to indicate we haven't sent any sequence number, yet.
Use -1 as initialiser in the echo identifier map.
This is visible with Busybox's ping, and was reported by Paul on the
integration at https://github.com/containers/podman/pull/16141, with:
$ podman run --net=pasta alpine ping -c 2 192.168.188.1
...where only the second reply would be routed back.
Reported-by: Paul Holzinger <pholzing@redhat.com>
Fixes: 33482d5bf293 ("passt: Add PASTA mode, major rework")
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Implement a packet abstraction providing boundary and size checks
based on packet descriptors: packets stored in a buffer can be queued
into a pool (without storage of its own), and data can be retrieved
referring to an index in the pool, specifying offset and length.
Checks ensure data is not read outside the boundaries of buffer and
descriptors, and that packets added to a pool are within the buffer
range with valid offset and indices.
This implies a wider rework: usage of the "queueing" part of the
abstraction mostly affects tap_handler_{passt,pasta}() functions and
their callees, while the "fetching" part affects all the guest or tap
facing implementations: TCP, UDP, ICMP, ARP, NDP, DHCP and DHCPv6
handlers.
Suggested-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Unions and structs, you all have names now.
Take the chance to enable bugprone-reserved-identifier,
cert-dcl37-c, and cert-dcl51-cpp checkers in clang-tidy.
Provide a ffsl() weak declaration using gcc built-in.
Start reordering includes, but that's not enough for the
llvm-include-order checker yet.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
SPDX tags don't replace license files. Some notices were missing and
some tags were not according to the SPDX specification, too.
Now reuse --lint from the REUSE tool (https://reuse.software/) passes.
Reported-by: Martin Hauke <mardnh@gmx.de>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Until now, messages would be passed to protocol handlers in a single
batch only if they happened to be dequeued in a row. Packets
interleaved between different connections would result in multiple
calls to the same protocol handler for a single connection.
Instead, keep track of incoming packet descriptors, arrange them in
sequences, and call protocol handlers only as we completely sorted
input messages in batches.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
If we can't bind() ping sockets, the echo identifier sent out from
the socket won't be the original one seen from the tap. Binding a
ping socket doesn't require any security capability, but it might
still fail due to a broken SELinux policy, see for example:
https://bugzilla.redhat.com/show_bug.cgi?id=1848929
Track the ICMP echo identifier as part of the epoll reference for
the socket and replace it in the reply on mismatch. We won't send
out the original identifier as sent from the guest, but still better
than missing replies.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host
connectivity to an otherwise disconnected, unprivileged network
and user namespace, similarly to slirp4netns. Given that the
implementation is largely overlapping with PASST, no separate binary
is built: 'pasta' (and 'passt4netns' for clarity) both link to
'passt', and the mode of operation is selected depending on how the
binary is invoked. Usage example:
$ unshare -rUn
# echo $$
1871759
$ ./pasta 1871759 # From another terminal
# udhcpc -i pasta0 2>/dev/null
# ping -c1 pasta.pizza
PING pasta.pizza (64.190.62.111) 56(84) bytes of data.
64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms
--- pasta.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms
# ping -c1 spaghetti.pizza
PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes
64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms
--- spaghetti.pizza ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms
This entails a major rework, especially with regard to the storage of
tracked connections and to the semantics of epoll(7) references.
Indexing TCP and UDP bindings merely by socket proved to be
inflexible and unsuitable to handle different connection flows: pasta
also provides Layer-2 to Layer-2 socket mapping between init and a
separate namespace for local connections, using a pair of splice()
system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local
bindings. For instance, building on the previous example:
# ip link set dev lo up
# iperf3 -s
$ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4
[SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender
[SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver
iperf Done.
epoll(7) references now include a generic part in order to
demultiplex data to the relevant protocol handler, using 24
bits for the socket number, and an opaque portion reserved for
usage by the single protocol handlers, in order to track sockets
back to corresponding connections and bindings.
A number of fixes pertaining to TCP state machine and congestion
window handling are also included here.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Open and bind a socket for each possible ICMP/ICMPv6 echo identifier,
and add a tracking mechanism. Otherwise, multiple pings in parallel
won't work, and a single ping to a different destination would make
an existing ping sequence stop working.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
This is in preparation for scatter-gather IO on the UDP receive path:
save a getsockname() syscall by setting a flag if we get the numbering
of all bound sockets in a strict sequence (expected, in practice) and
repurpose the tap buffer to be also a socket receive buffer, passing
it down to protocol handlers.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
As we support UDP forwarding for packets that are sent to local
ports, we actually need some kind of connection tracking for UDP.
While at it, this commit introduces a number of vaguely related fixes
for issues observed while trying this out. In detail:
- implement an explicit, albeit minimalistic, connection tracking
for UDP, to allow usage of ephemeral ports by the guest and by
the host at the same time, by binding them dynamically as needed,
and to allow mapping address changes for packets with a loopback
address as destination
- set the guest MAC address whenever we receive a packet from tap
instead of waiting for an ARP request, and set it to broadcast on
start, otherwise DHCPv6 might not work if all DHCPv6 requests time
out before the guest starts talking IPv4
- split context IPv6 address into address we assign, global or site
address seen on tap, and link-local address seen on tap, and make
sure we use the addresses we've seen as destination (link-local
choice depends on source address). Similarly, for IPv4, split into
address we assign and address we observe, and use the address we
observe as destination
- introduce a clock_gettime() syscall right after epoll_wait() wakes
up, so that we can remove all the other ones and pass the current
timestamp to tap and socket handlers -- this is additionally needed
by UDP to time out bindings to ephemeral ports and mappings between
loopback address and a local address
- rename sock_l4_add() to sock_l4(), no semantic changes intended
- include <arpa/inet.h> in passt.c before kernel headers so that we
can use <netinet/in.h> macros to check IPv6 address types, and
remove a duplicate <linux/ip.h> inclusion
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Avoid a bunch of syscalls on forwarding paths by:
- storing minimum and maximum file descriptor numbers for each
protocol, fall back to SO_PROTOCOL query only on overlaps
- allocating a larger receive buffer -- this can result in more
coalesced packets than sendmmsg() can take (UIO_MAXIOV, i.e. 1024),
so make sure we don't exceed that within a single call to protocol
tap handlers
- nesting the handling loop in tap_handler() in the receive loop,
so that we have better chances of filling our receive buffer in
fewer calls
- skipping the recvfrom() in the UDP handler on EPOLLERR -- there's
nothing to be done in that case
and while at it:
- restore the 20ms timer interval for periodic (TCP) events, I
accidentally changed that to 100ms in an earlier commit
- attempt using SO_ZEROCOPY for UDP -- if it's not available,
sendmmsg() will succeed anyway
- fix the handling of the status code from sendmmsg(), if it fails,
we'll try to discard the first message, hence return 1 from the
UDP handler
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Receive packets in batches from AF_UNIX, check if they can be sent
with a single syscall, and batch them up with sendmmsg() in case.
A bit rudimentary, currently only implemented for UDP, but it seems
to work.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
It's nice to be able to confirm connectivity using ICMP or ICMPv6
echo requests, and "ping" sockets on Linux (IPPROTO_ICMP datagram)
allow us to do that without any special capability.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>